Supporting Information

for

Heteropolyacid catalyzed *O*-alkylation of oximes with alcohols *via* carbocation in dimethyl carbonate and mechanism insight

Hongfeng Zhuang, Qin Hou, Feng Han,* Haotian Lv, Chengxia Miao*

Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural

Affairs, College of Chemistry and Material Science, Shandong Agricultural

University, Tai'an 271018, Shandong, China

Email: chxmiao@sdau.edu.cn; fenghan@sdau.edu.cn

Contents

General Information	S2
General Procedures	S3
Optimization of Reaction Conditions	S6
The Experiments for Mechanism Investigation	S10
Characterization Data	S14
The NMR Spectra of the Products	S28

1. General Information

All the reagents and catalysts were purchased from Makelin Biochemical Co., Ltd. and used without further purification. Analytical thin layer chromatography (TLC) plates were bought from Qingdao Hailang. Column chromatography was performed using 200-300 mesh silica gels from Qingdao Hailang, and the eluent was a mixture of ethyl acetate and petroleum ether. Unless noted, all reactions were carried out in Schlenk tube purchased from Beijing Synthware Glass company. ¹H NMR and ¹³C NMR were recorded on Bruker AVANCE III 400 MHz or 500 MHz spectrometer in CDCl₃. CDCl₃ residual signals were used as internal standard. Chemical shift values (δ) are reported in ppm and coupling contants (*J* values) are reported in Hertz (Hz). High resolution mass spectra (HRMS) were obtained on a Bruker micrOTOF-QII mass spectrometer with an ESI source.

2. General Procedures

(1) General Procedure for Preparation of Oximes

$$\begin{array}{c} O \\ R^{1} \\ R^{2} \end{array} + NH_{2}OH \cdot HCI \\ R^{1} \\ R^{2} \end{array} \xrightarrow{ \begin{array}{c} CH_{3}COONa (2 eq.) \\ CH_{3}OH, reflux \end{array}} \\ R^{1} \\ R^{2} \\ R^{2} \end{array}$$

The mixture of ketones or aldehydes, hydroxylamine hydrochloride (1.6 eq.) and sodium acetate (2 eq.) in CH₃OH was stirred under reflux and detected by TLC. After the reaction was completed, the mixture was poured into water and then extracted by ethyl acetate, washed by saturated aq. NaCl, and the organic layer was collected, dried by Na₂SO₄ and vacuumed under reduced pressure. The ketoximes or aldoximes were obtained by column chromatography.

The ketoximes and aldoximes were prepared according to the previous reports: 1a-1e,^{S1} 1f,^{S2} 1i,^{S3} 1l,^{S4} 1m-1p,^{S5} 1q-1t,^{S6} 1u,^{S7} 1x,^{S8} 1v-1w,^{S9} 1y-1z,^{S9} 1aa,^{S7} 1ab,^{S10} 1ac,^{S11} 1ad,^{S6} 1ae,^{S7} 1af,^{S6} 1ag,^{S12} 1aj,^{S13} 1ak-1am,^{S7} 1an,^{S8} 1ao,^{S14} 1ap,^{S15} 1aq.^{S6}

(2) General Procedure for Preparation of Tertiary Alcohols

In a baked-out Schlenk flask under N_2 atmosphere, the phenylmagnesium bromide (1 M in THF) was slowly added to the solution of ketones in THF. The mixture was stirred at room temperature until completion detected by TLC. Then the reaction was quenched by saturated NH₄Cl in ice-water bath. And the mixture was extracted by EtOAc and the organic layer was collected, dried by Na₂SO₄ and vacuumed under reduced pressure. Finally, products were obtained by column chromatography.

The tertiary alcohols were prepared according to the previous reports: **2b-2c**, ^{S16} **2d**, ^{S17} **2e**, ^{S18} **2f-2h**, ^{S19} **2i-2j**, ^{S20} **2k**, ^{S16} **2l**, ^{S21} **2o**. ^{S22}

(3) The Typical Procedure for Oxime Etherification of Oximes with Alcohols

Diphenylmethanone oxime (**1a**, 0.3 mmol, 0.0592 g), triphenylmethanol (**2a**, 0.9 mmol, 0.2343 g), $H_3PW_{12}O_{40}$ ·x H_2O (1 mol%, 0.0087 g), additive MgSO₄ (0.36 mmol,

0.0433 g) and 2 mL DMC were added to a 25 mL Schlenk tube. The mixture was stirred at room temperature for 2 hours. After the reaction was completed, the suitable amount of triethylamine was added into the system to neutralize the acid catalyst. Then the mixture was filtered, washed with ethyl acetate $(3 \times 10 \text{ mL})$ and concentrated under vacuum. The product was purified by column chromatography with PE as eluent.

(4) The Procedure of Oxime Etherification Reaction from 1a and Ph₃⁺BF₄⁻

In a 25 mL Schlenk tube, diphenylmethanone oxime (1a, 0.3 mmol, 0.0592 g), $Ph_3^+BF_4^-$ (5, 0.9 mmol, 0.2971 g), catalyst $H_3PW_{12}O_{40}\cdot xH_2O$ (1 mol%, 0.0087 g), additive MgSO₄ (0.36 mmol, 0.0433 g) and 2 mL DMC were added. The mixture was stirred at room temperature for 2 hours. After the reaction was over detected by TLC, the suitable triethylamine was send to the system to neutralize the acid catalyst, and the color of the mixture changed from brownish yellow to purple, and finally appeared orange. Then the mixture was filtered, washed with ethyl acetate (3×10 mL) and concentrated under vacuum. The product was purified by column chromatography with PE as eluent.

(5) The Procedure for Exploring the Influence of HBF₄ or NaBF₄

In a 25 mL Schlenk tube, diphenylmethanone oxime (**1a**, 0.3 mmol, 0.0592 g), triphenylmethanol (**2a**, 0.9 mmol, 0.2343 g), catalyst $H_3PW_{12}O_{40}$ ·x H_2O (1 mol%, 0.0087 g), aqueous HBF₄ (>40%, β eq.) or NaBF₄ (3 eq., 0.9 mmol, 0.0988 g), additive MgSO₄ (γ eq.) and 2 mL DMC were added and stirred at room temperature for 2 hours. After the reaction was detected by TLC, a certain amount of triethylamine was sent to the system to neutralize the acidic catalyst. Then the mixture was filtered, washed with EtOAc (3×10 mL) and concentrated under vacuum. The product was purified by column chromatography with PE as eluent.

(6) The Procedure for the Transformation of 4x⁸²³

n-BuLi (6 mmol, 1.2 eq.) was dropwisely put into a solution of 4x (5 mmol) in THF at -78 °C, which was added benzaldehyde (6 mmol) in THF over 5 min. Then the reaction was completed by stirring for 0.5 h at -78 °C and detected by TLC. The reaction was quenched with saturated NH₄Cl, extracted with ethyl acetate and dried with Na₂SO₄. Finally, 31% yield of **T1** was generated by column chromatography.

To a solution of oxime ether 4y (1 mmol) in dry CH₂Cl₂ was added allylmagnesium bromide (4 mmol), which was stirred at room temperature for 45 min and detected by TLC. The reaction was quenched with saturated NH₄Cl, extracted with ethyl acetate and dried with Na₂SO₄. Then, **T2** was afforded by column chromatography in a 96% yield.

3. Optimization of Reaction Conditions

Table S1. Screening the Reaction Conditions for the Construction of C-O Bond Through the *O*-alkylation of 1a with 2a Catalyzed by H₃PW₁₂O₄₀·xH₂O^{*a*}

N_OH 		DH H₃PW	₁₂ O ₄₀ •xH ₂ O (2 m	nol%) Ph	Ph Ph N Ph Ph
Ph Ph	+ Pn ⁻ / Ph 2a	`Ph sol	vent, T, t	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ph 3a
Entry	1a:2a	Solvent	T (°C)	t (h)	Yield (%) ^b
1	1:1.2	DMC	80	2	61
2	1:1.2	DMC	60	2	56
3	1:1.2	DMC	40	2	54
4	1:1.2	DMC	RT	2	53
5	1:1.2	DMC	100	2	60
6	1:1.2	DMC	80	0.5	60
7	1:1.2	DMC	80	1	59
8	1:1.2	DMC	80	4	58
9	1:1.2	DMC	80	6	57
10	1:1.2	DMC	80	8	57
11	1:1.2	DMC	80	12	51
12	1:1.2	H ₂ O	80	2	12
13	1:1.2	DMSO	80	2	trace
14	1:1.2	DCE	80	2	62
15	1:1.2	CH ₃ CN	80	2	NRc
16	1:1.2	THF	80	2	31
17	1:1.2	EtOAc	80	2	58
18	1:1.2	EtOH	80	2	17
19	1:3	DMC	80	2	84
20	1:4	DMC	80	2	89
21	1:5	DMC	80	2	88

^{*a*} Reaction conditions: diphenylmethanone oxime **1a** (0.3 mmol), triphenylmethanol **2a** (0.36-0.9 mmol), $H_3PW_{12}O_{40}$ ·x H_2O (2 mol% amount refers to **1a**), solvent (2 mL), at a certain temperature for some time; ^{*b*} Isolated yield; ^{*c*} NR = No reaction.

	OH OH H₃PW₁₂O₄₀×xH₂O (2 mol%) Ph N O	Ph Ph
	Ph Ph Ph Ph $DMC, T, 2 h$		
Entry	Additive	T (°C)	Yield (%) ^b
1	-	80	84
2	4A molecular sieve (5 mg)	80	89
3	4A molecular sieve (10 mg)	80	89
4	4A molecular sieve (50 mg)	80	61
5	4A molecular sieve (150 mg)	80	46
6	silica gel (500 mg)	80	61
7	DCC^{c} (2 eq.)	80	Trace
8	MgSO ₄ (2 eq.)	80	93
9	NaSO ₄ (2 eq.)	80	88
10	MgSO ₄ (2 eq.)	60	94
11	MgSO ₄ (2 eq.)	40	96
12	MgSO ₄ (2 eq.)	RT	97
13	MgSO ₄ (0 eq.)	$\mathrm{R}\mathrm{T}^{d}$	89
14	MgSO ₄ (0.1 eq.)	$\mathrm{R}\mathrm{T}^{d}$	90
15	MgSO ₄ (0.3 eq.)	$\mathrm{R}\mathrm{T}^{d}$	90
16	MgSO ₄ (0.5 eq.)	$\mathrm{R}\mathrm{T}^{d}$	91
17	MgSO ₄ (1 eq.)	$\mathrm{R}\mathrm{T}^{d}$	94
18	MgSO ₄ (1.2 eq.)	$\mathrm{R}\mathrm{T}^{d}$	96
19	MgSO ₄ (1.5 eq.)	$\mathrm{R}\mathrm{T}^{d}$	96
20	MgSO ₄ (3 eq.)	$\mathrm{R}\mathrm{T}^{d}$	97

Table S2. The Influence of Different Additives and Temperatures^a

^{*a*} Reaction conditions: diphenylmethanone oxime **1a** (0.3 mmol), triphenylmethanol **2a** (0.9 mmol), H₃PW₁₂O₄₀·xH₂O (2 mol% amount refers to **1a**), additive (γ eq., amount refers to **1a**), dimethyl carbonate (DMC) (2 mL), at a certain temperature for 2 h. ^{*b*} Isolated yield. ^{*c*} DCC = *N*,*N*'dicyclohexylcarbodiimide. ^{*d*} RT = room temperature.

