Supplementary Information

Electrochemically driven oxidative C–H/N–H cross-coupling reactions of cyclic sulfamidate imines with primary anilines and secondary amines

Hai-Xia Wang[‡], Zhi-Hao Li[‡], Wan-Wan Li, Gui-Rong Qu, Qi-Liang Yang^{*}, and Hai-Ming Guo^{*}

†Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China

Table of Contents

1. General Information	S3
2. Structures of Starting Materials	S4
3. Graphical Supporting Information for Electrochemical Amination	S6
4. Initial Experimental Finding	S7
5. Optimization of the Reaction Conditions	S8
6. General Procedure for Electrochemical Amination	S11
7. Characterization Data for Products	S13
8. Preliminary Mechanistic Studies	S69
9. Cyclic Voltammetry Studies	
10. X-Ray Crystallographic Data	S77
11. References	S84
12. NMR Spectra	

1 General Information

All commercial reagents were purchased from TCI, Sigma-Aldrich, laajoo and Adamas-beta of the highest purity grade and used without further purification. The conversion of starting materials was monitored by thin layer chromatography using silica gel plates, and components were visualized by observation under UV light (254 and 365 nm). ¹H NMR spectra was recorded at 400 MHz or 600 MHz. The ¹³C NMR spectra were recorded at 100 or 150 MHz. The ¹⁹F NMR spectra were recorded at 376 MHz or 565 MHz. Chemical shifts were expressed in parts per million (δ) downfield from the internal standard tetramethylsilane (TMS), and were reported as s (singlet), d (doublet), t (triplet), dd (doublets of doublet), td (triplet of doublets), and m (multiplet). The residual solvent signals were used as references and the chemical shifts were converted to the TMS scale : $CDCl_3(\delta H = 7.26 \text{ ppm}, \delta C = 77.16 \text{ ppm}), CD_2Cl_2(\delta H = 7.26 \text{ ppm})$ = 5.32 ppm, δ C = 53.84 ppm), CD₃OD (δ H = 3.31 ppm, δ C = 49.00 ppm), Acetone- $d_6(\delta H = 2.05 \text{ ppm}, \delta C = 206.26, 29.84 \text{ ppm}), CD_3CN (\delta H = 1.94 \text{ ppm}, \delta C$ = 1.32 ppm), DMSO- $d_6(\delta H = 2.50 \text{ ppm}, \delta C = 39.52 \text{ ppm})$. The coupling constants J were given in Hz. High resolution mass spectra (HRMS) were obtained via ESI mode by using an Agilent Q-TOF 6540 mass spectrometer. Unless otherwise noted, all other compounds have been reported in the literature or are commercially available.

2 Structures of Starting Materials

Scheme S1 Cyclic aldimines used in the manuscript

Scheme S2 Primary anilines used in the manuscript

Scheme S3 Cyclic dialkyl amines used in the manuscript

Scheme S4 Acyclic dialkyl amines used in the manuscript

Scheme S5 Natural products and pharmaceuticals amines used in the manuscript

Scheme S6 Unsuccessful substrates

3 Graphical Supporting Information for Electrochemical Amination

Figure S1 (*Left*): All reagents for this reaction. (*Right*): General equipment for

electrolysis.

Figure S2 (Left and Center): The reaction mixture was subjected to constant current electrolysis (I = 40 mA). (**Right**): The reaction mixture after 14 h of electrolysis.

4 Initial Experimental Finding

^{*a*}Standard conditions: substrate **1a** (0.2 mmol), **2a** (0.24 mmol, 1.2 equiv.), Mediator (10 mol%), LiClO₄ (0.3 mmol, 0.1 M) in CH₃CN (3 mL), two platinum electrodes (each $15 \times 10 \times 0.2$ mm³), undivided cell, 27 °C, 3 mA, 5 h. ^{*b*}Yield determined by ¹H NMR analysis with CH₂Br₂ as an internal standard. ^{*c*}nr: no reaction.

5 Optimization of the Reaction Conditions

5.1 Optimization of the Reaction Conditions for Primary Anilines^a

Table S2 Optimization of the Reaction Conditions for Primary Anilines

0,0 ° ^S N +	NH ₂	Pt (+)	
H H		GH ₃ CN (3 mL) 3 mA, 27 ⁰C, 3 h	
1a	2a		3a

Entry	Variation from standard conditions above ^{<i>a</i>}	Yield $(\%)^b$
1	None	78
2	Add LiCIO ₄ as electrolyte	27
3	Add "Bu ₄ NPF ₆ as electrolyte	30
4	Without KI	nr^{c}
5	10 mol% KI	35
6	30 mol% KI	73
7	40 mol% KI	75
8	50 mol% KI	74
9	LiCl	\mathbf{nr}^{c}
10	KBr	\mathbf{nr}^{c}
11	NaI	63
12	HI	trace
13	ⁿ Bu ₄ NI	40
14	MeOH	trace

15	TFE	\mathbf{nr}^{c}
16	DMF	\mathbf{nr}^{c}
17	1 equiv. 2a	53
18	1.2 equiv. 2a	58
19	2.0 equiv. 2a	78
20	2.5 equiv. 2a	78
21	3.0 equiv. 2a	79
22	4.0 equiv. 2a	77
23	5.0 equiv. 2a	78
24	2 mA, 4 h	71
25	4 mA, 2 h	63
26	5 mA, 1.7 h	58
27	Graphite rod (6 mm diam.) as the anode	45
28	Graphite felt as the anode	55
29	Reticulated vitreous carbon as the anode	50
30	Ni foam $(1 \times 1 \text{ cm}^2)$ as the cathode	54
31	Fe sheet $(1 \times 1 \text{ cm}^2)$ as the cathode	50
32	Under N ₂ atmosphere	75
33	No electric current	\mathbf{nr}^{c}

^{*a*}Standard conditions: substrate **1a** (0.2 mmol), **2a** (0.3 mmol, 1.5 equiv.), KI (20 mol%) in CH₃CN (3 mL), two platinum electrodes (each $15 \times 10 \times 0.2 \text{ mm}^3$), undivided cell, 27 °C, 3 mA(j_{anode} = 1.0 mA cm⁻²), 3 h. ^{*b*}Isolated yield. ^{*c*}nr: no reaction.

5.2 Optimization of the Reaction Conditions for Dialkyl Amines^a

Table S3 Optimization of the Reaction Conditions for Dialkyl Amines

	$\begin{array}{c} P \\ H \\ H \end{array} + \begin{array}{c} H \\ O \end{array} \\ H \end{array} + \begin{array}{c} H \\ O \end{array} \\ H \end{array} + \begin{array}{c} H \\ O \end{array} \\ H \end{array} + \begin{array}{c} Pt (+) \\ H \\ CH_3CN (3 mL) \\ 3 mA, 27 \ ^{\circ}C, 6 h \end{array} \\ \end{array} $	
1a Entry	2n 3 Variation from standard conditions above ^a	Yield $(\%)^b$
1	None	99 (96) ^c
2	Add "Bu ₄ NPF ₆ as electrolyte	73
3	5 mol% KI	78
4	20 mol% KI	98
5	Without KI	nr^d
6	LiCl	nr^d
7	KBr	nr^d
8	NaI	94
9	NH_4I	90
10	HI	92
11	ⁿ Bu ₄ NI	97
12	MeOH	35
13	TFE	nr^d
14	DMF	36
15	2 mA, 8 h	93
16	4 mA, 5 h	95

17	5 mA, 4 h	94
18	Graphite rod (6 mm diam.) as the anode	88
19	Graphite felt as the anode	92
20	Reticulated vitreous carbon as the anode	95
21	Ni foam $(1 \times 1 \text{ cm}^2)$ as the cathode	38
22	Fe sheet $(1 \times 1 \text{ cm}^2)$ as the cathode	90
23	Under N ₂ atmosphere	95
24	No electric current	nr^d

^{*a*}Standard conditions: substrate **1a** (0.2 mmol), **2a** (0.24 mmol, 1.2 equiv.), KI (10 mol%) in CH₃CN (3 mL), two platinum electrodes (each $15 \times 10 \times 0.2 \text{ mm}^3$), undivided cell, 27 °C, 3 mA, 6 h. ^{*b*}Yield determined by ¹H NMR analysis with CH₂Br₂ as an internal standard. ^{*c*}Isolated yield in parentheses. ^{*d*}nr: no reaction.

6 General Procedure for Electrochemical Amination

6.1 General Procedure

The electrocatalysis was carried out in an undivided cell equipped with two platinum electrode ($15 \times 10 \times 0.2 \text{ mm}^3$). The substrates **1** (0.2 mmol), substrates **2** (1.2 ~ 1.5 equiv.) and KI ($10 \sim 20 \text{ mol}\%$) were dissolved in the solvent CH₃CN (3 mL).

The electrolysis was carried out at 27 $^{\circ}$ C (oil bath temperature) using a constant current of 3.0 mA until complete consumption of the substrate (monitored by TLC or ¹H NMR analysis). After the reaction, the solvent was removed under reduced pressure. The resulting residue was chromatographed through silica gel eluting with PE/EA or DCM/MeOH to afford the corresponding product.

6.2 General Procedure for Gram-Scale Experiments

The gram scale reaction was conducted in a 150 mL beaker-type cell equipped with two platinum electrodes ($4.0 \times 4.0 \text{ cm}^2$). The substrates **1a** (1.82 g, 10.0 mmol), **2a** (1.37 ml, 15.0 mmol, 1.5 equiv.) and KI (332.0 mg, 2.0 mmol, 0.2 equiv.) were dissolved in the solvent CH₃CN (125 mL). The electrolysis was carried out at $27 \degree$ C (oil bath temperature) using a constant current of 40 mA for 14 hours. After the reaction, the solvent was removed under reduced pressure. The residue was poured into a saturated aqueous solution of Na₂S₂O₃ and the product was then extracted with AcOEt ($3 \times 120 \text{ mL}$), dried over Na₂SO₄, and concentrated in vacuo. The resulting residue was chromatographed through silica gel eluting with PE/EA (3/1) to afford the corresponding product **3a** as white solid with 66% yield (1.81 g).