Table S3. Screening	g the Influence	of 1a:2a Ratio	o, Time and	Catalyst Amound	nts on
the Reaction ^a					

N 	OH + Ph	OH H ₃ PW ₁₂ O ₄₀ ×xH ₂ C MgSO ₄ (1.2	eq.) Ph	
Ph 1	Ph F a 2a	ph DMC, RT, th	F	о РП Эћ За
Entry	1a:2a	Catalyst (mol%)	Time (h)	Yield (%) ^b
1	1:5	2	2	97
2	1:4	2	2	98
3	1:3	2	2	96
4	1:2	2	2	92
5	1:1.5	2	2	88
6	1:1.2	2	2	84
7	1:1	2	2	76
8	2:1	2	2	93
9	3:1	2	2	93
10	1:3	2	0.5	93
11	1:3	2	1	94
12	1:3	2	4	95
13	1:3	2	8	94
14	1:3	2	12	92
15	1:3	10	2	73
16	1:3	5	2	83
17	1:3	1.5	2	98
18	1:3	1	2	98
19	1:3	0.5	2	94
20	1:3	0.2	2	94
21	1:3	-	2	NR

^{*a*} Reaction conditions: diphenylmethanone oxime **1a** (0.3 mmol), triphenylmethanol **2a** (0.3-1.5 mmol), $H_3PW_{12}O_{40}$ ·x H_2O (α mol% amount refers to **1a**), MgSO₄ (1.2 eq., 0.36 mmol), DMC (2 mL), at RT for some time. ^{*b*} Isolated yield.

NOH +	OH Ph Ph	H ₃ PW ₁₂ O ₄₀ ×xH ₂ O (1 mol%) MgSO ₄ (1.2 eq.)	Ph N O Ph
n n 1a	Ph 2a	Solvent, RT, 2 h	Ph 3a
Entry		Solvent	Yield $(\%)^b$
1		DMC	98
2		ethyl acetate	95
3	d	ichloromethane	97
4		acetonitrile	98
5		acetone	91
6		diethyl ether	98
7		toluene	98
8		hexane	2
9		cyclohexane	3
10	t	etrahydrofuran	trace
11		ethanol	trace
12	di	methyl sulfoxide	NR
13	N,N-	dimethylformamide	NR

Table S4. The Effects of Different Solvents^a

^{*a*} Reaction conditions: diphenylmethanone oxime **1a** (0.3 mmol), triphenylmethanol **2a** (0.9 mmol), $H_3PW_{12}O_{40}$ ·x H_2O (1 mol% amount refers to **1a**), MgSO₄ (1.2 eq., 0.36 mmol), solvent (2 mL), at room temperature for 2 h. ^{*b*} Isolated yield.

4. The Experiments for Mechanism Investigation

(1) The Reaction Phenomenon of 2a and Catalyst

Figure S1. (a) 0.9 mmol 2a dissolved in 3 mL CH₃CN, colorless and transparent; (b) 0.003 mol $H_3PW_{12}O_{40}$ ·xH₂O dissolved in 1 mL CH₃CN, colorless and transparent; (c) (b) was slowly added to (a), the color was changed into transparent yellow.

(2) UV-Vis Spectra Analysis Preparation of diphenylmethanone oxime solution:

Diphenylmethanone oxime (0.0206 g, 0.1046 mmol) was dissolved in 4 mL CH₃CN,, and the UV-Vis absorption spectra was measured by preparing a solution with 1.07×10^{-5} mol/L in a 4 mL quartz cuvette as shown in Figure S2, **a**.

Preparation of triphenylmethanol solution:

Triphenylmethanol (0.0266 g, 0.1022 mmol) was dissolved in 1.5 mL CH₃CN,, and the UV-Vis absorption spectra was measured by preparing a solution with 1.77×10^{-3} mol/L in a 4 mL quartz cuvette as shown in Figure S2, **b**.

Preparation of H₃PW₁₂O₄₀·xH₂O solution:

 $H_3PW_{12}O_{40}$ ·x H_2O (0.0258 g, 0.0090 mmol) was dissolved in 1 mL CH₃CN, and the UV-Vis absorption spectra was measured by preparing a solution with 1.96×10^{-5} mol/L in a 4 mL quartz cuvette as shown in Figure S2, c.

Preparation of oxime ether 3a solution:

Oxime ether 3a (0.0430 g, 0.0978 mmol) was dissolved in 10 mL CH₃CN, then taking 40 µL the supernatant of 3a and adding 3 mL CH₃CN to quartz cuvette, and the spectrogram was obtained in Figure S2, d.

The procedure of drawing the UV-Vis absorption spectra of reaction:

Triphenylmethanol (0.9 mmol, 0.2343 g), $H_3PW_{12}O_{40}$ ·x H_2O (0.003 mmol, 0.0087 g) and MgSO₄ (0.36 mmol, 0.0438 g) were added to a round bottom bottle with 8 mL CH₃CN and stirred. Then, diphenylmethanone oxime was added into the system batch by batch and measured after reacting for 5 min and standing. In addition, when 0.3 mmol diphenylmethanone oxime was added, the spectra of the reaction were measured for 2 h.

Figure S2. The UV-Vis absorption spectra of a) diphenylmethanone oxime; b) triphenylmethanol;
c) H₃PW₁₂O₄₀·xH₂O; d) Oxime ether 3a.

FT-IR analysis

Figure S3. The FT-IR absorption spectra of a) $H_3PW_{12}O_{40}$ ·x H_2O in CH₃CN; b) triphenylmethanol in CH₃CN; c) $H_3PW_{12}O_{40}$ ·x H_2O + triphenylmethanol in CH₃CN.

References:

- (S1) W. Zhang, S. Yang, Q. Lin, H. Cheng and J. Liu, J. Org. Chem., 2019, 84, 851-859.
- (S2) K. Yang, F. Zhang, T. Fang, G. Zhang and Q. Song, *Angew. Chem. Int. Ed.*, 2019, **58**, 13421-13426.
- (S3) D. Y. Curtin, E. J. Grubbs and C. G. McCarty, J. Am. Chem. Soc., 1966, 88, 2775-2786.
- (S4) T. Ogata, S. Tanaka, H. Yoshida and S. Inokawa, Bull. Chem. Soc. Jpn., 1971, 44, 2853-2854.
- (S5) A. Sasse, H. Stark, X. Ligneau, S. Elz, S. Reidemeister, C. R. Ganellin, J.-C. Schwartz and W. Schunack, *Bioorg. Med. Chem.*, 2000, **8**, 1139-1149.
- (S6) J. K. Augustine, R. Kumar, A. Bombrun and A. B. Mandal, *Tetrahedron Lett.*, 2011, **52**, 1074-1077.
- (S7) X. Jiang, X. Xu, Y. Lin, Y. Yan, P. Li, R. Bai and Y. Xie, *Tetrahedron*, 2018, **74**, 5879-5885.
- (S8) A. M. Beauchemin, J. Moran, M.-E. Lebrun, C. Séguin, E. Dimitrijevic, L. Zhang and S. I. Gorelsky, *Angew. Chem. Int. Ed.*, 2008, 47, 1410-1413.
- (S9) Z. Han, J. Lv and J. Zhang, Tetrahedron, 2019, 75, 2162-2168.
- (S10) J. Yu and M. Lu, Org. Biomol. Chem., 2015, 13, 7397-7401.
- (S11) A. Thoume, D. B. Left, A. Elmakssoudi, F. Benhiba, A. Zarrouk, N. Benzbiria, I. Warad, M. Dakir, M. Azzi and M. Zertoubi, *J. Mol. Liq.*, 2021, **337**, 116398.
- (S12) X. Mo, T. D. R. Morgan, H. T. Ang and D. G.Hall, J. Am. Chem. Soc., 2018, 140, 5264-5271.
- (S13) A. Kandale, K. Patel, W. M. Hussein, S. J. Wun, S. Zheng, L. Tan, N. P. West, G. Schenk,
- L. W. Guddat and R. P. McGeary, J. Med. Chem., 2021, 64, 1670-1684.
- (S14) M. Kidwai and S. Bhardwaj, Synth. Commun., 2011, 41, 2655-2662.
- (S15) G. Zhao, L. Liang, C. H. E. Wen and R. Tong, Org. Lett., 2019, 21, 315-319.
- (S16) M. Horn and H. Mayr, Chem. Eur. J., 2010, 16, 7469-7477.
- (S17) I. Knepper, W. Seichter, K. Skobridis, V. Theodorou and E.Weber, *CrystEngComm*, 2015, 17, 6355-6369.
- (S18) P. Nösel, S. Moghimi, C. Hendrich, M. Haupt, M. Rudolph, F. Rominger and A. S. K.

- Hashmi, Adv. Synth. Catal., 2015, 356, 3755-3760.
- (S19) M. Sai, Adv. Synth. Catal., 2018, 36, 4330-4335.
- (S20) S. Kumar and U. Ramachandran, *Tetrahedron*, 2005, 61, 7022-7028.
- (S21) T. Lebleu and J.-F. Paquin, Tetrahedron Lett., 2017, 58, 442-444.
- (S22) M. O. Ganiu, A. H. Cleveland, J. L. Paul and R. Kartika, Org. Lett., 2019, 21, 5611-5615.
- (S23) (a) Y. Jiang, W. C. Chan and C.-M. Park, J. Am. Chem. Soc., 2012, 134, 4104-4107; (b) P. P.
- Mukhopadhyay, O. Miyata and T. Naito, Synlett, 2007, 9, 1403-1406; (c) Y. Nishida, M. Ueda, M.
- Hayashi, N. Takeda and O. Miyata, Eur. J. Org. Chem., 2016, 2016, 22-25.

5. Characterization Data

Diphenylmethanone *O***-trityl oxime** (3a)

White solid, 129.1 mg, 98% yield; m.p. = 155.4-155.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.49-7.38 (m, 5H), 7.33-7.17 (m, 20H). ¹³C NMR (101 MHz, CDCl₃) δ 156.8, 144.8, 136.8, 134.0, 129.4, 129.3, 129.2, 128.8, 128.17, 128.16, 128.1, 127.6,

127.1, 91.5. HRMS *m/z*: [M+Na]⁺ calcd. for C₃₂H₂₅NONa 462.1828, found 462.1837.