The gram scale reaction was conducted in a 100 mL beaker-type cell equipped with two platinum electrodes ($4.0 \times 4.0 \text{ cm}^2$). The substrates **1a** (0.92 g, 5.0 mmol), **4b** (1.86 g, 6.0 mmol, 1.2 equiv.) and KI (166.0 mg, 1.0 mmol, 0.2 equiv.) were dissolved in the solvent CH₃CN (75 mL). The electrolysis was carried out at 27 °C (oil bath temperature) using a constant current of 15 mA for 16.5 hours. After the reaction, the solvent was removed under reduced pressure. The residue was poured into a saturated aqueous solution of Na₂S₂O₃ and the product was then extracted with AcOEt (3×60 mL), dried over Na₂SO₄, and concentrated in vacuo. The resulting residue was chromatographed through silica gel eluting with PE/EA (1/1) to afford the corresponding product **5b** as yellow solid with 75% yield (1.85 g).

7 Characterization Data for Products

4-(Phenylamino)benzo[*e*][1,2,3]oxathiazine 2,2-dioxide (3a)

The general procedure was followed using benzo[e][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and aniline **2a** (27.9 mg, 0.3 mmol). After 3 h, purification by

column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **3a** (42.7 mg, 78%) as a white solid. **M. p.**: 246.1 – 249.2 °C. ¹**H NMR** (**400 MHz, DMSO-***d*₆): δ 10.91 (s, 1 H), 8.33 (d, J = 8.0 Hz, 1 H), 7.85 (t, J = 8.4 Hz, 1 H), 7.65 (d, J = 7.6 Hz, 2 H), 7.56 (t, J = 7.6 Hz, 1 H), 7.50 (t, J = 7.6 Hz, 3 H), 7.33 (t, J = 7.6 Hz, 1 H). ¹³**C NMR** (**100 MHz, DMSO-***d*₆): δ 158.8, 153.4, 136.8, 136.8, 129.4, 127.5, 127.0, 126.0, 124.7, 119.6, 113.1. **HRMS** (ESI-TOF) m/z Calcd for C₁₃H₁₀N₂NaO₃S [M+Na]⁺ 297.0304, found 297.0303.

4-(o-Tolylamino)benzo[e][1,2,3]oxathiazine 2,2-dioxide (3b)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and o-toluidine **2b** (32.1 mg, 0.3 mmol). After 3 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **3b** (42.3 mg, 73%) as a white solid. **M. p.**: 79.9 – 83.1 °C. ¹H NMR (600 MHz, DMSO-*d*₆): δ 10.92 (s, 1 H), 8.33 (d, *J* = 8.4 Hz, 1 H), 7.86 (t, *J* = 7.8 Hz, 1 H), 7.56 (t, *J* = 7.8 Hz, 1 H), 7.50 (t, *J* = 7.8 Hz, 1 H), 7.39 (t, *J* = 4.2 Hz, 1 H), 7.36 – 7.31 (m, 3H), 2.25 (s, 3 H). ¹³C NMR (150 MHz, DMSO-*d*₆): δ 159.9, 153.6, 136.8, 135.2, 135.0, 131.3, 128.6, 127.9, 127.2, 127.2, 126.1, 119.7, 112.6, 18.0. HRMS (ESI-TOF) m/z Calcd for C₁₄H₁₂N₂NaO₃S [M+Na]⁺ 311.0461, found 311.0458.

4-(*m*-Tolylamino)benzo[*e*][1,2,3]oxathiazine 2,2-dioxide (3c)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and m-toluidine **2c** (32.1 mg, 0.3 mmol). After 3 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **3c** (43.2 mg, 75%) as a white solid. **M. p.**: 108.2 – 111.3 °C. ¹**H NMR (600 MHz, DMSO-***d*₆): δ 10.84 (s, 1 H), 8.32 (d, *J* = 7.8 Hz, 1 H), 7.84 (t, *J* = 7.8 Hz, 1 H), 7.55 (t, *J* = 7.8 Hz, 1 H), 7.50 – 7.42 (m, 3 H), 7.37 (t, *J* = 7.8 Hz, 1 H), 7.14 (d, *J* = 7.8 Hz, 1 H), 2.37 (s, 3 H). ¹³**C NMR (150 MHz, DMSO-***d*₆): δ 158.8, 153.4, 138.8, 136.7, 136.7, 129.3, 127.7, 127.5, 126.0, 125.0, 121.8, 119.6, 113.1, 21.5. **HRMS** (ESI-TOF) m/z Calcd for C₁₄H₁₂N₂NaO₃S [M+Na]⁺ 311.0461, found 311.0463.

4-(*p*-Tolylamino)benzo[*e*][1,2,3]oxathiazine 2,2-dioxide (3d)

The general procedure was followed using benzo[e][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and p-toluidine **2d** (32.1 mg, 0.3 mmol). After 3 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **3d** (37.5 mg, 65%)

as a white solid. **M. p**.: 158.3 – 116.5 °C. ¹**H NMR** (**600 MHz**, **DMSO-***d*₆): δ 10.85 (s, 1 H), 8.32 (dd, J = 7.8, 1.2 Hz, 1 H), 7.96 – 7.82 (m, 1 H), 7.57 – 7.51 (m, 3 H), 7.48 (dd, J = 8.4, 4.8 Hz, 1 H), 7.30 (d, J = 7.8 Hz, 2 H), 2.35 (s, 3 H). ¹³**C NMR** (**150 MHz**, **DMSO-***d*₆): δ 158.7, 153.4, 136.7, 136.5, 134.2, 129.8, 127.4, 126.0, 124.6, 119.7, 113.1, 21.1. HRMS (ESI-TOF) m/z Calcd for C₁₄H₁₂N₂NaO₃S [M+Na]⁺ 311.0461, found 311.0465.

Methyl 4-((2,2-dioxidobenzo[*e*][1,2,3]oxathiazin-4-yl)amino)benzoate (3e)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and methyl 4-aminobenzoate **2e** (45.3 mg, 0.3 mmol). After 3 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **3e** (30.1 mg, 45%) as a white solid. **M. p.**: 178.5 – 181.3 °C. ¹**H NMR (600 MHz, DMSO-***d*₆): δ 11.05 (s, 1 H), 8.34 (dd, *J* = 7.8, 1.2 Hz, 1 H), 8.08 (dd, *J* = 6.6, 1.8 Hz, 2 H), 7.89 – 7.85 (m, 3 H), 7.58 (td, *J* = 7.8, 1.2 Hz, 1 H), 7.52 (dd, *J* = 8.4, 1.2 Hz, 1 H), 3.88 (s, 3 H). ¹³**C NMR (150 MHz, DMSO-***d*₆): δ 166.1, 159.0, 153.4, 141.4, 137.1, 130.6, 127.8, 127.4, 126.1, 123.9, 119.7, 113.1, 52.7. **HRMS** (ESI-TOF) m/z Calcd for C₁₅H₁₃N₂O₅S [M+H]⁺ 333.0540, found 333.0539.

4-((4-Fluorophenyl)amino)benzo[e][1,2,3]oxathiazine 2,2-dioxide (3f)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and 4-fluoroaniline **2f** (33.3 mg, 0.3 mmol). After 5 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **3f** (32.3 mg, 55%) as a white solid. **M. p**.: 234.2 – 237.5 °C. ¹**H NMR** (**600 MHz**, **DMSO-***d*₆): δ 10.96 (s, 1 H), 8.31 (dd, *J* = 7.8, 1.2 Hz, 1 H), 7.88 – 7.83 (m, 1 H), 7.70 – 7.65 (m, 2 H), 7.56 (td, *J* = 7.8, 1.2 Hz, 1 H), 7.50 (dd, *J* = 7.8, 1.2 Hz, 1 H), 7.34 – 7.32 (m, 2 H). ¹³**C NMR** (**150 MHz**, **DMSO-***d*₆): δ 160.6 (d, ¹*J*_{C-F} = 241.5 Hz), 159.0, 153.4, 136.8, 133.1 (d, ⁴*J*_{C-F} = 3.0 Hz), 127.5, 126.9, 126.9, 126.1, 119.7, 116.3, 116.2, 113.0. ¹⁹**F NMR** (**565 MHz**, **DMSO-***d*₆): -115.08. **HRMS** (ESI-TOF) m/z Calcd for C₁₃H₉FN₂NaO₃S [M+Na]⁺ 315.0210, found 315.0214.

4-((4-Chlorophenyl)amino)benzo[e][1,2,3]oxathiazine 2,2-dioxide (3g)

The general procedure was followed using benzo[e][1,2,3]oxathiazine 2,2-dioxide 1a

(36.6 mg, 0.2 mmol) and 4-chloroaniline **2g** (38.3 mg, 0.3 mmol). After 4 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **3g** (36.7 mg, 59%) as a white solid. **M. p.**: 225.4 – 228.8 °C. ¹**H NMR (600 MHz, DMSO-***d*₆): δ 10.95 (s, 1 H), 8.31 (dd, J = 8.4, 1.8 Hz, 1 H), 7.88 -7.83 (m, 1 H), 7.71 (dd, J = 6.6, 1.8 Hz, 2 H), 7.59 – 7.54 (m, 3 H), 7.50 (dd, J = 8.4, 1.2 Hz, 1 H). ¹³**C NMR (150 MHz, DMSO-***d*₆): δ 158.9, 153.4, 136.9, 135.9, 131.0, 129.4, 127.6, 126.2, 126.1, 119.7, 113.0. **HRMS** (ESI-TOF) m/z Calcd for C₁₃H₉ClNaN₂O₃S [M+Na]⁺ 330.9915, found 330.9916.