Di-*p*-tolylmethanone *O*-trityl oxime (3b)

White solid, 129.0 mg, 92% yield; m.p. = 176.7-177.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.34-7.20 (m, 19H), 7.15 (d, *J* = 7.0 Hz, 2H), 7.01 (d, *J* = 7.8 Hz, 2H), 2.43 (s, 3H), 2.28 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 156.6, 144.9, 139.1, 138.6, 134.4, 131.0, 129.5, 129.4, 128.8, 128.7, 128.2, 127.6, 127.0, 91.3, 21.6, 21.4. HRMS *m/z*: $[M+H]^+$ calcd. for C₃₄H₃₀NO 468.2322, found 468.2316.

Bis(4-fluorophenyl)methanone *O***-trityl oxime (3c)**

White solid, 135.5 mg, 95% yield; m.p. = 142.5-143.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.40 (t, J = 6.8 Hz, 2H), 7.32-7.14 (m, 19H), 6.95-6.85 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 164.5 (d, J = 63.4 Hz), 162.0 (d, J = 62.7 Hz), 154.9, 144.6, 131.5 (d, J = 8.3 Hz), 129.9 (d, J = 8.4 Hz), 129.3, 127.6, 127.2, 115.3 (dd, J = 21.6, 11.8 Hz), 91.8. HRMS *m/z*: [M+Na]⁺ calcd. for C₃₂H₂₃F₂NONa 498.1640, found 498.1641.

Bis(4-chlorophenyl)methanone *O***-trityl oxime (3d)**

White solid, 136.9 mg, 90% yield; m.p. = 159.1-159.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, *J* = 7.3 Hz, 2H), 7.36-7.23 (m, 17H), 7.16 (d, *J* = 10.6 Hz, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 154.7, 144.4, 135.5, 135.1, 134.9, 131.7, 130.9, 129.3, 129.2, 128.6, 128.5, 127.7, 127.3, 92.0. HRMS m/z: [M+H]⁺ calcd. for C₃₂H₂₄Cl₂NO

508.1229, found 508.1218.

(Z)-phenyl(p-tolyl)methanone O-trityl oxime (3e)

White solid, 127.8 mg, 94% yield; m.p. = 149.6-150.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, *J* = 7.0 Hz, 8H), 7.28-7.12 (m, 16H), 2.36 (d, *J* = 56.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 156.7, 144.8, 138.7, 137.2, 130.8, 129.6, 129.4, 129.3, 129.1, 128.8, 128.3, 128.1, 127.6, 127.1, 91.5, 21.7. HRMS m/z: [M+Na]⁺ calcd. for C₃₃H₂₇NO Na 476.1985, found 476.1976.

(Z)-(4-methoxyphenyl)(phenyl)methanone O-trityl oxime (3f)

White solid, 133.7 mg, 95% yield; m.p. = 118.6-119.1 °C; ¹H NMR (400 MHz, $CDCl_3$) δ 7.42 (dt, J = 20.9, 7.3 Hz, 4H), 7.34-7.20 (m, 18H), 7.02-6.70 (m, 2H), 3.81 (d, J = 49.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.5, 159.9, 156.4, 156.3, 144.84, 144.81, 137.4, 134.2, 131.4, 129.5, 129.40, 129.35, 129.3, 129.1, 128.7, 128.4, 128.12, 128.08, 127.60, 127.55, 127.1, 127.0, 113.6, 113.4, 91.5, 91.2, 55.5, 55.4. HRMS m/z: [M+Na]⁺ calcd. for C₃₃H₂₇NO₂Na 492.1934, found 492.1927.

(Z)-[1,1'-biphenyl]-4-vl(phenyl)methanone O-trityl oxime (3g)

White solid, 145.3 mg, 94% yield; m.p. = 167.2-167.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.69 (t, J = 7.8 Hz, 4H), 7.49 (dd, J = 16.8, 8.0 Hz, 4H), 7.41-7.21 (m, 21H). ¹³C NMR (101 MHz, CDCl₃) δ 156.5, 144.7, 141.6, 140.8, 136.9, 132.7, 130.1, 129.3, 129.2, 129.0, 128.2, 128.2, 127.7, 127.6, 127.3, 127.1, 126.8, 91.6. HRMS *m/z*: [M+Na]⁺ calcd. for C₃₈H₂₉NONa 538.2141, found 538.2145.

(Z)-(4-fluorophenyl)(phenyl)methanone O-trityl oxime (3h)

White solid, 130.3 mg, 95% yield; m.p. = 162.6-163.1 °C; ¹H NMR (400 MHz, $CDCl_3$) δ 7.42 (dt, J = 19.0, 7.5 Hz, 3H), 7.32-7.11 (m, 20H), 6.93-6.85 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 164.5 (d, J = 64.0 Hz), 162.0 (d, J = 63.1 Hz), 155.9, 155.8, 144.69, 144.65, 136.7, 131.50 (d, J = 8.1 Hz), 129.9, 129.8, 129.3, 128.3, 128.2, 128.1, 127.64, 127.61, 127.2, 127.1, 115.21 (dd, *J* = 21.6, 11.0 Hz), 91.7. HRMS *m/z*: [M+Na]⁺ calcd. for C₃₂H₂₄FNONa 480.1734, found 480.1729.

(Z)-(4-chlorophenyl)(phenyl)methanone O-trityl oxime (3i)

White solid, 134.8 mg, 95% yield; m.p. = 130.7-131.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, J = 9.1 Hz, 2H), 7.36 (d, J = 6.6 Hz, 2H), 7.32-7.18 (m, 18H). ¹³C NMR (101 MHz, CDCl₃) & 155.7, 144.5, 136.4, 134.8, 132.2, 131.0, 129.4, 129.3,

128.5, 128.3, 128.0, 127.7, 127.2, 91.8 HRMS *m/z*: [M+Na]⁺ calcd. for C₃₂H₂₄ClNONa 496.1439, found 496.1431.

(Z)-(4-bromophenyl)(phenyl)methanone O-trityl oxime (3j)

 $CDCl_3$) δ 7.60 (d, J = 6.3 Hz, 1H), 7.46 (d, J = 6.8 Hz, 1H), 7.40-7.11 (m, 22H). ¹³C NMR (101 MHz, CDCl₃) & 155.7, 144.6, 136.4, 132.8, 131.5, 131.2, 129.6, 129.3, 128.3, 128.0, 127.7, 127.2, 123.1, 91.8, HRMS *m/z*: [M+H]⁺ calcd. for C₃₂H₂₅BrNO 518.1114, found 518.1121.

(Z)-phenyl(4-(trifluoromethyl)phenyl)methanone O-trityl oxime (3k)

White solid, 141.5 mg, 93% yield; m.p. = 166.4-167.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 8.0 Hz, 2H), 7.51 (d, *J* = 7.9 Hz, 2H), 7.24 (q, *J* = 7.6, 5.9 Hz, 20H). ¹³C NMR (101 MHz, CDCl₃) δ 155.7, 144.4, 137.7, 135.9, 130.8 (d, *J* = 32.5 Hz), 129.7, 129.6, 129.2, 128.4, 127.8, 127.7, 127.3, 125.3 (q, J = 3.7 Hz), 91.9. HRMS m/z: $[M+H]^+$ calcd. for C₃₃H₂₅F₃NO 508.1883, found 508.1893.

(Z)-(4-nitrophenyl)(phenyl)methanone O-trityl oxime (31)

White solid, 136.5 mg, 94% yield; m.p. = 151.0-151.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, J = 6.7 Hz, 2H), 7.56 (d, J = 6.8 Hz, 2H), 7.31-7.22 (m, 20H). ¹³C NMR (101 MHz, CDCl₃) δ 155.0, 147.9, 144.3, 144.2, 140.7, 135.4, 130.4, 129.8,

129.2, 128.5, 127.7, 127.4, 123.6, 92.3. HRMS *m/z*: [M+Na]⁺ calcd. for C₃₂H₂₄N₂O₃Na 507.1679, found 507.1683.

(Z)-phenyl(o-tolyl)methanone O-trityl oxime (3m)

White solid, 130.5 mg, 96% yield; m.p. = 112.4-113.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.18 (m, 23H), 7.14 (d, J = 7.6 Hz, 1H), 1.95 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) 157.1, 144.7, 136.0, 135.9, 134.4, 130.0, 129.24, 129.20, 128.4, 128.3, 127.9, 127.6, 127.1, 127.0, 125.8, 91.0, 19.5. HRMS m/z: [M+Na]⁺ calcd. for C₃₃H₂₇NONa 476.1985, found 476.1988.

(Z)-phenyl(*m*-tolyl)methanone O-trityl oxime (3n)

White solid, 129.2 mg, 95% yield; m.p. = 123.5-124.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.51-7.34 (m, 2H), 7.34-7.16 (m, 21H), 7.06 (d, *J* = 18.3 Hz, 1H), 2.31 (d, J = 68.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 156.7, 144.6, 137.5, 136.8, 133.6,

129.9, 129.8, 129.4, 129.2, 129.2, 129.0, 127.99, 127.96, 127.8, 127.4, 126.9, 126.4, 125.1, 91.2, 21.5. HRMS *m/z*: [M+Na]⁺ calcd. for C₃₃H₂₇NONa 476.1985, found 476.1979.

(Z)-(2-chlorophenyl)(phenyl)methanone O-trityl oxime (30)

White solid, 136.3 mg, 96% yield; m.p. = 117.8-118.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 7.6 Hz, 1H), 7.38 (m, 2H), 7.33-7.15 (m, 21H). ¹³C NMR (101 516

MHz, CDCl₃) δ 154.6, 144.6, 135.1, 134.0, 132.7, 129.9, 129.8, 129.7, 129.4, 129.2, 128.4, 127.6, 127.1, 127.0, 126.9, 91.5. HRMS m/z: [M+Na]⁺ calcd. for C₃₂H₂₄ClNONa 496.1439, found 496.1430.

(Z)-(3-chlorophenyl)(phenyl)methanone O-trityl oxime (3p)

White solid, 139.1 mg, 98% yield; m.p. = 122.3-123.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 9.4 Hz, 3H), 7.33-7.19 (m, 21H). ¹³C NMR (101 MHz, CDCl₃) δ 155.4, 144.5, 136.1, 135.5, 134.2, 129.51, 129.50, 129.45, 129.3, 129.0, 128.3, 128.0, 127.7,

127.2, 91.8. HRMS *m/z*: [M+Na]⁺ calcd. for C₃₂H₂₄ClNONa 496.1439, found 496.1437.

(Z)-1-phenylethan-1-one O-trityl oxime (3q)

White solid, 103.0 mg, 91% yield; m.p. = 139.8-140.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.36 (m, 8H), 7.32-7.23 (m, 12H), 2.40 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.1, 144.9, 137.0, 129.4, 128.9, 128.3, 127.6, 127.1, 126.3, 91.0, 13.2.

HRMS m/z: [M+H]⁺ calcd. for C₂₇H₂₄NO 378.1852, found 378.1849.