4-((3-Chlorophenyl)amino)benzo[e][1,2,3]oxathiazine 2,2-dioxide (3h)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and 3-chloroaniline **2h** (38.3 mg, 0.3 mmol). After 5 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **3h** (40.8 mg, 66%) as a yellow solid. **M. p.**: 224.7 – 227.3 °C. ¹H NMR (**400 MHz, DMSO-***d*₆): δ 10.95 (s, 1 H), 8.31 (dd, *J* = 8.4, 1.6 Hz, 1 H), 7.89 – 7.83 (m, 1 H), 7.79 (t, *J* = 2.0 Hz, 1 H), 7.70 – 7.65 (m, 1 H), 7.60 – 7.48 (m, 3 H), 7.40 – 7.37 (m, 1 H). ¹³C NMR (**100 MHz, DMSO-***d*₆): δ 159.0, 153.4, 138.4, 137.0, 133.5, 131.1, 127.6, 126.8, 126.1, 124.1, 123.1, 119.7, 113.0. HRMS (ESI-TOF) m/z Calcd for C₁₃H₉CINaN₂O₃S [M+Na]⁺ 330.9915, found 330.9917.

4-((4-Bromophenyl)amino)benzo[e][1,2,3]oxathiazine 2,2-dioxide (3i)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and 4-bromoaniline **2i** (51.6 mg, 0.3 mmol). After 5 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **3i** (36.8 mg, 52%) as a white solid. **M. p.**: 208.5 – 210.7 °C. ¹**H NMR (600 MHz, DMSO-***d*₆): δ 10.94 (s, 1 H), 8.31 (dd, *J* = 7.8, 1.2 Hz, 1 H), 7.90 – 7.83 (m, 1 H), 7.72 – 7.62 (m, 4 H), 7.56 (td, *J* = 7.8, 1.2 Hz, 1 H), 7.50 (dd, *J* = 8.4, 1.2 Hz, 1 H). ¹³**C NMR (150 MHz, DMSO-***d*₆): δ 158.9, 153.4, 136.9, 136.3, 132.3, 127.6, 126.5, 126.1, 119.7, 119.3, 113.0. **HRMS** (ESI-TOF) m/z Calcd for C₁₃H₉BrNaN₂O₃S [M+Na]⁺ 374.9409, found 374.9409.

4-((4-(Trifluoromethyl)phenyl)amino)benzo[e][1,2,3]oxathiazine 2,2- dioxide (3j)

The general procedure was followed using benzo[e][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and 4-(trifluoromethyl)aniline **2j** (48.3 mg, 0.3 mmol). After 3 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **3j**

(37.8 mg, 55%) as a white solid. **M.** p.: 223.4 – 226.3 °C. ¹H NMR (600 MHz, DMSO-*d*₆): δ 11.09 (s, 1 H), 8.34 (dd, *J* = 7.8, 1.2 Hz, 1 H), 7.96 – 7.85 (m, 5 H), 7.61 – 7.57 (m, 1 H), 7.52 (dd, *J* = 8.4, 1.2 Hz, 1 H). ¹³C NMR (150 MHz, DMSO-*d*₆): δ 159.2, 153.4, 140.7, 137.1, 127.8, 126.6 (q, ³*J*_{C-F} = 3.0 Hz), 126.2, 124.6, 119.7, 113.0. ¹⁹F NMR (565 MHz, DMSO-*d*₆): -60.75. HRMS (ESI-TOF) m/z Calcd for C₁₄H₁₀F₃N₂O₃S [M+Na]⁺ 343.0359, found 343.0359.

4-((4-Nitrophenyl)amino)benzo[*e*][1,2,3]oxathiazine 2,2-dioxide (3k)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and 4-nitroaniline **2k** (41.4 mg, 0.3 mmol). After 3 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **3k** (29.2 mg, 46%) as a white solid. **M. p.**: 173.7 – 176.4 °C. **¹H NMR (600 MHz, DMSO-***d*₆): δ 11.19 (s, 1 H), 8.40 – 8.36 (m, 2 H), 8.35 (dd, *J* = 7.8, 1.2 Hz, 1 H), 8.04 – 8.00 (m, 2 H), 7.91 – 7.87 (m, 1 H), 7.60 (td, *J* = 7.8, 1.2 Hz, 1 H), 7.54 (dd, *J* = 7.8, 1.2 Hz, 1 H). ¹³C NMR (**150 MHz, DMSO-***d*₆): δ 159.2, 153.4, 144.9, 143.2, 137.3, 128.0, 126.2, 125.1, 124.2, 119.7, 113.0. **HRMS** (ESI-TOF) m/z Calcd for C₁₃H₉N₃NaO₅S [M+Na]⁺ 342.0155, found 342.0155.

4-((3,5-Dimethylphenyl)amino)benzo[*e*][1,2,3]oxathiazine 2,2-dioxide (3l)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and 3,5-dimethylaniline **2l** (36.4 mg, 0.3 mmol). After 5 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **3l** (36.3 mg, 60%) as a yellow solid. **M. p.**: 221.3 – 224.5 °C. ¹**H NMR (400 MHz, DMSO-***d*₆): δ 10.78 (s, 1 H), 8.30 (dd, *J* = 8.0, 1.6 Hz, 1 H), 7.87 – 7.81 (m, 1 H), 7.54 (td, *J* = 8.0, 1.2 Hz, 1 H), 7.48 (dd, *J* = 8.4, 1.2 Hz, 1 H), 7.25 (s, 2 H), 6.97 (s, 1 H), 2.33 (s, 6 H). ¹³**C NMR (100 MHz, DMSO-***d*₆): δ 158.8, 153.4, 138.6, 136.7, 136.6, 128.6, 127.4, 126.0, 122.4, 119.7, 113.1, 21.4. **HRMS** (ESI-TOF) m/z Calcd for C₁₅H₁₄N₂NaO₃S [M+Na]⁺ 325.0617, found 325.0617.

4-((3,5-Dichlorophenyl)amino)benzo[*e*][1,2,3]oxathiazine 2,2-dioxide (3m)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and 3,5-dichloroaniline **2m** (48.6 mg, 0.3 mmol). After 3 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **3m**

(33.6 mg, 49%) as a yellow solid. **M. p**.: 221.7 – 224.3 °C. ¹**H NMR** (400 MHz, **DMSO-***d*₆): δ 10.98 (s, 1 H), 8.28 (dd, *J* = 8.0, 1.2 Hz, 1 H), 7.90 – 7.85 (m, 1 H), 7.81 (d, *J* = 1.6 Hz, 2 H), 7.61 – 7.56 (m, 2 H), 7.52 (dd, *J* = 8.4, 1.2 Hz, 1 H). ¹³**C NMR** (100 MHz, DMSO-*d*₆): δ 159.2, 153.4, 139.4, 137.2, 134.5, 127.6, 126.2, 122.8, 119.7, 112.9. **HRMS** (ESI-TOF) m/z Calcd for C₁₃H₈Cl₂N₂NaO₃S [M+Na]⁺ 364.9525, found 364.9525.

4-Morpholinobenzo[*e*][1,2,3]oxathiazine 2,2-dioxide (3n)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and morpholine **2n** (20.9 mg, 0.24 mmol). After 6 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **3n** (51.7 mg, 96%) as a white solid. ¹H NMR (**400 MHz, CDCl**₃): δ 7.69 – 7.64 (m, 1 H), 7.58 (dd, *J* = 8.0, 1.6 Hz, 1 H), 7.40 – 7.32 (m, 2 H), 3.93 – 3.82 (m, 8 H). ¹³C NMR (**100 MHz, CDCl**₃): δ 163.1, 154.5, 135.4, 128.1, 125.0, 120.7, 112.9, 66.4, 49.2. The spectral data are in accordance with those reported in the literature^[1].

4-(3-Methylmorpholino)benzo[*e*][1,2,3]oxathiazine 2,2-dioxide (30)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and 3-methylmorpholine **2o** (24.3 mg, 0.24 mmol). After 6 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **3o** (30.9 mg, 55%) as a brown solid. **M. p.**: 165.2 – 168.1 °C. ¹**H NMR (600 MHz, CDCl_3)**: δ 7.64 (t, *J* = 7.8 Hz, 1 H), 7.54 (d, *J* = 7.8 Hz, 1 H), 7.38 – 7.31 (m, 2 H), 4.90 – 4.01 (m, 2 H), 3.98 (d, *J* = 10.8 Hz, 1 H), 3.75 (s, 2 H), 3.65 (s, 2 H), 1.55 (s, 3 H). ¹³**C NMR (150 MHz, CDCl_3)**: δ 154.5, 135.3, 127.8, 125.0, 120.8, 113.2, 70.7, 66.8, 15.4. **HRMS** (ESI-TOF) m/z Calcd for C₁₂H₁₄N₂NaO₄S [M+Na]⁺ 305.0566, found 305.0565.

4-(2-Methylmorpholino)benzo[*e*][1,2,3]oxathiazine 2,2-dioxide (3p)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and 2-methylmorpholine **2p** (24.3 mg, 0.24 mmol). After 6 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **3p** (54.1 mg, 96%) as a yellow solid. **M. p.**: 208.5 – 211.3 °C. ¹**H NMR (400 MHz, CDCl_3**): δ 7.68 – 7.61 (m, 1 H), 7.56 (dd, *J* = 8.0, 1.2 Hz, 1 H), 7.38 – 7.30 (m, 2 H), 4.27 (s, 2 H), 3.98 (dd, *J* = 12.0, 2.4 Hz, 1 H), 3.76 – 3.65 (m, 2 H), 3.43 (d, *J* = 10.4 Hz, 1 H), 3.05 (t, *J* = 10.0 Hz, 1 H), 1.24 (d, *J* = 6.4 Hz, 3 H). ¹³**C NMR (100 MHz, CDCl_3)**: δ 162.9, 154.5, 135.4, 128.2, 125.0, 120.7, 113.0, 71.8, 66.1, 54.4, 18.6. **HRMS** (ESI-TOF) m/z Calcd for C₁₂H₁₄N₂NaO₄S [M+Na]⁺ 305.0566, found

305.0566.