(Z)-1-(p-tolyl)ethan-1-one O-trityl oxime (3r)

(Z)-1-(4-methoxyphenyl)ethan-1-one O-trityl oxime (3s)

White solid, 101.4 mg, 83% yield; m.p. = 112.5-113.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, *J* = 7.7 Hz, 8H), 7.31-7.23 (m, 9H), 6.77 (d, *J* = 6.9 Hz, 2H), 3.76 (s, 3H), 2.37 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) & 160.3, 153.6, 145.0, 129.7, 129.4, 127.58, 127.55, 127.1, 113.7, 90.8, 55.4, 13.1. HRMS m/z: [M+H]⁺ calcd. for

 $C_{28}H_{26}NO_2$ 408.1958, found 408.1950.

(Z)-1-(4-fluorophenyl)ethan-1-one O-trityl oxime (3t)

White solid, 116.2 mg, 98% yield; m.p. = 188.6-189.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.51-7.24 (m, 17H), 6.92 (t, J = 8.5 Hz, 2H), 2.38 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.6, 162.1, 153.2, 144.9, 133.1 (d, J = 3.3 Hz), 129.3, 127.6, 127.2, 115.2 (d, J = 21.6 Hz), 91.1, 13.2. HRMS m/z: [M+H]⁺ calcd. for C₂₇H₂₃FNO 396.1758,

found 396.1766.

(Z)-1-(4-chlorophenvl)ethan-1-one O-trityl oxime (3u)

White solid, 114.7 mg, 93% yield; m.p. = 173.3-173.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 7.7 Hz, 7H), 7.20-7.31 (m, 12H), 2.38 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) & 153.2, 144.8, 135.4, 134.9, 129.3, 128.5, 127.7, 127.5, 127.2, 91.2,

13.1. HRMS m/z: [M+H]⁺ calcd. for C₂₇H₂₃ClNO 412.1463, found 412.1468.

(Z)-1-(4-(trifluoromethyl)phenyl)ethan-1-one O-trityl oxime (3v)

White solid, 128.2 mg, 96% yield; m.p. = 148.5-148.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.52 (q, J = 8.3 Hz, 4H), 7.41-7.25 (m, 15H), 2.42 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) & 153.1, 144.7, 140.3, 130.8, 130.5, 129.3, 127.7, 127.3, 126.5, 125.3 (q, J = 3.7 Hz), 91.5, 13.1. HRMS m/z: [M+Na]⁺ calcd. for C₂₈H₂₂F₃NONa 468.1546, found

468.1555.

(Z)-1-(o-tolyl)ethan-1-one O-trityl oxime (3w)

White solid, 111.5 mg, 95% yield; m.p. = 96.3-97.1 °C; ¹H1H NMR (400 MHz, CDCl₃) δ 7.43-7.05 (m, 19H), 2.36 (s, 3H), 1.93 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) & 156.8, 145.1, 137.7, 136.3, 130.7, 129.3, 128.4, 128.2, 127.7, 127.1, 125.6,

90.6, 20.4, 17.2. HRMS *m/z*: [M+Na]⁺ calcd. for C₂₈H₂₅NONa 414.1828, found 414.1826.

(Z)-1-(*m*-tolyl)ethan-1-one *O*-trityl oxime (3x)

White solid, 100.9 mg, 86% yield; m.p. = 97.8-98.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, J = 8.1 Hz, 6H), 7.26 (dt, J = 18.2, 6.6 Hz, 11H), 7.18-7.04 (m, 2H), 2.38 (s, 3H), 2.28 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.2, 144.9, 137.6, 136.9, 129.5, 129.2, 128.1, 127.5, 127.0, 126.9, 123.3, 90.9, 21.4, 13.2. HRMS m/z: [M+H]⁺ calcd. for

C₂₈H₂₆NO 392.2009, found 392.2018.

(Z)-1-(2-fluorophenyl)ethan-1-one O-trityl oxime (3y)

White solid, 109.1 mg, 92% yield; m.p. = 126.4-126.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, *J* = 7.5 Hz, 6H), 7.32-7.19 (m, 10H), 7.11-6.91 (m, 3H), 2.41 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.1, 159.6, 153.17, 153.16, 144.8, 130.41 (d, *J* = 8.4 Hz), 130.1 (d, *J* = 3.6 Hz), 129.3, 127.6, 127.2, 124.1 (d, *J* = 3.5 Hz), 116.1 (d, *J* = 22.1

Hz), 91.1, 16.3, 16.2. HRMS *m/z*: [M+H]⁺ calcd. for C₂₇H₂₃FNO 396.1758, found 396.1767.

(Z)-1-(3-fluorophenyl)ethan-1-one O-trityl oxime (3z)

White solid, 100.9 mg, 92% yield; m.p. = 138.6-139.4 °C; ¹H NMR (400 MHz,

CDCl₃) δ 7.42-7.35 (m, 6H), 7.31-7.11 (m, 12H), 6.97-6.90 (m, 1H), 2.37 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.0, 161.6, 153.2 (d, *J* = 2.7 Hz), 144.8, 139.2 (d, *J* = 7.9 Hz), 129.8 (d, *J* = 8.2 Hz), 129.3, 127.7, 127.2, 121.9 (d, *J* = 2.9 Hz), 115.8 (d, *J* = 21.5 Hz), 113.1 (d, *J* = 22.9 Hz), 91.3, 13.2. HRMS *m/z*: [M+H]⁺ calcd. for C₂₇H₂₃FNO 396.1758, found 396.1757.

(Z)-3,4-dihydronaphthalen-1(2H)-one O-trityl oxime (3aa)

White solid, 111.3 mg, 92% yield; m.p. = 158.7-159.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 7.9 Hz, 1H), 7.39 (d, J = 7.6 Hz, 6H), 7.27 (dt, J = 13.8, 7.9 Hz, 9H), 7.16 (t, J = 7.5 Hz, 1H), 7.09-7.00 (m, 2H), 2.97 (t, J = 6.7 Hz, 2H), 2.73 (t, J = 6.1 Hz, 2H), 1.87 (p, J = 6.4 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 153.6, 145.0, 139.4, 131.4, 129.4, 128.8, 128.5, 127.6, 127.1, 126.3, 124.8, 90.9, 29.9, 25.1, 21.6. HRMS *m/z*: [M+Na]⁺ calcd. for C₂₉H₂₅NONa 426.1828, found 426.1829.

9H-fluoren-9-one O-trityl oxime (3ab)

Yellow solid, 119.3 mg, 91% yield; m.p. = 152.5-153.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.52 (d, J = 7.5 Hz, 1H), 7.64 (d, J = 7.5 Hz, 1H), 7.57 (d, J = 7.6 Hz, 1H), 7.52-7.21 (m, 20H), 7.15 (t, J = 7.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 152.0, 144.3, 141.8, 140.0, 136.2, 131.0, 130.5, 129.8, 129.6, 129.0, 128.4, 127.84, 127.76, 127.5, 122.0, 120.0, 119.8, 93.4. HRMS *m/z*: [M+H]⁺ calcd. for C₃₂H₂₄NO 438.1852, found 438.1858.

(1*Z*,2*E*)-1,3-diphenylprop-2-en-1-one *O*-trityl oxime (3ac)

White solid, 121.4 mg, 87% yield; m.p. = 115.9-116.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 16.8 Hz, 1H), 7.50 (d, J = 7.5 Hz, 2H), 7.43-7.24 (m, 23H), 6.83 (d, J = 16.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 156.5, 144.8, 139.0, 136.5, 135.5, 129.5, 129.4, 129.20, 129.18, 128.97, 128.95, 128.3, 127.7, 127.6, 127.5, 127.2, 118.4, 91.5. HRMS *m/z*: [M+Na]⁺ calcd. for C₃₄H₂₇NONa 488.1985, found 488.1983.

(Z)-1-(pyridin-3-yl)ethan-1-one O-trityl oxime (3ad)

Yellow solid, 27.2 mg, 24% yield; m.p. = 160.8-161.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.68 (s, 1H), 8.50 (s, 1H), 7.71 (d, J = 8.0 Hz, 1H), 7.38 (d, J = 7.6 Hz, 6H), 7.28 (dt, J = 13.2, 6.1 Hz, 9H), 7.18 (t, J = 6.4 Hz, 1H), 2.41 (s, 3H). ¹³C NMR (101

MHz, CDCl₃) δ 151.9, 149.7, 147.5, 144.6, 133.6, 132.7, 129.3, 127.7, 127.3, 123.3, 91.5, 12.9. HRMS *m/z*: [M+H]⁺ calcd. for C₂₆H₂₃N₂O 379.1805, found 379.1806.

(Z)-1-(furan-2-yl)ethan-1-one O-trityl oxime (3ae)

White solid, 112.8 mg, 80% yield; m.p. = 138.9-139.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.48-7.18 (m, 16H), 6.46 (t, J = 2.7 Hz, 1H), 6.32 (d, J = 3.1 Hz, 1H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 150.9, 147.4, 144.8, 143.1, 129.4,

127.6, 127.2, 111.3, 108.9, 91.0, 12.5. HRMS *m/z*: [M+Na]⁺ calcd. for C₂₅H₂₁NO₂Na 390.1465, found 390.1463.

Tetrahydro-4H-pyran-4-one O-trityl oxime (3af)

White solid, 63.2 mg, 59% yield; m.p. = 175.5-176.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.29 (dt, J = 22.8, 7.4 Hz, 15H), 3.68 (q, J = 5.7 Hz, 4H), 2.79 (t, J = 4.9 Hz, 2H), 2.25 (t, J = 4.8 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 156.0, 144.8, 129.2, 127.6,

127.1, 90.1, 68.7, 67.0, 32.7, 27.7. HRMS *m/z*: [M+H]⁺ calcd. for C₂₄H₂₄NO₂ 358.1802, found 358.1796.

1,3-diphenylpropan-2-one O-trityl oxime (3ag)

White solid, 130.4 mg, 93% yield; m.p. = 135.8-136.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.49-7.09 (m, 23H), 6.85 (d, J = 6.7 Hz, 2H), 3.68 (s, 2H), 3.28 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 158.2, 144.9, 137.1, 136.9, 129.34, 129.30,

129.26, 128.7, 128.4, 127.7, 127.1, 126.6, 126.5, 90.7, 39.8, 33.8. HRMS m/z: [M+H]⁺ calcd. for C₃₄H₃₀NO 468.2322, found 468.2317.

Cyclohexanone O-trityl oxime (3ah)

White solid, 68.2 mg, 64% yield; m.p. = 139.7-140.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.20 (m, 15H), 2.62 (t, *J* = 5.8 Hz, 2H), 2.08 (d, *J* = 6.1 Hz, 2H), 1.54 (t, *J* = 7.5 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 160.9, 145.1, 129.3, 127.5, 126.9, 89.6,

32.5, 27.3, 26.2, 26.1, 26.0. HRMS *m/z*: [M+H]⁺ calcd. for C₂₅H₂₆NO 356.2009, found 356.2008.