4-(2,6-Dimethylmorpholino)benzo[e][1,2,3]oxathiazine 2,2-dioxide (3q)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and 2,6-dimethylmorpholine **2q** (27.6 mg, 0.24 mmol). After 6 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **3q** (56.3 mg, 95%) as a yellow solid. **M. p.**: 256.9 – 259.8 °C. ¹**H NMR (600 MHz, CD₂Cl₂)**: δ 7.70 – 7.63 (m, 1 H), 7.59 (dd, *J* = 8.0, 1.2 Hz, 1 H), 7.40 – 7.31 (m, 2 H), 4.25 (s, 2 H), 3.73 (t, *J* = 8.0 Hz, 2 H), 2.97 (s, 2 H), 1.21 (s, 3 H), 1.20 (s, 3 H). ¹³**C NMR (150 MHz, CD₂Cl₂)**: δ 162.6, 154.4, 135.3, 128.4, 125.0, 120.3, 113.2, 71.5, 19.4. **HRMS** (ESI-TOF) m/z Calcd for C₁₃H₁₆N₂NaO₄S [M+Na]⁺ 319.0723, found 319.0724.

4-Thiomorpholinobenzo[*e*][1,2,3]oxathiazine 2,2-dioxide (3r)

The general procedure was followed using benzo[e][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and thiomorpholine **2r** (24.8 mg, 0.24 mmol). After 6 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **3r**

(49.0 mg, 86%) as a yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 7.70 – 7.61 (m, 1 H), 7.53 (dd, J = 7.6, 1.6 Hz, 1 H), 7.39 – 7.31 (m, 2 H), 4.09 (t, J = 4.8 Hz, 4 H), 2.83 (t, J = 4.8 Hz, 4 H). ¹³C NMR (100 MHz, CDCl₃): δ 163.8, 154.5, 135.4, 128.0, 125.0, 120.8, 113.1, 51.5, 27.4. The spectral data are in accordance with those reported in the literature^[1].

4-(1,1-Dioxidothiomorpholino)benzo[*e*][1,2,3]oxathiazine 2,2-dioxide (3s)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and thiomorpholine 1,1-dioxide **2s** (32.4 mg, 0.24 mmol). After 8 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **3s** (34.9 mg, 55%) as a yellow solid. ¹H NMR (**400** MHz, DMSO-*d*₆): δ 7.87 (dd, *J* = 8.0, 1.6 Hz, 1 H), 7.81 (td, *J* = 8.0, 1.6 Hz, 1 H), 7.53 (dd, *J* = 8.4, 1.2 Hz, 1 H), 7.49 (td, *J* = 8.0, 1.2 Hz, 1 H), 4.19 - 4.12 (m, 4 H), 3.48 (t, *J* = 5.2 Hz, 4 H). ¹³C NMR (**100** MHz, DMSO-*d*₆): δ 163.9, 153.9, 136.5, 129.7, 126.0, 120.4, 113.2, 50.84. The spectral data are in accordance with those reported in the literature^[1].

4-(Piperidin-1-yl)benzo[e][1,2,3]oxathiazine 2,2-dioxide (3t)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and piperidine **2t** (20.4 mg, 0.24 mmol). After 6 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **3t** (39.8 mg, 75%) as a brown solid. ¹H NMR (**400 MHz, CDCl**₃): δ 7.66 – 7.60 (m, 1 H), 7.57 (dd, *J* = 8.0, 1.2 Hz, 1 H), 7.37 – 7.30 (m, 2 H), 3.80 (d, *J* = 4.8 Hz, 4 H), 1.79 (s, 6 H). ¹³C NMR (**100 MHz, CDCl**₃): δ 162.8, 154.4, 135.0, 128.3, 124.7, 120.6, 113.5, 50.1, 25.9, 24.2. The spectral data are in accordance with those reported in the literature^[1].

1-(2,2-Dioxidobenzo[*e*][1,2,3]oxathiazin-4-yl)piperidine-4-carbonitrile (3u)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and piperidine-4-carbonitrile **2u** (26.4 mg, 0.24 mmol). After 6 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **3u** (53.3 mg, 92%) as a white solid. ¹H NMR (**400 MHz, CD₂Cl₂**): δ 7.66 (td, *J* = 8.4, 1.6 Hz, 1 H), 7.55 (dd, *J* = 8.0, 1.6 Hz, 1 H), 7.39 – 7.32 (m, 2 H), 4.00 – 3.92 (m, 2 H), 3.82 – 3.72 (m, 2 H), 3.06 – 2.99 (m, 1 H), 2.15 – 1.96 (m, 4 H). ¹³C NMR (**100 MHz, CD₂Cl₂**): δ 163.6, 154.3, 135.5, 128.2, 125.1, 120.4, 120.3, 113.0, 47.0, 28.4, 26.1. The spectral data are in accordance with those reported in the literature^[1].

tert-Butyl(1-(2,2-dioxidobenzo[*e*][1,2,3]oxathiazin-4-yl)piperidin-4-yl) carbamate (3v)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and tert-butyl piperidin-4-ylcarbamate **2v** (48.1 mg, 0.24 mmol). After 6 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **3v** (73.0 mg, 95%) as a white solid. **M. p.**: 185.6 – 188.7 °C. ¹**H NMR (400 MHz, CDCl**₃): δ 7.66 – 7.61 (m, 1 H), 7.55 (dd, *J* = 8.4, 1.6 Hz, 1 H), 7.35 – 7.30 (m, 2 H), 4.62 (d, *J* = 7.6 Hz, 1 H), 4.33 (d, *J* = 12.8 Hz, 2 H), 3.80 (t, *J* = 6.4 Hz, 1 H), 3.31 (t, *J* = 12.0 Hz, 2 H), 2.16 – 2.07 (m, 2 H), 1.64 – 1.51 (m, 2 H), 1.45 (s, 9 H). ¹³**C NMR (100 MHz, CDCl**₃): δ 163.2, 155.1, 154.4, 135.3, 128.3, 124.9, 120.6, 113.2, 79.9, 47.4, 32.2, 28.4. **HRMS** (ESI-TOF) m/z Calcd for C₁₇H₂₃N₃NaO₅S [M+Na]⁺ 404.1251, found 404.1245.

4-(1,4-Dioxa-8-azaspiro[4.5]decan-8-yl)benzo[*e*][1,2,3]oxathiazine 2,2-dioxide (3w)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and 1,4-dioxa-8-azaspiro[4.5]decane **2w** (34.4 mg, 0.24 mmol). After 6 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **3w** (62.1 mg, 96%) as a white solid. **M. p**.: 187.9 – 190.5 °C. ¹**H NMR (400**

MHz, CDCl₃): δ 7.67 – 7.60 (m, 1 H), 7.55 (dd, J = 8.0, 1.2 Hz, 1 H), 7.37 – 7.29 (m, 2 H), 4.02 (s, 4 H), 3.91 (t, J = 5.6 Hz, 4 H), 1.88 (t, J = 5.6 Hz, 4 H). ¹³C NMR (100 **MHz, CDCl₃**): δ 163.0, 154.5, 135.2, 128.2, 124.8, 120.6, 113.3, 106.2, 64.7, 47.0, 35.0. **HRMS** (ESI-TOF) m/z Calcd for C₁₄H₁₆N₂NaO₅S [M+Na]⁺ 347.0672, found 347.0671.

4-(4-(Trifluoromethyl)piperidin-1-yl)benzo[*e*][1,2,3]oxathiazine 2,2- dioxide (3x)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and 4-(trifluoromethyl)piperidine **2x** (36.8 mg, 0.24 mmol). After 6 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **3x** (62.1 mg, 93%) as a white solid. ¹H NMR (600 MHz, CDCl₃): δ 7.84 (dd, *J* = 7.8, 1.8 Hz, 1 H), 7.78 – 7.74 (m, 1 H), 7.49 – 7.42 (m, 2 H), 4.35 (s, 2 H), 3.32 (s, 2 H), 2.94 – 2.74 (m, 1 H), 1.97 (dd, *J* = 12.6, 3.0 Hz, 2 H), 1.70 (s, 2 H). ¹³C NMR (150 MHz, CDCl₃): δ 167.6, 158.6, 140.8, 134.5, 132.7 (q, *J*_{C-F} = 276.0 Hz), 130.6, 125.1, 118.3, 49.9, 43.5 (q, *J*_{C-F} = 27.0 Hz), 29.1. ¹⁹F NMR (565 MHz, CDCl₃): -67.61. The spectral data are in accordance with those reported in the literature^[1].

4-(4-(Hydroxymethyl)piperidin-1-yl)benzo[*e*][1,2,3]oxathiazine 2,2- dioxide (3y)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and piperidin-4-ylmethanol **2y** (27.6 mg, 0.24 mmol). After 6 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **3y** (34.1 mg, 58%) as a white solid. **M. p**.: 114.3 – 117.5 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.66 – 7.60 (m, 1 H), 7.57 (dd, *J* = 8.4, 1.6 Hz, 1 H), 7.35 – 7.29 (m, 2 H), 4.45 (d, *J* = 13.6 Hz, 2 H), 3.57 (d, *J* = 5.6 Hz, 2 H), 3.19 (s, 2 H), 1.97 – 1.77 (m, 4 H), 1.52 – 1.39 (m, 2 H). ¹³C NMR (100 MHz, CDCl₃): δ 162.9, 154.4, 135.1, 128.4, 124.9, 120.5, 113.4, 66.7, 49.6, 38.3, 28.6. HRMS (ESI-TOF) m/z Calcd for C₁₃H₁₆N₂NaO₄S [M+Na]⁺ 319.0723, found 319.0725.