Propan-2-one O-trityl oxime (3ai)

White solid, 50.1 mg, 53% yield; m.p. = 116.7-117.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.54-7.16 (m, 15H), 2.03 (d, *J* = 17.5 Hz, 3H), 1.79 (d, *J* = 16.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.8, 145.2, 129.3, 127.6 127.0, 89.7, 22.2, 16.5. HRMS *m/z*:

 $[M{+}H]^{+}$ calcd. for $C_{22}H_{22}NO$ 316.1696, found 316.1688.

(Z)-4-methylpentan-2-one O-trityl oxime (3aj)

White solid, 71.9 mg, 67% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.44-7.40 (m, 6H), 7.35-7.26 (m, 9H), 2.02 (s, 3H), 2.01 (d, *J* = 7.3 Hz, 2H), 1.83 (dt, *J* = 13.7, 7.0 Hz,

1H), 0.77 (d, J = 6.6 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 157.0, 145.3, 129.3, 127.5, 126.9, 89.8, 45.0, 25.8, 22.3, 15.1. HRMS m/z: [M+H]⁺ calcd. for C₂₅H₂₈NO 358.2165, found 358.2166.

(E)-benzaldehyde O-trityl oxime (3ak)

White solid, 93.8 mg, 86% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.26 (s, 1H), 7.46-7.37 (m, 8H), 7.23-7.31 (m, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 148.7, 144.5, 132.8, 129.7, 129.4, 128.7, 127.7, 127.3, 127.2, 91.3. HRMS *m/z*: [M+H]⁺

calcd. for $C_{26}H_{22}NO$ 386.1515, found 386.1510.

(E)-nicotinaldehyde O-trityl oxime (3al)

White solid, 26.2 mg, 24% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.55 (s, 1H), 8.38 (s, 1H), 7.56 (d, J = 8.3 Hz, 2H), 7.38 (s, 6H), 7.32 (dd, J = 11.9, 4.6 Hz, 9H), 7.18 (d, J = 6.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 152.2, 149.7, 149.3, 144.2, 136.5, 129.4, 127.7, 127.3, 123.9, 120.8, 91.8. HRMS m/z: [M+Na]⁺ calcd. for C₂₅H₂₀N₂ONa 387.1468, found 387.1463.

(E)-thiophene-2-carbaldehyde O-trityl oxime (3am)

White solid, 84.2 mg, 76% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.71 (s, 1H), 7.55(d, J = 5.1 Hz, 1H), 7.43 (d, J = 7.2 Hz, 6H), 7.31 (q, J = 7.6 Hz, 10H), 7.10 (s, 1H).³ H¹³C NMR (101 MHz, CDCl₃) δ 144.3, 140.5, 132.2, 131.5, 131.3, 129.4, 127.7,

127.4, 126.5, 93.1. HRMS m/z: [M+H]⁺ calcd. for C₂₄H₂₀NOS 370.1260, found 370.1259.

(E)-2-phenylacetaldehyde O-trityl oxime (3an)

White solid, 40.8 mg, 36% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.16 (m, 19H), 6.99 (d, J = 7.2 Hz, 1H), 6.89 (t, J = 5.8 Hz, 1H), 3.87 (d, J = 5.8 Hz, 1H), 3.41 (d, J = 5.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 150.3, 149.9,

144.6, 144.6, 137.0, 136.6, 129.3, 129.1, 128.90, 128.85, 128.6, 127.8, 127.7, 127.3, 127.2, 126.8, 126.7, 90.8, 90.5, 36.1, 33.1. HRMS *m/z*: [M+Na]⁺ calcd. for C₂₇H₂₃NONa 400.1672, found 400.1676.

(E)-pentanal O-trityl oxime (3ao)

White solid, 84.7 mg, 79% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.14 (m, 15H), 6.71 (t, J = 6.1 Hz, 1H), 2.52 (q, J = 7.0 Hz, 1H), 2.10 (q, J = 6.4, 5.7 Hz, 1H), 1.53-1.15 (m, 4H), 0.96-0.77 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ

152.5, 151.6, 144.8, 144.7, 129.2, 129.0, 127.6, 127.5, 127.1, 127.0, 90.2, 90.1, 29.2, 28.6, 28.4,

26.1, 22.6, 21.9, 13.9, 13.7. HRMS m/z: [M+Na]+ calcd. for C₂₄H₂₅NONa 366.1828, found 366.1827.

(E)-cyclohexanecarbaldehyde O-trityl oxime (3ap)

White solid, 56.5 mg, 51% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, J = 4.3 Hz, 1H), 7.28 (dt, J = 24.7, 8.8 Hz, 15H), 3.17-2.06 (m, 1H), 1.90-1.53 (m, 5H), 1.41-1.08 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ 156.2, 155.5, 144.9, 144.7, 129.4, 129.1, 127.7, 127.5, 127.2, 127.0, 90.3, 38.5, 35.2, 30.4, 29.6, 26.1, 26.0, 25.5, 25.4. HRMS *m/z*: [M+Na]⁺ calcd. for C₂₆H₂₇NONa 392.1985, found 392.1991.

(1*E*,2*E*)-cinnamaldehyde *O*-trityl oxime (3aq)

White solid, 76.0 mg, 65% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 7.3Hz, 1H), 7.40-7.22 (m, 20H), 6.76 (d, J = 5.8 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 151.2, 144.5, 138.3, 136.2, 129.3, 128.9, 128.8, 127.7, 127.3, 127.0,

122.9, 91.2. HRMS *m/z*: [M+H]⁺ calcd. for C₂₈H₂₄NO 390.1852, found 390.1860.

Diphenylmethanone O-(diphenyl(p-tolyl)methyl) oxime (4a)

White solid, 129.2 mg, 95% yield; m.p. = 81.0-81.2 °C; ¹H NMR (400 MHz, CDCl₃) & 7.48-7.37 (m, 5H), 7.27-7.18 (m, 16H), 7.12-6.97 (m, 3H), 1.83 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 156.0, 145.0, 142.5, 138.6, 136.8, 133.7, 132.1, 131.0, 129.4, 129.2, 128.8, 128.6, 128.2, 128.1, 128.0, 127.71, 127.65, 126.9, 124.6, 93.0, 22.0. HRMS *m/z*: [M+Na]⁺ calcd. for C₃₃H₂₇NONa 476.1985, found 476.1987.

Diphenylmethanone *O*-((4-methoxyphenyl)diphenylmethyl) oxime (4b)

White solid, 132.3 mg, 94% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.17 (m, 22H), 6.78 (d, J = 8.4 Hz, 2H), 3.76 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.6, 156.7, 145.0, 136.8, 134.0, 130.9, 129.4, 129.1, 128.8, 128.14, 128.05,

127.6, 127.0, 112.8, 91.2, 55.3. HRMS m/z: [M+Na]⁺ calcd. for C₃₃H₂₇NO₂Na 492.1934, found 492.1931.

Diphenylmethanone *O*-([1,1'-biphenyl]-4-yldiphenylmethyl) oxime (4c)

White solid, 143.7 mg, 93% yield; m.p. = 159.8-160.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 7.6 Hz, 2H), 7.52-7.18 (m, 27H). ¹³C NMR (101 MHz, CDCl₃) δ 156.9, 144.7, 143.8, 140.9, 139.7, 136.8, 133.9, 129.7, 129.4, 129.3,

129.2, 128.84, 128.82, 128.19, 128.17, 128.14, 128.09, 128.05, 127.7, 127.3, 127.19, 127.15,

126.3, 91.3. HRMS *m/z*: [M+Na]⁺ calcd. for C₃₈H₂₉NONa 538.2141, found 538.2151.

Diphenylmethanone O-((4-fluorophenyl)diphenylmethyl) oxime (4d)

White solid, 134.4 mg, 98% yield; m.p. = 132.5-133.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.53-7.36 (m, 5H), 7.25 (d, *J* = 14.8 Hz, 17H), 6.94 (t, *J* = 8.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 163.2, 160.2, 157.0, 144.6, 140.48, 140.45, 136.7, 133.9, 131.3 (d, *J* = 7.9 Hz), 129.30, 129.28, 129.1, 128.9, 128.2, 128.0, 127.7, 127.2, 114.4 (d, *J* = 21.1 Hz), 91.0. HRMS m/z: [M+Na]⁺ calcd. for C₃₂H₂₄FNONa 480.1734, found 480.1727.

Diphenylmethanone *O*-((4-chlorophenyl)diphenylmethyl) oxime (4e)

White solid, 139.1 mg, 98% yield; m.p. = 121.5-122.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, *J* = 7.7 Hz, 3H), 7.38 (d, *J* = 7.1 Hz, 2H), 7.31-7.19 (m, 19H). ¹³C NMR (101 MHz, CDCl₃) δ 157.2, 144.3, 143.3, 136.6, 133.8, 133.1, 130.9, 129.34, 129.26, 129.1, 128.9, 128.2, 127.8, 127.7, 127.3, 91.0. HRMS m/z: [M+Na]⁺ calcd. for C₃₂H₂₄ClNONa 496.1439, found 496.1442.

Diphenylmethanone O-((4-bromophenyl)diphenylmethyl) oxime (4f)

White solid, 147.4 mg, 95% yield; m.p. = 126.1-126.4 °C; ¹H NMR (400 MHz,

 $CDCl_3$) δ 7.46 (d, J = 6.8 Hz, 3H), 7.38 (d, J = 7.7 Hz, 4H), 7.33-7.15 (m, 17H). ¹³C NMR (101 MHz, CDCl₃) & 157.2, 144.2, 143.6, 136.6, 133.8, 131.2, 130.7, 129.34, 129.25, 129.1, 128.9, 128.2, 127.7, 127.3, 121.4, 91.0. HRMS *m/z*: [M+H]⁺ calcd. for C₃₂H₂₅BrNO 518.1114, found 518.1108.

Diphenylmethanone *O*-(diphenyl(4-(trifluoromethyl)phenyl)methyl) oxime (4g)

White solid, 147.6 mg, 97% yield; m.p. = 115.0-115.4 °C; ¹H NMR (400 MHz, CDCl₃) & 7.55-7.37 (m, 9H), 7.33-7.19 (m, 15H). ¹³C NMR (101 MHz, CDCl₃) & 157.4, 148.8, 143.9, 136.5, 133.8, 129.5, 129.4, 129.2, 128.99, 128.95, 128.3, 128.2, 128.1, 127.8, 127.5, 124.6 (q, J = 3.8 Hz), 91.0. HRMS m/z: [M+Na]⁺ calcd. for C₃₃H₂₄F₃NONa 530.1702, found 530.1698.