4-(4-Hydroxypiperidin-1-yl)benzo[*e*][1,2,3]oxathiazine 2,2-dioxide (3z)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and piperidin-4-ol **2z** (24.3 mg, 0.24 mmol). After 9 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **3z** (32.8 mg, 58%) as a yellow solid. **M. p**.: 117.6 – 120.3 °C. ¹**H NMR (600 MHz, DMSO-***d*₆): δ 7.82 (dd, *J* = 7.8, 1.8 Hz, 1 H), 7.79 – 7.74 (m, 1 H), 7.49 – 7.43 (m, 2 H), 4.93 (d, *J* = 3.6 Hz, 1 H), 4.03 – 3.95 (m, 2 H), 3.91 – 3.85 (m, 1 H), 3.62 (s, 2 H), 1.95 – 1.88 (m, 2 H), 1.62 – 1.54 (m, 2 H). ¹³**C NMR (150 MHz, DMSO-***d*₆): δ 162.1, 153.8, 135.9, 129.6, 125.8, 120.4, 113.7, 64.8, 48.5, 44.4, 34.1, 29.6. **HRMS** (ESI-TOF) m/z Calcd for C₁₂H₁₄N₂NaO₄S [M+Na]⁺ 305.0566, found 305.0562.

4-(4-Hydroxy-4-methylpiperidin-1-yl)benzo[*e*][1,2,3]oxathiazine 2,2- dioxide

(3aa)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and 4-methylpiperidin-4-ol **2aa** (27.6 mg, 0.24 mmol). After 8 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **3aa** (58.4 mg, 99%) as a white solid. **M. p**.: 153.4 – 156.7 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.84 (dd, *J* = 8.0, 1.6 Hz, 1 H), 7.78 – 7.73 (m, 1 H), 7.50 – 7.41 (m, 2 H), 4.62 (s, 1 H), 4.20 – 3.41 (m, 4 H), 1.17 – 1.54 (m, 4 H), 1.20 (s, 3 H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 161.8, 153.9, 135.8, 129.6, 125.7, 120.4, 113.7, 66.3, 47.9, 43.5, 30.2. HRMS (ESI-TOF) m/z Calcd for C₁₃H₁₆N₂NaO₄S [M+Na]⁺ 319.0723, found 319.0719.

4-(4-Morpholinopiperidin-1-yl)benzo[*e*][1,2,3]oxathiazine 2,2-dioxide (3ab)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and 4-(piperidin-4-yl)morpholine **2ab** (40.9 mg, 0.24 mmol). After 6 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **3ab** (49.2 mg, 70%) as a yellow solid. **M. p**.: 154.2 – 157.5 °C. ¹**H NMR (400** **MHz, CDCl**₃): δ 7.66 – 7.60 (m, 1 H), 7.55 (dd, J = 8.0, 1.6 Hz, 1 H), 7.36 – 7.29 (m, 2 H), 4.41 (d, J = 12.4 Hz, 2 H), 3.73 (t, J = 4.8 Hz, 4 H), 3.24 (t, J = 12.0 Hz, 2 H), 2.59 (t, J = 4.8 Hz, 5 H), 2.02 (d, J = 12.4 Hz, 2 H), 1.77 – 1.63 (m, 2 H). ¹³C NMR (**100 MHz, CDCl**₃): δ 162.9, 154.4, 135.2, 128.3, 124.8, 120.6, 113.3, 67.1, 61.1, 49.8, 48.1, 28.2. **HRMS** (ESI-TOF) m/z Calcd for C₁₆H₂₂N₃O₄S [M+H]⁺ 352.1326, found 352.1327.

4-(4-Methoxypiperidin-1-yl)benzo[*e*][1,2,3]oxathiazine 2,2-dioxide (3ac)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and 4-methoxypiperidine **2ac** (27.6 mg, 0.24 mmol). After 6 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **3ac** (32.4 mg, 55%) as a yellow solid. **M. p.**: 157.3 – 160.7 °C. ¹H **NMR** (**400 MHz**, **CDCl**₃): δ 7.65 – 7.59 (m, 1 H), 7.54 (dd, *J* = 8.0, 1.2 Hz, 1 H), 7.35 – 7.28 (m, 2 H), 3.95 – 3.86 (m, 2 H), 3.81 – 3.72 (m, 2 H), 3.62 – 3.55 (m, 1 H), 3.39 (s, 3 H), 2.03 – 1.91 (m, 2 H), 1.90 – 1.79 (m, 2 H). ¹³C **NMR** (**100 MHz, CDCl**₃): δ 162.9, 154.5, 135.1, 128.2, 124.8, 120.6, 113.4, 73.9, 56.0, 45.1, 30.3. **HRMS** (ESI-TOF) m/z Calcd for C₁₃H₁₆N₂NaO₄S [M+Na]⁺ 319.0723, found 319.0720.

Cyclopropyl(4-(2,2-dioxidobenzo[*e*][1,2,3]oxathiazin-4-yl)piperazin-1-yl)methano ne (3ad)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and cyclopropyl(piperazin-1-yl)methanone **2ad** (37.0 mg, 0.24 mmol). After 6 h, purification by column chromatography on silica gel (PE/EA: 5/1 – 1/1) yielded **3ad** (62.8 mg, 94%) as a white solid. **M. p**.: 143.6 – 146.5 °C. ¹**H NMR** (**600 MHz, CDCl**₃): δ 7.67 (t, *J* = 7.8 Hz, 1 H), 7.60 (d, *J* = 8.4 Hz, 1 H), 7.39 – 7.34 (m, 2 H), 4.00 – 3.72 (m, 8 H), 1.80 – 1.71 (m, 1 H), 1.04 – 1.00 (m, 2 H), 0.87 – 0.82 (m, 2 H). ¹³**C NMR (150 MHz, CDCl**₃): δ 172.6, 163.5, 154.4, 135.6, 128.2, 125.1, 120.6, 112.9, 44.4, 41.5, 11.0, 7.94. **HRMS** (ESI-TOF) m/z Calcd for C₁₅H₁₇N₃NaO₄S [M+Na]⁺ 358.0832, found 358.0828.

Methyl4-(2,2-dioxidobenzo[*e*][1,2,3]oxathiazi-4-yl)piperazine-1-carboxylate (3ae)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and methyl piperazine-1-carboxylate **2ae** (34.6 mg, 0.24 mmol). After 6 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **3ae** (61.9 mg, 95%) as a white solid. **M. p.**: 215.9 – 218.4 °C. ¹**H NMR (600 MHz, CDCl₃**): δ 7.69 – 7.64 (m, 1 H), 7.57 (dd, *J* = 7.8, 1.2 Hz, 1 H), 7.37 – 7.33 (m, 2 H), 3.83 (t, *J* = 4.8 Hz, 4 H), 3.75 (s, 3 H), 3.66 (t, *J* = 4.8 Hz, 4 H). ¹³**C NMR (150**

MHz, CDCl₃): δ 163.5, 155.6, 154.4, 135.5, 128.2, 125.1, 120.6, 112.9, 53.1, 48.6, 43.2. **HRMS** (ESI-TOF) m/z Calcd for C₁₃H₁₅N₃NaO₅S [M+Na]⁺ 348.0625, found 348.0625.

tert-Butyl 4-(2,2-dioxidobenzo[*e*][1,2,3]oxathiazin-4-yl) piperazine-1-carboxylate (3af)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and tert-butyl piperazine-1-carboxylate **2af** (44.7 mg, 0.24 mmol). After 4 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **3af** (69.3 mg, 94%) as a pink solid. ¹H NMR (**400 MHz, CDCl**₃): δ 7.69 – 7.61 (m, 1 H), 7.58 (dd, *J* = 8.4, 1.6 Hz, 1 H), 7.37 – 7.31 (m, 2 H), 3.82 (s, 4 H), 3.60 (s, 4 H), 1.49 (s, 9 H). ¹³C NMR (**100 MHz, CDCl**₃): δ 163.4, 154.4, 135.5, 128.3, 125.1, 120.5, 113.0, 80.8, 77.3, 48.6, 43.0, 28.3. The spectral data are in accordance with those reported in the literature^[1].

(4-(2,2-Dioxidobenzo[*e*][1,2,3]oxathiazin-4-yl)piperazin-1-yl)(phenyl)methanone (3ag)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and phenyl(piperazin-1-yl)methanone **2ag** (45.7 mg, 0.24 mmol). After 6 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **3ag** (70.6 mg, 95%) as a white solid. ¹H NMR (**600 MHz, CDCl**₃): δ 7.69 – 7.64 (m, 1 H), 7.56 (d, *J* = 7.8 Hz, 1 H), 7.49 – 7.40 (m, 5 H), 7.38 – 7.32 (m, 2 H), 4.08 – 3.51 (m, 8 H). ¹³C NMR (**150 MHz, CDCl**₃): δ 170.7, 163.7, 154.5, 135.7, 134.6, 130.5, 128.8, 128.1, 127.2, 125.1, 120.7, 112.8, 48.3, 42.0. The spectral data are in accordance with those reported in the literature^[1].

1-(4-(2,2-Dioxidobenzo[*e*][1,2,3]oxathiazin-4-yl)piperazin-1-yl)ethan-1-one (3ah)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and 1-(piperazin-1-yl)ethan-1-one **2ah** (30.8 mg, 0.24 mmol). After 6 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **3ah** (58.5 mg, 95%) as a white solid. ¹H NMR (**600 MHz, CDCl**₃): δ 7.69 – 7.65 (m, 1 H), 7.58 (dd, *J* = 8.4, 1.2 Hz, 1 H), 7.38 – 7.34 (m, 2 H), 3.89 (t, *J* = 4.8 Hz, 2 H), 3.84 (t, *J* = 4.8 Hz, 2 H), 3.77 (t, *J* = 4.8 Hz, 2 H), 3.68 (t, *J* = 4.8 Hz, 2 H), 2.15 (s, 2 H). ¹³C NMR (**150 MHz, CDCl**₃): δ 169.4, 163.5, 154.4, 135.6, 128.2, 125.1, 120.6, 112.9, 45.2, 40.9, 21.3. The spectral data are in accordance with those reported in the literature^[1].

Benzyl 4-(2,2-dioxidobenzo [*e*] [1,2,3] oxathiazin-4-yl) piperazine -1- carboxylate (3ai)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and benzyl piperazine-1-carboxylate **2ai** (52.9 mg, 0.24 mmol). After 6 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **3ai** (76.5 mg, 95%) as a white solid. **M. p**.: 163.0 – 166.0 °C. ¹H NMR (**400 MHz, CDCl**₃): δ 7.67 – 7.61 (m, 1 H),7.55 (dd, *J* = 8.4, 1.6 Hz, 1 H), 7.41 – 7.29 (m, 7 H), 5.17 (s, 2 H), 3.82 (s, 4 H), 3.71 – 3.63 (m, 4 H). ¹³C NMR (**100** MHz, CDCl₃): δ 163.5, 155.0, 154.4, 136.2, 135.6, 128.7, 128.4, 128.2, 128.1, 125.1, 120.6, 112.9, 67.7, 48.4, 43.3. HRMS (ESI-TOF) m/z Calcd for C₁₉H₁₉N₃NaO₅S [M+Na]⁺ 424.0938, found 424.0942.

4-(Azetidin-1-yl)benzo[*e*][1,2,3]oxathiazine 2,2-dioxide (3aj)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and azetidine **2aj** (13.70 mg, 0.24 mmol). After 6 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **3aj** (24.7 mg, 52%) as a yellow solid. **M. p.**: 214.6 – 217.5 °C. ¹H NMR (**400 MHz, DMSO-***d*₆): δ

7.83 (dd, J = 8.4, 1.6 Hz, 1 H), 7.76 (td, J = 8.0, 1.6 Hz, 1 H), 7.45 – 7.39 (m, 2 H), 4.79 (t, J = 7.6 Hz, 2 H), 4.28 (t, J = 7.6 Hz, 2 H), 2.45 – 2.35 (m, 2 H). ¹³C NMR (100 MHz, DMSO-d₆): δ 159.5, 153.4, 136.0, 128.1, 125.8, 120.0, 112.6, 56.6, 52.5, 16.5. HRMS (ESI-TOF) m/z Calcd for C₁₀H₁₀N₂NaO₃S [M+Na]⁺ 261.0304, found 261.0304.

tert-Butyl-2-(2,2-dioxidobenzo[*e*][1,2,3]oxathiazin-4-yl)-2,7-diazaspiro[3.5] nonane -7-carboxylate (3ak)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and tert-butyl 2,7-diazaspiro[3.5]nonane-7-carboxylate **2ak** (54.3 mg, 0.24 mmol). After 3 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **3ak** (75.1 mg, 92%) as a white solid. **M. p**.: 191.8 – 194.6 °C. ¹H NMR (**600 MHz, CDCl**₃): δ 7.64 – 7.60 (m, 1 H), 7.59 (dd, *J* = 7.8, 1.8 Hz, 1 H), 7.31 – 7.25 (m, 2 H), 4.38 (s, 2 H), 4.09 (s, 2 H), 3.50 – 3.41 (m, 2 H), 3.38 – 3.30 (m, 2 H), 1.94 – 1.74 (m, 4 H), 1.46 (s, 9 H). ¹³C NMR (**100 MHz, CDCl**₃): δ 160.4, 154.6, 154.0, 135.4, 126.7, 124.9, 119.9, 112.3, 80.0, 65.4, 61.3, 60.1, 40.6, 35.3, 34.9, 28.4. HRMS (ESI-TOF) m/z Calcd for C₁₉H₂₅N₃NaO₅S [M+Na]⁺ 430.1407, found 430.1406.
4-(Pyrrolidin-1-yl)benzo[e][1,2,3]oxathiazine 2,2-dioxide (3al)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and pyrrolidine **2al** (17.1 mg, 0.24 mmol). After 6 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **3al** (30.3 mg, 60%) as a yellow solid. **M. p.**: 193.8 – 195.9 °C. ¹H NMR (600 MHz, DMSO-*d*₆): δ 8.06 (d, J = 7.8 Hz, 1 H), 7.78 – 7.72 (m, 1 H), 7.47 – 7.41 (m, 2 H), 3.95 (t, J = 6.0 Hz, 2 H), 3.63 (t, J = 6.6 Hz, 2 H), 1.99 – 1.91 (m, 4 H). ¹³C NMR (150 MHz, DMSO-*d*₆): δ 159.1, 153.3, 135.5, 129.3, 125.5, 119.8, 115.0, 52.6, 50.8, 26.8, 23.9. HRMS (ESI-TOF) m/z Calcd for C₁₁H₁₂N₂NaO₃S [M+Na]⁺ 275.0461, found 275.0462.

4-(Azepan-1-yl)benzo[*e*][1,2,3]oxathiazine 2,2-dioxide (3am)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and azepane **2am** (23.8 mg, 0.24 mmol). After 6 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **3am** (13.3 mg, 24%) as a white solid. **M. p**.: 142.8 – 145.6 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.65 (d, *J* = 8.4 Hz, 1 H), 7.61 (t, *J* = 8.4 Hz, 1 H), 7.34 – 7.28 (m, 2 H), 3.83 (t, *J* = 5.4 Hz, 4 H), 1.94 (t, *J* = 5.4 Hz, 4 H), 1.68 (s, 4 H). ¹³C NMR (150 MHz, CDCl₃): δ 162.1,

154.1, 134.6, 128.2, 124.5, 120.5, 114.4, 52.2, 50.5, 29.7, 27.9, 26.6, 26.0. **HRMS** (ESI-TOF) m/z Calcd for C₁₃H₁₆N₂NaO₃S [M+Na]⁺ 303.0774, found 303.0776.

tert-Butyl 4-(2,2-dioxidobenzo[*e*][1,2,3]oxathiazin-4-yl)-1,4-diazepane -1- carboxy late (3an)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and tert-butyl 1,4-diazepane-1-carboxylate **2an** (48.1 mg, 0.24 mmol). After 6 h, purification by column chromatography on silica gel (PE/EA: 5/1 – 1/1) yielded **3an** (67.2 mg, 88%) as a white solid. **M. p.**: 168.8 – 172.4 °C. ¹H NMR (**400 MHz, CDCl**₃): δ 7.69 – 7.59 (m, 2 H), 7.32 (t, *J* = 7.6 Hz, 2 H), 4.02 – 3.91 (m, 2 H), 3.86 (t, *J* = 5.6 Hz, 2 H), 3.66 (t, *J* = 5.6 Hz, 2 H), 3.55 (s, 1 H), 3.47 (t, *J* = 6.0 Hz, 1 H), 2.12 – 2.07 (m, 2 H), 1.43 (s, 9 H). ¹³C NMR (**100 MHz, CDCl**₃): δ 163.0, 155.0, 154.0, 135.0, 128.2, 124.8, 120.5, 113.8, 80.5, 51.6, 47.3, 28.3. HRMS (ESI-TOF) m/z Calcd for C₁₇H₂₃N₃NaO₅S [M+Na]⁺ 404.1251, found 404.1256.

tert-Butyl (2,2-dioxidobenzo[*e*][1,2,3]oxathiazin-4-yl)prolinate (3ao)

The general procedure was followed using benzo[e][1,2,3]oxathiazine 2,2-dioxide 1a

(36.6 mg, 0.2 mmol) and tert-butyl prolinate **2ao** (41.1 mg, 0.24 mmol). After 6 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **3ao** (56.2 mg, 80%) as a yellow solid. **M. p.**: $67.3 - 70.1 \,^{\circ}$ C. ¹H NMR (600 MHz, CDCl₃): δ 7.84 (d, $J = 7.8 \,\text{Hz}, 1 \,\text{H}$), 7.61 (t, $J = 7.8 \,\text{Hz}, 1 \,\text{H}$), 7.34 – 7.28 (m, 2 H), 4.69 (t, $J = 7.2 \,\text{Hz}, 1 \,\text{H}$), 4.06 – 3.96 (m, 2 H), 2.42 – 2.34 (m, 1 H), 2.23 – 2.15 (m, 1 H), 2.10 – 1.96 (m, 2 H), 1.49 (s, 9 H). ¹³C NMR (150 MHz, CDCl₃): δ 169.8, 159.9, 154.1, 135.0, 127.9, 124.7, 120.0, 114.3, 82.3, 63.3, 52.7, 28.8, 27.9, 25.9. HRMS (ESI-TOF) m/z Calcd for C₁₆H₂₀N₂NaO₅S [M+Na]⁺ 375.0985, found 375.0985.

tert-Butyl 1-(2,2-dioxidobenzo[*e*][1,2,3]oxathiazin-4-yl)pyrrolidine-3- carboxylate (3ap)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and tert-butyl pyrrolidine-3-carboxylate **2ap** (41.1 mg, 0.24 mmol). After 6 h, purification by column chromatography on silica gel (PE/EA: 5/1 – 1/1) yielded **3ap** (68.2 mg, 97%) as a white solid. **M. p.**: 148.2 – 151.6 °C. ¹**H NMR** (**600 MHz, CDCl**₃): δ 7.76 (dd, *J* = 8.4, 4.2 Hz, 1 H), 7.62 (t, *J* = 7.8 Hz, 1 H), 7.35 – 7.28 (m, 2 H), 4.18 – 3.78 (m, 4 H), 3.21 – 3.05 (m, 1 H), 2.37 – 2.19 (m, 2 H), 1.47 (d, *J* = 27.6 Hz, 9 H). ¹³**C NMR (150 MHz, CDCl**₃): δ 171.4, 153.9, 134.9, 127.9, 124.6, 120.1, 114.5, 82.2, 53.6, 52.3, 51.4, 49.5, 45.2, 42.2, 28.0, 27.6. **HRMS** (ESI-TOF)

m/z Calcd for C₁₆H₂₀N₂NaO₅S [M+Na]⁺ 375.0985, found 375.0985.