Diphenylmethanone *O*-(diphenyl(*m*-tolyl)methyl) oxime (4h)

White solid, 130.5 mg, 96% yield; m.p. = 94.8-95.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.38 (m, 5H), 7.32-7.19 (m, 15H), 7.15-7.00 (m, 4H), 2.25 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) & 156.7, 144.8, 144.7, 137.0, 136.8, 134.0, 129.8, 129.40, 129.37, 129.2, 128.8, 128.14, 128.06, 127.8, 127.5, 127.4, 127.1, 126.4, 91.4, 21.8. HRMS *m/z*: [M+Na]⁺ calcd. for C₃₃H₂₇NONa 476.1985, found 476.1983.

Diphenylmethanone *O*-(diphenyl(*o*-tolyl)methyl) oxime (4i)

White solid, 127.8 mg, 94% yield; m.p. = 155.6-156.1 °C; ¹H NMR (400 MHz, $CDCl_3$) δ 7.41 (q, J = 6.9, 6.4 Hz, 5H), 7.30-7.18 (m, 16H), 7.12-6.98 (m, 3H), 1.83 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 156.0, 145.0, 142.5, 138.6, 136.8, 133.7, 132.1, 131.0, 129.4, 129.1, 128.8, 128.6, 128.2, 128.1, 128.0, 127.71, 127.65, 126.9, 124.6, 93.0, 22.0. HRMS *m/z*: [M+Na]⁺ calcd. for C₃₃H₂₇NONa 476.1985, found 476.1979.

Diphenylmethanone *O*-phenyldi-*p*-tolylmethyl oxime (4j)

White solid, 130.4 mg, 93% yield; m.p. = 128.3-128.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.48-7.38 (m, 5H), 7.31-7.17 (m, 14H), 7.05 (d, J = 6.5 Hz, 4H), 2.30 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 156.5, 145.1, 142.0, 136.9, 136.6, 134.0, 129.4, 129.24, 129.21, 129.1, 128.73, 128.70, 128.3, 128.12, 128.06, 128.0, 127.5, 126.9, 91.2, 21.2. HRMS m/z: [M+H]⁺ calcd. for C₃₄H₃₀NO 468.2322, found 468.2313.

Diphenylmethanone *O*-(bis(4-chlorophenyl)(phenyl)methyl) oxime (4k)

White solid, 144.5mg, 95% yield; m.p. = 148.2-148.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 6.4 Hz, 3H), 7.36 (d, J = 7.0 Hz, 2H), 7.24 (h, J = 7.1 Hz, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 157.6, 143.9, 142.6, 136.4, 133.7, 133.3, 130.7, 129.5, 129.2, 129.0, 128.9, 128.3, 127.91, 127.89, 127.5, 90.5. HRMS *m/z*: [M+H]⁺ calcd. for C₃₂H₂₄Cl₂NO 508.1229, found 508.1228.

Diphenylmethanone *O*-(1,1-diphenylethyl) oxime (4l)

White solid, 73.5 mg, 65% yield; m.p. = 74.6-75.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.46 (q, J = 6.6 Hz, 5H), 7.36-7.18 (m, 15H), 2.14 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 156.8, 146.5, 136.9, 134.1, 129.4, 129.2, 128.7, 128.2, 127.99, 127.95, 126.80, 126.77, 85.9, 27.4. HRMS m/z: [M+H]⁺ calcd. for C₂₇H₂₄NO 378.1852, found 378.1858.

Diphenylmethanone *O*-(2-phenylpropan-2-yl) oxime (4m)

Colorless oily liquid, 26.5 mg, 28% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 8.3 Hz, 7H), 7.35-7.18 (m, 8H), 1.69 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 155.8, 147.5, 137.3, 134.0, 129.6, 129.0, 128.6, 128.2, 128.1, 128.0, 126.6, 125.5, 82.4, 28.4. HRMS *m/z*: [M+Na]⁺ calcd. for C₂₂H₂₁NONa 338.1515, found 338.1516.

Diphenylmethanone *O*-(2-methyl-4-phenylbutan-2-yl) oxime (40)

White solid, 17.5 mg, 17% yield; m.p. = 59.3-60.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 7.1 Hz, 2H), 7.45-7.23 (m, 10H), 7.15 (t, J = 8.9 Hz, 3H), 2.65-2.54 (m, 2H), 1.95 (d, J = 16.5 Hz, 2H), 1.37 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 155.2, 143.2, 137.5, 133.9, 129.7, 129.0, 128.53, 128.49, 128.4, 128.2, 127.9, 125.7, 80.9, 42.8, 30.6, 25.9. HRMS *m/z*: [M+H]⁺ calcd. for C₂₄H₂₆NO 344.2009, found 344.2009.

Diphenylmethanone *O*-(*tert*-butyl) oxime (4p)

White solid, 35.7 mg, 47% yield; m.p. = 64.0-64.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 7.4 Hz, 2H), 7.43-7.21 (m, 8H), 1.34 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 154.7, 137.7, 133.8, 129.9, 128.9, 128.5, 128.2, 128.0, 127.9, 79.4, 27.8.

HRMS m/z: [M+H]⁺ calcd. for C₁₇H₂₀NO 254.1539, found 254.1546.

Diphenylmethanone O-(tert-pentyl) oxime (4q)

Colorless oily liquid, 10.4 mg, 13% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.52 (dd, J = 7.4, 2.3 Hz, 2H), 7.4-7.29 (m, 8H), 1.70 (q, J = 7.5 Hz, 2H), 1.32 (s, 6H), 0.87 (t, J = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.8, 137.8, 134.0, 129.7, 128.8, 128.4, 128.2, 128.0, 127.9, 81.6, 33.1, 25.4, 8.5. HRMS *m/z*: [M+H]⁺ calcd. for C₁₈H₂₂NO 268.1696, found 268.1698.

Diphenylmethanone O-(1-methylcyclohexyl) oxime (4r)

Colorless oily liquid, 8.8 mg, 10% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.55-7.48 (m, 2H), 7.45-7.29 (m, 8H), 2.01-1.87 (m, 2H), 1.56-1.34 (m, 10H), 1.30-1.19 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 154.9, 137.7, 134.1, 129.7, 128.8, 128.4, 128.2, 127.9, 80.0, 36.3, 26.3, 25.8, 22.3. HRMS *m/z*: [M+H]⁺ calcd. for C₂₀H₂₄NO 294.1852, found 294.1851.

Diphenylmethanone O-adamantan-1-yl oxime (4s)

White solid, 91.4 mg, 92% yield; m.p. = 67.5-68.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.51 (dd, J = 7.5, 2.2 Hz, 2H), 7.43-7.28 (m, 8H), 2.27-2.14 (m, 3H), 1.95 (d, J = 3.0 Hz, 6H), 1.68 (t, J = 3.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 155.0, 137.8, 133.9,

129.9, 128.8, 128.5, 128.2, 128.0, 127.9, 78.4, 41.8, 36.7, 30.8. HRMS m/z: [M+H]⁺ calcd. for C₂₃H₂₆NO 332.2009, found 332.2004.

Diphenylmethanone O-benzhydryl oxime (4t)

White solid, 105.7 mg, 97% yield; m.p. = 101.8-102.5 °C; ¹H NMR (400 MHz, S_{25}

CDCl₃) δ 7.47-7.38 (m, 7H), 7.31-7.22 (m, 13H), 6.38 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 157.5, 141.9, 136.6, 133.6, 129.5, 129.4, 128.9, 128.4, 128.3, 128.2, 128.1, 127.5, 127.4, 87.4. HRMS *m/z*: [M+H]⁺ calcd. for C₂₆H₂₂NO 364.1696, found 364.1690.

Diphenylmethanone O-(1-phenylethyl) oxime (4u)

White solid, 70.5 mg, 78% yield; m.p. = 73.7-74.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.49-7.41 (m, 7H), 7.38-7.29 (m, 8H), 5.45 (q, J = 6.6 Hz, 1H), 1.59 (d, J = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 156.6, 143.7, 136.9, 133.7, 129.6, 129.2, 128.8, 128.3, 128.2, 128.10, 128.05, 127.3, 126.4, 81.8, 22.4. HRMS *m/z*: [M+H]⁺ calcd. for C₂₁H₂₀NO 302.1539, found 302.1545.

Diphenylmethanone O-(1,3-diphenylallyl) oxime (4v)

Colorless oily liquid, 109.7 mg, 94% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.20 (m, 20H), 6.60 (d, J = 15.9 Hz, 1H), 6.43 (dd, J = 16.0, 6.6 Hz, 1H), 5.94 (d, J = 6.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 157.3, 140.9, 136.9, 136.7, 133.6, 132.0, 129.6, 129.4, 128.9, 128.6, 128.5, 128.3, 128.2, 128.1, 127.8, 127.7, 127.3, 126.8, 86.3. HRMS *m/z*: [M+Na]⁺ calcd. for C₂₈H₂₃NONa 412.1672, found 412.1678.

1-Dhenylethan-1-one *O*-(*tert*-butyl) oxime (4x)

Colorless oily liquid, 18.9 mg, 33% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.75 – 7.67 (m, 2H), 7.42 – 7.31 (m, 3H), 2.23 (s, 3H), 1.39 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 152.6, 137.9, 128.8, 128.5, 126.1, 78.9, 28.0, 12.5.

Benzaldehyde O-(tert-butyl) oxime (4y)

Colorless oily liquid, 18.6 mg, 35% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.07 (s, 1H), 7.65 – 7.58 (m, 2H), 7.41 – 7.32 (m, 3H), 1.39 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 147.3, 133.4, 129.4, 128.7, 127.0, 79.3, 27.8.

Benzaldehyde *O*-adamantan-1-yl oxime (4z)

White solid, 36.8 mg, 48% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.09 (s, 1H), 7.59 (dd, J = 7.3, 2.4 Hz, 2H), 7.42 - 7.31 (m, 3H), 2.26-2.16 (m, 3H), 1.95 (s, 6H), 1.69 (t, J = 3.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 147.6, 133.4, 129.4, 128.7, 127.0,

78.4, 41.8, 36.6, 30.8.

3-Hydroxy-1,3-diphenylpropan-1-one *O*-(*tert*-butyl) oxime (T1)

Light yellow oily liquid, 520.5 mg, 35% yield; ¹H NMR (400 MHz, CDCl₃) δ

7.64 (dd, J = 6.4, 3.0 Hz, 2H), 7.38 (d, J = 7.6 Hz, 2H), 7.30 (dt, J = 7.8, 4.9 Hz, 6H), 5.05 (dd, J = 9.0, 4.0 Hz, 1H), 3.25 (dd, J = 13.5, 9.1 Hz, 1H), 3.11 (dd, J = 13.6, 4.1 Hz, 1H), 1.38 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 154.4, 144.6, 136.6, 129.0, 128.5, 128.4, 127.6, 126.5, 126.0, 125.6, 79.9, 72.6, 37.4, 27.8.