Methyl 1-(2,2-dioxidobenzo[*e*][1,2,3]oxathiazin-4-yl)piperidine-3- carboxylate (3aq)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and methyl piperidine-3-carboxylate **2aq** (34.4 mg, 0.24 mmol). After 6 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **3aq** (59.7 mg, 92%) as a pink solid. **M. p.**: 174.6 – 177.4 °C. ¹**H NMR (400 MHz, CDCl_3**): δ 7.66 – 7.61 (m, 1 H), 7.58 (dd, *J* = 8.4, 1.6 Hz, 1 H), 7.36 – 7.30 (m, 2 H), 4.39 (d, *J* = 12.0 Hz, 1 H), 4.17 – 4.10 (m, 1 H), 3.70 (s, 3 H), 3.59 – 3.47 (m, 1 H), 3.44 – 3.35 (m, 1 H), 2.79 – 2.70 (m, 1 H), 2.24 – 2.13 (m, 1 H), 1.97 – 1.80 (m, 2 H), 1.79 – 1.70 (m, 1 H). ¹³**C NMR (100 MHz, CDCl_3):** δ 172.7, 163.5, 154.4, 135.2, 128.2, 124.9, 120.6, 113.3, 52.2, 50.0, 41.0, 27.0, 24.3. **HRMS** (ESI-TOF) m/z Calcd for C₁₄H₁₆N₂NaO₅S [M+Na]⁺ 347.0672, found 347.0668.

Methyl-1-(2,2-dioxidobenzo[*e*][1,2,3]oxathiazin-4-yl)piperidine-4-carboxylate (3ar)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and methyl piperidine-4-carboxylate **2ar** (34.4 mg, 0.24 mmol). After 6 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **3ar** (60.4 mg, 93%) as a yellow solid. **M. p.**: 163.5 – 166.7 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.66 – 7.62 (m, 1 H), 7.55 (d, *J* = 7.8 Hz, 1 H), 7.35 – 7.31 (m, 2 H), 4.27 (d, *J* = 13.2 Hz, 2 H), 3.73 (s, 3 H), 3.39 (t, *J* = 11.4 Hz, 2 H), 2.77 – 2.69 (m, 1 H), 2.13 – 2.07 (m, 2 H), 1.97 – 1.89 (m, 2 H). ¹³C NMR (150 MHz, CDCl₃): δ 174.0, 163.2, 154.4, 135.3, 128.2, 124.9, 120.6, 113.2, 52.1, 48.2, 40.2, 27.9. HRMS (ESI-TOF) m/z Calcd for C₁₄H₁₆N₂NaO₅S [M+Na]⁺ 347.0672, found 347.0671.

4-(Diethylamino)benzo[e][1,2,3]oxathiazine 2,2-dioxide (3as)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and diethylamine **2as** (17.6 mg, 0.24 mmol). After 6 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **3as** (17.1 mg, 33%) as a brown solid. **M. p.**: 143.6 – 146.8 °C. ¹**H NMR** (**600 MHz**, **CDCl**₃): δ 7.63 – 7.58 (m, 2 H), 7.34 – 7.30 (m, 2 H), 3.68 (q, *J* = 7.2 Hz, 4 H), 1.40 (t, *J* = 6.6 Hz, 6 H). ¹³**C NMR** (**150 MHz**, **CDCl**₃): δ 162.0, 154.1, 134.8, 127.4, 124.7, 120.6, 114.1, 45.4, 13.0. **HRMS** (ESI-TOF) m/z Calcd for C₁₁H₁₄N₂NaO₃S [M+Na]⁺ 277.0617, found 277.0616.

4-(Methyl(phenethyl)amino)benzo[*e*][1,2,3]oxathiazine 2,2-dioxide (3at)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and N-methyl-2-phenylethan-1-amine **2at** (32.5 mg, 0.24 mmol). After 6 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **3at** (47.2 mg, 75%) as a white solid. **M. p**.: 55.4 - 58.7 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.60 – 7.54 (m, 1 H), 7.51 (dd, *J* = 8.4, 1.6 Hz, 1 H), 7.33 – 7.14 (m, 7 H), 3.89 (t, *J* = 7.2 Hz, 2 H), 3.22 (s, 3 H), 3.05 (t, *J* = 7.2 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃): δ 154.1, 134.9, 128.9, 128.8, 128.3, 127.0, 124.6, 120.4, 113.8, 54.3, 32.8, 29.7. HRMS (ESI-TOF) m/z Calcd for C₁₆H₁₆N₂NaO₃S [M+Na]⁺ 339.0774, found 339.0768.

4-(Benzyl(methyl)amino)benzo[e][1,2,3]oxathiazine 2,2-dioxide (3au)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and N-methyl-1-phenylmethanamine **2au** (29.1 mg, 0.24 mmol). After 6 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **3au** (55.1 mg, 91%) as a white solid. **M. p**.: 127.8 – 130.3 °C. ¹**H NMR (400 MHz, DMSO-***d***₆)**: δ 8.07 (s, 1 H), 7.76 (t, *J* = 8.0 Hz, 1 H), 7.54 – 7.26 (m, 7 H), 4.92 (s, 2 H), 3.38 (s, 3 H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 162.7, 153.7, 136.0, 130.1, 129.3, 128.3, 127.1, 125.7, 120.3, 114.0, 57.8, 54.5. HRMS (ESI-TOF) m/z Calcd for C₁₅H₁₄N₂NaO₃S [M+Na]⁺ 325.0617, found 325.0613.

4-(Methyl(4-methylbenzyl)amino)benzo[*e*][1,2,3]oxathiazine 2,2-dioxide (3av)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and N-methyl-1-(p-tolyl)methanamine **2av** (20.9 mg, 0.24 mmol). After 6 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **3av** (58.1 mg, 92%) as a white solid. **M. p**.: 117.4 – 120.5 °C. ¹H NMR (**400 MHz, CDCl**₃): δ 7.61 (t, *J* = 8.0 Hz, 2 H), 7.35 (d, *J* = 8.0 Hz, 1 H), 7.28 – 7.16 (m, 5 H), 4.84 (s, 2 H), 3.20 (s, 3 H), 2.39 (s, 3 H). ¹³C NMR (**100** MHz, CDCl₃): δ 154.2, 138.3, 135.1, 131.7, 130.0, 127.9, 124.8, 120.5, 113.6, 38.9, 29.7, 21.2. HRMS (ESI-TOF) m/z Calcd for C₁₆H₁₆N₂NaO₃S [M+Na]⁺ 339.0774, found 339.0770.

4-((4-Methoxybenzyl)(methyl)amino)benzo[*e*][1,2,3]oxathiazine 2,2-dioxide (3aw)

The general procedure was followed using benzo[e][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and 1-(4-methoxyphenyl)-N-methylmethanamine **2aw** (36.3 mg,

0.24 mmol). After 6 h, purification by column chromatography on silica gel (PE/EA: 5/1 – 1/1) yielded **3aw** (59.9 mg, 90%) as a white solid. **M. p**.: 143.7 – 146.3 °C. ¹**H NMR (400 MHz, CDCl₃)**: δ 7.64 – 7.59 (m, 2 H), 7.33 (dd, *J* = 8.4, 1.2 Hz, 1 H), 7.29 – 7.20 (m, 3 H), 6.95 (d, *J* = 8.0 Hz, 2 H), 4.82 (s, 2 H), 3.83 (s, 3 H), 3.19 (s, 3 H). ¹³**C NMR (100 MHz, CDCl₃)**: δ 159.7, 154.2, 135.1, 128.0, 126.6, 124.8, 120.5, 114.7, 113.7, 55.4, 38.7. **HRMS** (ESI-TOF) m/z Calcd for C₁₆H₁₆N₂NaO₄S [M+Na]⁺ 355.0723, found 355.0719.

4-((4-Chlorobenzyl)(methyl)amino)benzo[e][1,2,3]oxathiazine 2,2-dioxide (3ax)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and 1-(4-chlorophenyl)-N-methylmethanamine **2ax** (37.4 mg, 0.24 mmol). After 4 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **3ax** (61.8 mg, 92%) as a white solid. **M. p.**: 193.1 – 195.8 °C. ¹**H NMR (400 MHz, CDCl₃)**: δ 7.67 – 7.53 (m, 2 H), 7.44 – 7.20 (m, 6 H), 4.85 (s, 2 H), 3.22 (s, 3 H). ¹³C NMR (**100 MHz, CDCl₃**): δ 154.3, 135.3, 134.4, 133.3, 129.5, 124.9, 120.6, 113.5, 45.8, 29.3. **HRMS** (ESI-TOF) m/z Calcd for C₁₅H₁₃ClN₂NaO₃S [M+Na]⁺ 359.0228, found 359.0226.

4-(Methyl(3-nitrobenzyl)amino)benzo[*e*][1,2,3]oxathiazine 2,2-dioxide (3ay)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and N-methyl-1-(3-nitrophenyl)methanamine **2ay** (39.9 mg, 0.24 mmol). After 4 h, purification by column chromatography on silica gel (PE/EA: 5/1 – 1/1) yielded **3ay** (52.7 mg, 76%) as a yellow solid. **M. p.**: 168.2 – 171.8 °C. ¹**H NMR** (**400 MHz, DMSO-***d*₆): δ 8.32 – 8.10 (m, 3 H), 7.87 (d, *J* = 8.0 Hz, 1 H), 7.82 – 7.70 (m, 2 H), 7.51 (dd, *J* = 8.0, 1.2 Hz, 1 H), 7.45 (s, 1 H), 5.06 (s, 2 H), 3.36 (s, 3 H). ¹³**C NMR (100 MHz, DMSO-***d*₆): δ 153.7, 148.6, 138.3, 136.1, 134.9, 130.8, 130.1, 125.7, 123.1, 120.3, 114.0, 54.1, 41.4. **HRMS** (ESI-TOF) m/z Calcd for C₁₅H₁₃N₃NaO₅S [M+Na]⁺ 370.0468, found 370.0465.

4-(Methyl(naphthalen-1-ylmethyl)amino)benzo[*e*][1,2,3]oxathiazine 2,2-dioxide (3az)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and N-methyl-1-(naphthalen-1-yl)methanamine **2az** (41.1 mg, 0.24 mmol). After 4 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **3az** (38.6 mg, 55%) as a yellow solid. **M. p.**: 213.8 – 216.9 °C. ¹**H NMR (600 MHz, DMSO-***d***₆)**: δ 8.15 – 7.95 (m, 3 H), 7.90 – 7.11 (m, 8 H), 5.43 (s, 2

H), 3.41 (s, 3 H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 153.7, 136.1, 134.0, 129.3, 128.8, 127.2, 126.7, 126.2, 125.8, 123.2, 120.4, 114.0, 56.4, 52.8. HRMS (ESI-TOF)
m/z Calcd for C₁₉H₁₆N₂NaO₃S [M+Na]⁺ 375.0774, found 375.0770.