N-(hepta-1,6-dien-4-yl)aniline (T2)

Light yellow oily liquid, 179.7 mg, 520.5 mg, 96% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.18 (dd, J = 8.6, 7.2 Hz, 2H), 6.70 (t, J = 7.3 Hz, 1H), 6.62 (d, J = 8.0 Hz, 2H), 5.84 (ddt, J = 16.3, 11.1, 7.1 Hz, 2H), 5.17 – 5.05 (m, 4H), 3.51

(p, *J* = 6.1 Hz, 1H), 2.33 (dd, *J* = 7.3, 6.0 Hz, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 134.9, 129.5, 117.9, 117.6, 113.8, 52.3, 38.2.

6. The NMR Spectra of the Products

Figure S4. ¹H (top) and ¹³C (bottom) NMR spectra of **3a** produced in the oxime etherification of diphenylmethanone oxime (0.3 mmol) and triphenylmethanol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·xH₂O in DMC at RT for 2 h. NMR spectra were recorded in CDCl₃ at 25 °C.

di-*p*-tolylmethanone oxime (0.3 mmol) and triphenylmethanol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·x H_2O in DMC at RT for 2 h. NMR spectra were recorded in CDCl₃ at 25 °C.

7.42 7.28 7.28 7.28 7.23 7.23 7.25 7.25 7.25 7.25 7.19 6.92 6.92 6.92 6.88

Figure S6. ¹H (top) and ¹³C (bottom) NMR spectra of **3c** produced in the oxime etherification of bis(4-fluorophenyl)methanone oxime (0.3 mmol) and triphenylmethanol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·xH₂O in DMC at RT for 2 h. NMR spectra were recorded in CDCl₃ at 25 °C..

Figure S7. ¹H (top) and ¹³C (bottom) NMR spectra of **3d** produced in the oxime etherification of bis(4-chlorophenyl)methanone oxime (0.3 mmol) and triphenylmethanol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·xH₂O in DMC at RT for 2 h. NMR spectra were recorded in CDCl₃ at 25 °C..

phenyl(*p*-tolyl)methanone oxime (0.3 mmol) and triphenylmethanol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·x H_2O in DMC at RT for 2 h. NMR spectra were recorded in CDCl₃ at 25 °C.

Figure S9. ¹H (top) and ¹³C (bottom) NMR spectra of **3f** produced in the oxime etherification of (4-methoxyphenyl)(phenyl)methanone oxime (0.3 mmol) and triphenylmethanol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·x H_2O in DMC at RT for 2 h. NMR spectra were recorded in CDCl₃ at 25 °C.

Figure S10. ¹H (top) and ¹³C (bottom) NMR spectra of **3g** produced in the oxime etherification of [1,1'-biphenyl]-4-yl(phenyl)methanone oxime (0.3 mmol) and triphenylmethanol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·x H_2O in DMC at RT for 2 h. NMR spectra were recorded in CDCl₃ at 25 °C.

Figure S11. ¹H (top) and ¹³C (bottom) NMR spectra of **3h** produced in the oxime etherification of (4-fluorophenyl)(phenyl)methanone oxime (0.3 mmol) and triphenylmethanol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·x H_2O in DMC at RT for 2 h. NMR spectra were recorded in CDCl₃ at 25 °C.

Figure S12. ¹H (top) and ¹³C (bottom) NMR spectra of **3i** produced in the oxime etherification of (4-chlorophenyl)(phenyl)methanone oxime (0.3 mmol) and triphenylmethanol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·x H_2O in DMC at RT for 2 h. NMR spectra were recorded in CDCl₃ at 25 °C.

Figure S13. ¹H (top) and ¹³C (bottom) NMR spectra of **3j** produced in the oxime etherification of (4-bromophenyl)(phenyl)methanone oxime (0.3 mmol) and triphenylmethanol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·x H_2O in DMC at RT for 2 h. NMR spectra were recorded in CDCl₃ at 25 °C.

Figure S14. ¹H (top) and ¹³C (bottom) NMR spectra of **3k** produced in the oxime etherification of phenyl(4-(trifluoromethyl)phenyl)methanone oxime (0.3 mmol) and triphenylmethanol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·x H_2O in DMC at RT for 2 h. NMR spectra were recorded in CDCl₃ at 25 °C.

8.35 8.34 7.57

Figure S15. ¹H (top) and ¹³C (bottom) NMR spectra of **31** produced in the oxime etherification of (4-nitrophenyl)(phenyl)methanone oxime (0.3 mmol) and triphenylmethanol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·x H_2O in DMC at RT for 2 h. NMR spectra were recorded in CDCl₃ at 25 °C.

of phenyl(*o*-tolyl)methanone oxime (0.3 mmol) and triphenylmethanol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$:xH₂O in DMC at RT for 2 h. NMR spectra were recorded in CDCl₃ at 25 °C.

7.46 7.39 7.39 7.35 7.35 7.35 7.32 7.32 7.32 7.32 7.32 7.32 7.25 7.25 7.20 7.26 7.28 7.28 7.20 7.20

¹H NMR, 400 MHz, CDCI₃

Figure S17. ¹H (top) and ¹³C (bottom) NMR spectra of **3n** produced in the oxime etherification of phenyl(*m*-tolyl)methanone oxime (0.3 mmol) and triphenylmethanol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·xH₂O in DMC at RT for 2 h. NMR spectra were recorded in CDCl₃ at 25 °C.

7.53 7.52 7.42 7.42 7.42 7.33 7.33 7.33 7.33 7.33 7.33 7.35 7.28 7.28 7.18 7.18 7.18 1H NMR, 400 MHz, CDCI3 85 21 ⊀ 1.0 11 ⊀).0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 $\,$ 5.0 4.5 4.0 f1 (ppm) 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1 144.63 135.10 135.10 135.69 129.82 129.42 129.42 129.24 129.24 129.24 129.24 129.24 129.24 129.24 129.24 126.98 126.98 -- 154.59 77.48 77.16 76.84 - 91.51 13C NMR, 101 MHz, CDCI3 100 90 80 f1 (ppm) 170 160 150 140 130 120 110 70 60 50 40 30 20 10 0

Figure S18. ¹H (top) and ¹³C (bottom) NMR spectra of **30** produced in the oxime etherification of (2-chlorophenyl)(phenyl)methanone oxime (0.3 mmol) and triphenylmethanol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·x H_2O in DMC at RT for 2 h. NMR spectra were recorded in CDCl₃ at 25 °C.

Figure S19. ¹H (top) and ¹³C (bottom) NMR spectra of **3p** produced in the oxime etherification of (3-chlorophenyl)(phenyl)methanone oxime (0.3 mmol) and triphenylmethanol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·x H_2O in DMC at RT for 2 h. NMR spectra were recorded in CDCl₃ at 25 °C.

acetophenone oxime (0.3 mmol) and triphenylmethanol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·x H_2O in DMC at RT for 2 h. NMR spectra were recorded in CDCl₃ at 25 °C.

∕_2.38 ∕_2.29

1H NMR, 400 MHz, CDCI3

Figure S21. ¹H (top) and ¹³C (bottom) NMR spectra of **3r** produced in the oxime etherification of *p*-methyl acetophenone oxime (0.3 mmol) and triphenylmethanol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·xH₂O in DMC at RT for 2 h. NMR spectra were recorded in CDCl₃ at 25 °C.

Figure S22. ¹H (top) and ¹³C (bottom) NMR spectra of **3s** produced in the oxime etherification of *p*-methoxy acetophenone oxime (0.3 mmol) and triphenylmethanol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·xH₂O in DMC at RT for 2 h. NMR spectra were recorded in CDCl₃ at 25 °C.

 $H_3PW_{12}O_{40}$ ·x H_2O in DMC at RT for 2 h. NMR spectra were recorded in CDCl₃ at 25 °C.

p-chloroacetophenone oxime (0.3 mmol) and triphenylmethanol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·x H_2O in DMC at RT for 2 h. NMR spectra were recorded in CDCl₃ at 25 °C.

Figure S25. ¹H (top) and ¹⁵C (bottom) NMR spectra of 3v produced in the oxime etherification of p- trifluoromethylacetophenone oxime (0.3 mmol) and triphenylmethanol (0.9 mmol) catalyzed by H₃PW₁₂O₄₀·xH₂O in DMC at RT for 2 h. NMR spectra were recorded in CDCl₃ at 25 °C..

Figure S26. ¹H (top) and ¹³C (bottom) NMR spectra of **3w** produced in the oxime etherification of *o*-methyl acetophenone oxime (0.3 mmol) and triphenylmethanol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·xH₂O in DMC at RT for 2 h. NMR spectra were recorded in CDCl₃ at 25 °C..

Figure S27. ¹H (top) and ¹³C (bottom) NMR spectra of 3x produced in the oxime etherification of *m*-methyl acetophenone oxime (0.3 mmol) and triphenylmethanol (0.9 mmol) catalyzed by H₃PW₁₂O₄₀·xH₂O in DMC at RT for 2 h. NMR spectra were recorded in CDCl₃ at 25 °C..

Figure S28. ¹H (top) and ¹³C (bottom) NMR spectra of **3y** produced in the oxime etherification of *o*-fluoroacetophenone oxime (0.3 mmol) and triphenylmethanol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·xH₂O in DMC at RT for 2 h. NMR spectra were recorded in CDCl₃ at 25 °C..

$\begin{array}{c} 7.4\\ 2.33\\$

Figure S29. ¹H (top) and ¹³C (bottom) NMR spectra of **3z** produced in the oxime etherification of *m*-fluoroacetophenone oxime (0.3 mmol) and triphenylmethanol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·xH₂O in DMC at RT for 2 h. NMR spectra were recorded in CDCl₃ at 25 °C..

of 3,4-dihydronaphthalen-1(2H)-one oxime (0.3 mmol) and triphenylmethanol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·x H_2O in DMC at RT for 2 h. NMR spectra were recorded in CDCl₃ at 25 °C.

Figure S31. ¹H (top) and ¹³C (bottom) NMR spectra of **3ab** produced in the oxime etherification of 9H-fluoren-9-one oxime (0.3 mmol) and triphenylmethanol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·xH₂O in DMC at RT for 2 h. NMR spectra were recorded in CDCl₃ at 25 °C.

Figure S32. ¹H (top) and ¹³C (bottom) NMR spectra of **3ac** produced in the oxime etherification of 1,3-diphenylprop-2-en-1-one oxime (0.3 mmol) and triphenylmethanol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·xH₂O in DMC at 100 °C for 12 h. NMR spectra were recorded in CDCl₃ at 25 °C.

Figure S33. ¹H (top) and ¹³C (bottom) NMR spectra of **3ad** produced in the oxime etherification of 1-(pyridin-3-yl)ethan-1-one oxime (0.3 mmol) and triphenylmethanol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·xH₂O in DMC at 100 °C for 12 h. NMR spectra were recorded in CDCl₃ at 25 °C.

Figure S34. ¹H (top) and ¹³C (bottom) NMR spectra of **3ae** produced in the oxime etherification of 1-(furan-2-yl)ethan-1-one oxime (0.3 mmol) and triphenylmethanol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·xH₂O in DMC at RT for 2 h. NMR spectra were recorded in CDCl₃ at 25 °C.

Figure S35. ¹H (top) and ¹³C (bottom) NMR spectra of **3af** produced in the oxime etherification of tetrahydro-4H-pyran-4-one oxime (0.3 mmol) and triphenylmethanol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·xH₂O in DMC at 80 °C for 2 h. NMR spectra were recorded in CDCl₃ at 25 °C.

7.40 7.31 7.32 7.22 7.17 7.17 7.17 7.17 7.14 7.17 7.16 6.85 6.85 6.85 6.85 -- 3.68 -- 3.28

of 1,3-diphenylpropan-2-one oxime (0.3 mmol) and triphenylmethanol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·x H_2O in DMC at RT for 2 h. NMR spectra were recorded in CDCl₃ at 25 °C.

H₃PW₁₂O₄₀·xH₂O in DMC at 80 °C for 2 h. NMR spectra were recorded in CDCl₃ at 25 °C.

Figure S38. ¹H (top) and ¹³C (bottom) NMR spectra of **3ai** produced in the oxime etherification of propan-2-one oxime (0.3 mmol) and triphenylmethanol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·xH₂O in DMC at 80 °C for 2 h. NMR spectra were recorded in CDCl₃ at 25 °C.

7.43 7.43 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.53 7.54 7.55 7.53 7.54 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55 <t

of 4-methylpentan-2-one oxime (0.3 mmol) and triphenylmethanol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·x H_2O in DMC at RT for 2 h. NMR spectra were recorded in CDCl₃ at 25 °C.

Figure S41. ¹H (top) and ¹³C (bottom) NMR spectra of **3al** produced in the oxime etherification of picolinaldehyde oxime (0.3 mmol) and triphenylmethanol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·xH₂O in DMC at 100 °C for 12 h. NMR spectra were recorded in CDCl₃ at 25 °C.

Figure S42. ¹H (top) and ¹³C (bottom) NMR spectra of **3am** produced in the oxime etherification of thiophene-2-carbaldehyde oxime (0.3 mmol) and triphenylmethanol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·x H_2O in DMC at RT for 2 h. NMR spectra were recorded in CDCl₃ at 25 °C.

of 2-phenylacetaldehyde oxime (0.3 mmol) and triphenylmethanol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·x H_2O in DMC at RT for 2 h. NMR spectra were recorded in CDCl₃ at 25 °C.

of hexanal oxime (0.3 mmol) and triphenylmethanol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·x H_2O in DMC at RT for 2 h. NMR spectra were recorded in CDCl₃ at 25 °C.

of cyclohexanecarbaldehyde oxime (0.3 mmol) and triphenylmethanol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·x H_2O in DMC at RT for 2 h. NMR spectra were recorded in CDCl₃ at 25 °C.

8.09 8.07 7.39 7.37 7.35 7.35 7.35 7.30 7.30 7.28 7.28 6.77 6.77 6.77 1H NMR, 400 MHz, CDCI3 9.73₁ ۲ Ч 00 63 7.0 5.0 4. f1 (ppm)).0 1.0 9.0 8.0 6.0 4.0 3.0 2.0 151.18 144.47 138.31 138.31 136.20 128.85 128.85 128.85 128.78 127.72 127.72 127.29 126.97 - 91.18 48 മ 76.84 13C NMR, 101 MHz, CDCI,

0.0

-1

Figure S47. ¹H (top) and ¹³C (bottom) NMR spectra of **4a** produced in the oxime etherification of diphenylmethanone oxime (0.3 mmol) and diphenyl(*p*-tolyl)methanol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·xH₂O in DMC at RT for 2 h. NMR spectra were recorded in CDCl₃ at 25 °C..

Figure S48. ¹H (top) and ¹³C (bottom) NMR spectra of **4b** produced in the oxime etherification of diphenylmethanone oxime (0.3 mmol) and (4-methoxyphenyl)diphenylmethanol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·x H_2O in DMC at RT for 2 h. NMR spectra were recorded in CDCl₃ at 25 °C.

Figure S49. ¹H (top) and ¹³C (bottom) NMR spectra of **4c** produced in the oxime etherification of diphenylmethanone oxime (0.3 mmol) and [1,1'-biphenyl]-4-yldiphenylmethanol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·x H_2O in DMC at RT for 2 h. NMR spectra were recorded in CDCl₃ at 25 °C.

Figure S50. ¹H (top) and ¹³C (bottom) NMR spectra of 4d produced in the oxime etherification of diphenylmethanone oxime (0.3 mmol) and (4-fluorophenyl)diphenylmethanol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·x H_2O in DMC at RT for 2 h. NMR spectra were recorded in CDCl₃ at 25 °C.

Figure S51. ¹H (top) and ¹³C (bottom) NMR spectra of 4e produced in the oxime etherification of diphenylmethanone oxime (0.3 mmol) and (4-chlorophenyl)diphenylmethanol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·x H_2O in DMC at RT for 2 h. NMR spectra were recorded in CDCl₃ at 25 °C.

7.45 7.45 7.45 7.45 7.45 7.39 7.37 7.37 7.37 7.37 7.28 7.18 7.18 7.18 7.16

°C.

Figure S53. ¹H (top) and ¹³C (bottom) NMR spectra of 4g produced in the oxime etherification of diphenylmethanone oxime (0.3 mmol) and diphenyl(4-(trifluoromethyl)phenyl)methanol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·x H_2O in DMC at RT for 12 h. NMR spectra were recorded in CDCl₃ at 25 °C.

$\begin{array}{c} 7.48 \\ 7.45 \\ 7.45 \\ 7.45 \\ 7.45 \\ 7.42 \\ 7.23 \\ 7.$

- 2.25

diphenylmethanone oxime (0.3 mmol) and diphenyl(*m*-tolyl)methanol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·x H_2O in DMC at RT for 2 h. NMR spectra were recorded in CDCl₃ at 25 °C.

Figure S55. ¹H (top) and ¹³C (bottom) NMR spectra of **4i** produced in the oxime etherification of diphenylmethanone oxime (0.3 mmol) and diphenyl(*o*-tolyl)methanol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·xH₂O in DMC at RT for 2 h. NMR spectra were recorded in CDCl₃ at 25 °C.

7.46 7.44 7.41 7.41 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.25 7.25 7.25 7.19 7.19 7.19 7.106

Figure S56. ¹H (top) and ¹³C (bottom) NMR spectra of 4j produced in the oxime etherification of diphenylmethanone oxime (0.3 mmol) and phenyldi-p-tolylmethanol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·xH₂O in DMC at RT for 2 h. NMR spectra were recorded in CDCl₃ at 25 °C.

7.47 7.37 7.35 7.35 7.35 7.35 7.30 7.23 7.23 7.23 7.23 7.23 7.23

S81

Figure S58. ¹H (top) and ¹³C (bottom) NMR spectra of **41** produced in the oxime etherification of diphenylmethanone oxime (0.3 mmol) and 1,1-diphenylethan-1-ol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·xH₂O in DMC at RT for 2 h. NMR spectra were recorded in CDCl₃ at 25 °C.

 $H_3PW_{12}O_{40}$ ·x H_2O in DMC at RT for 2 h. NMR spectra were recorded in CDCl₃ at 25 °C.

2.61 2.57 2.57 1.97 1.95 1.95 1.95

Figure S60. ¹H (top) and ¹³C (bottom) NMR spectra of **40** produced in the oxime etherification of diphenylmethanone oxime (0.3 mmol) and 2-methyl-4-phenylbutan-2-ol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·xH₂O in DMC at 100 °C for 12 h. NMR spectra were recorded in CDCl₃ at 25 °C.

Figure S61. ¹H (top) and ¹⁵C (bottom) NMR spectra of **4p** produced in the oxime etherification of diphenylmethanone oxime (0.3 mmol) and 2-methylpropan-2-ol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·xH₂O in DMC at 100 °C for 12 h. NMR spectra were recorded in CDCl₃ at 25 °C.

1.73 1.71 1.69 1.67 1.67 1.32 0.89 0.85

H₃PW₁₂O₄₀·xH₂O in DMC at 100 °C for 12 h. NMR spectra were recorded in CDCl₃ at 25 °C.

diphenylmethanone oxime (0.3 mmol) and 1-methylcyclohexan-1-ol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·x H_2O in DMC at 100 °C for 12 h. NMR spectra were recorded in CDCl₃ at 25 °C.

H₃PW₁₂O₄₀·xH₂O in DMC at 100 °C for 12 h. NMR spectra were recorded in CDCl₃ at 25 °C.

H₃PW₁₂O₄₀·xH₂O in DMC at 100 °C for 12 h. NMR spectra were recorded in CDCl₃ at 25 °C.

Figure S66. ¹H (top) and ¹⁵C (bottom) NMR spectra of 4u produced in the oxime etherification of diphenylmethanone oxime (0.3 mmol) and 1-phenylethan-1-ol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·xH₂O in DMC at 80 °C for 12 h. NMR spectra were recorded in CDCl₃ at 25 °C.

Figure S67. ¹H (top) and ¹³C (bottom) NMR spectra of 4v produced in the oxime etherification of diphenylmethanone oxime (0.3 mmol) and 1,3-diphenylprop-2-en-1-ol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·xH₂O in DMC at RT for 2 h. NMR spectra were recorded in CDCl₃ at 25 °C.

Figure S68. ¹H (top) and ¹³C (bottom) NMR spectra of **4x** produced in the oxime etherification of acetophenone oxime (0.3 mmol) and *tert*-butanol (0.9 mmol) catalyzed by $H_3PW_{12}O_{40}$ ·x H_2O in DMC at 120 °C for 12 h. NMR spectra were recorded in CDCl₃ at 25 °C.

DMC at 120 °C for 12 h. NMR spectra were recorded in CDCl₃ at 25 °C.

DMC at 120 °C for 24 h. NMR spectra were recorded in CDCl₃ at 25 °C.

Figure S71. ¹H (top) and ¹³C (bottom) NMR spectra of **T1** produced from **4x** and benzaldehyde. NMR spectra were recorded in CDCl₃ at 25 °C.

7.19 7.19 7.17 7.19 7.17 7.16 7.17 7.18 7.17 7.19 7.17 7.19 7.17 7.16 7.17 7.17 7.17 7.18 6.61 6.70 6.63 6.63 6.61 6.63 6.61 6.63 6.61 6.63 6.61 6.63 6.61 6.63 6.61 6.63 6.61 6.63 6.61 6.63 6.61 6.63 6.61 6.63 6.61 6.63 6.61 6.63 6.61 6.63 6.61 6.63 6.61 6.64 6.61 6.64 6.61 6.64 6.61 6.64 6.61 6.64 6.61 6.64 6.61 6.64 6.61</t

1H NMR, 500 MHz, CDCI3

Figure S72. ¹H (top) and ¹³C (bottom) NMR spectra of **T2** produced from **4x** and allylmagnesium bromide. NMR spectra were recorded in CDCl₃ at 25 °C.