4-(Methyl(pyridin-3-ylmethyl)amino)benzo[*e*][1,2,3]oxathiazine 2,2- dioxide (3aaa)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and N-methyl-1-(pyridin-3-yl)methanamine **2aaa** (29.3 mg, 0.24 mmol). After 3.5 h, purification by column chromatography on silica gel (PE/EA: 5/1 – 1/1) yielded **3aaa** (52.2 mg, 86%) as a white solid. **M. p**.: 169.3 – 172.6 °C. ¹H **NMR (400 MHz, CDCl**₃): δ 8.62 (t, *J* = 2.4 Hz, 2 H), 7.79 (d, *J* = 8.0 Hz, 1 H), 7.68 – 7.61 (m, 2 H), 7.40 – 7.27 (m, 3 H), 4.91 (s, 2 H), 3.27 (s, 3 H). ¹³C **NMR (100 MHz, CDCl**₃): δ 163.6, 154.3, 149.9, 149.4, 135.4, 130.7, 128.1, 124.9, 124.1, 120.5, 113.4, 39.4, 29.3. **HRMS** (ESI-TOF) m/z Calcd for C₁₄H₁₄N₃O₃S [M+H]⁺ 304.0750, found 304.0749.

4-(Methyl(thiophen-2-ylmethyl)amino)benzo[*e*][1,2,3]oxathiazine-2,2-dioxide (3aab)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and N-methyl-1-(thiophen-2-yl)methanamine **2aab** (30.5 mg, 0.24 mmol). After 3.5 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **3aab** (49.2 mg, 80%) as a white solid. **M. p.**: 109.2 – 112.5 °C. ¹**H NMR (400 MHz, CDCl_3)**: δ 7.71 (dd, *J* = 8.0, 1.6 Hz, 1 H), 7.65 – 7.60 (m, 1 H), 7.35 – 7.25 (m, 3 H), 7.13 (d, *J* = 3.6 Hz, 1 H), 7.02 (dd, *J* = 5.2, 3.6 Hz, 1 H), 4.96 (s, 2 H), 3.28 (s, 3 H). ¹³**C NMR (100 MHz, CDCl_3)**: δ 154.3, 135.3, 128.2, 127.0, 126.8, 124.9, 120.4, 113.5, 63.5, 38.9. **HRMS** (ESI-TOF) m/z Calcd for C₁₃H₁₂N₂NaO₃S₂ [M+Na]⁺ 331.0182, found 331.0180.

4-((Furan-2-ylmethyl)(methyl)amino)benzo[*e*][1,2,3]oxathiazine 2,2-dioxide (3aac)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and 1-(furan-2-yl)-N-methylmethanamine **2aac** (26.7 mg, 0.24 mmol). After 3.5 h, purification by column chromatography on silica gel (PE/EA: 5/1 – 1/1) yielded **3aac** (33.2 mg, 57%) as a yellow solid. **M. p.**: 124.8 – 127.3 °C. ¹**H NMR (600 MHz, CDCl₃)**: δ 7.85 (s, 1 H), 7.63 (t, *J* = 7.8 Hz, 1 H), 7.46 (s, 1 H), 7.33 (t, *J* = 8.4 Hz, 2 H), 6.48 (s, 1 H), 6.42 (s, 1 H), 4.77 (s, 2 H), 3.24 (s, 3 H). ¹³**C NMR (150 MHz, CDCl₃)**: δ 163.4, 154.2, 148.3, 143.4, 135.2, 128.5, 124.9, 120.4, 113.6, 110.9, 110.6, 50.3, 38.5. **HRMS** (ESI-TOF) m/z Calcd for C₁₃H₁₂N₂NaO₄S [M+Na]⁺

315.0410, found 315.0411.

N-(1-(2,2-Dioxidobenzo[*e*][1,2,3]oxathiazin-4-yl)piperidin-3-yl)-3,4,5-trimethoxyb enzamide (5a)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and 3,4,5-trimethoxy-*N*-(piperidin-3-yl)benzamide **4a** (70.6 mg, 0.24 mmol). After 3 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **5a** (62.9 mg, 66%) as a yellow solid. **M. p.**: 136.8 – 139.4 °C. ¹**H NMR (400 MHz, CDCl₃)**: δ 7.76 (s, 1 H), 7.62 – 7.55 (m, 1 H), 7.37 (t, *J* = 7.6 Hz, 1 H), 7.22 (d, *J* = 8.4 Hz, 1 H), 6.98 (s, 2 H), 6.69 (s, 1 H), 4.23 (s, 2 H), 4.12 (s, 1 H), 3.86 (s, 6 H), 3.84 (s, 3 H), 3.50 (s, 1 H), 3.36 (s, 1 H), 2.17 – 1.70 (m, 4 H). ¹³**C NMR (100 MHz, CDCl₃)**: δ 167.1, 163.7, 154.1, 153.1, 141.1, 135.5, 129.1, 128.8, 125.4, 120.2, 112.9, 104.5, 60.9, 56.3, 47.2, 29.3, 23.2. **HRMS** (ESI-TOF) m/z Calcd for C₂₂H₂₅N₃NaO₇S [M+Na]⁺ 498.1305, found 498.1304.

4-(4-(8-Chloro-5,6-dihydro-11*H*-benzo[5,6]cyclohepta[1,2-*b*]pyridin-11-ylidene)pi peridin-1-yl)benzo[*e*][1,2,3]oxathiazine 2,2-dioxide (5b)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and 8-chloro-11-(piperidin-4-ylidene)-6,11-dihydro-5*H*-benzo [5,6]cyclohepta[1,2-*b*]pyridine **4b** (74.6 mg, 0.24 mmol). After 3 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **5b** (80.8 mg, 82%) as a yellow solid. ¹H NMR (**400 MHz, CDCl**₃): δ 8.40 (d, *J* = 4.0 Hz, 1 H), 7.63 – 7.55 (m, 2 H), 7.47 (d, *J* = 7.6 Hz, 1 H), 7.32 – 7.27 (m, 2 H), 7.21 – 7.10 (m, 4 H), 4.14 – 4.02 (m, 2 H), 3.64 – 3.52 (m, 2 H), 3.44 – 3.29 (m, 2 H), 2.94 – 2.77 (m, 3 H), 2.69 – 2.59 (m, 1 H), 2.55 – 2.46 (m, 2 H). ¹³C NMR (**100 MHz, CDCl**₃): δ 162.8, 156.3, 154.3, 146.7, 139.8, 137.9, 137.3, 135.8, 135.2, 134.8, 133.5, 133.3, 130.3, 129.1, 128.3, 126.3, 124.8, 122.6, 120.5, 113.3, 49.1, 31.6, 31.5, 30.2. The spectral data are in accordance with those reported in the literature^[1].

4-(4-(2-Chlorodibenzo[*b*,*f*][1,4]oxazepin-11-yl)piperazin-1-yl)benzo[*e*][1,2,3]oxath iazine 2,2-dioxide (5c)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and 2-chloro-11-(piperazin-1-yl)dibenzo[*b*,*f*][1,4]oxazepine **4c** (75.3 mg, 0.24 mmol). After 4.5 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **5c** (88.9 mg, 90%) as a white solid. **M. p**.: 245.1 – 248.3 °C. ¹**H NMR (400 MHz, DMSO-***d*₆): δ 7.91 (dd, *J* = 8.0, 1.6 Hz, 1 H), 7.82 – 7.76 (m, 1 H), 7.64 (dd, *J* = 8.8, 2.4 Hz, 1 H), 7.56 (d, *J* = 2.4 Hz, 1 H), 7.53 – 7.41 (m, 3 H), 7.22 (dd, *J* = 8.0, 1.6 Hz, 1 H), 7.15 – 7.09 (m, 2 H), 7.06 – 7.00 (m, 1 H), 4.02 (s, 4 H), 3.76 (s, 4 H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 162.5, 159.1, 158.1, 153.9, 151.7, 140.3, 136.0, 133.6, 130.1, 129.8, 129.3, 127.0, 126.4, 125.8, 124.9, 124.7, 123.6, 120.8, 120.3, 113.6, 46.2, 29.2. HRMS (ESI-TOF) m/z Calcd for C₂₄H₂₀ClN₄O₄S [M+H]⁺ 495.0888, found 495.0888.

4-(4-(6-Fluorobenzo[*d*]isoxazol-3-yl)piperidin-1-yl)benzo[*e*][1,2,3]oxathiazine 2,2dioxide (5d)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and 6-fluoro-3-(piperidin-4-yl)benzo[*d*]isoxazole **4d** (52.9 mg, 0.24 mmol). After 6 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **5d** (48.0 mg, 60%) as a white solid. **M. p**.: 165.4 – 168.7 °C. ¹**H NMR (600 MHz, DMSO-***d***₆)**: δ 8.13 (dd, *J* = 9.0, 5.4 Hz, 1 H), 7.91 (dd, *J* = 7.8, 1.8

Hz, 1 H), 7.80 – 7.76 (m, 1 H), 7.72 (dd, J = 9.0, 2.4 Hz, 1 H), 7.51 – 7.46 (m, 2 H), 7.32 (td, J = 9.0, 1.8 Hz, 1 H), 4.40 (s, 2 H), 3.70 – 3.63 (m, 2 H), 3.55 (s, 1 H), 2.29 – 2.21 (m, 2 H), 2.10 (s, 2 H). ¹³C NMR (150 MHz, DMSO-*d*₆): δ 164.2 (d, ¹ $J_{C-F} =$ 247.0 Hz), 163.6 (d, ³ $J_{C-F} = 14.0$ Hz), 162.6, 161.0, 153.9, 136.0, 129.8, 125.8, 124.4 (d, ³ $J_{C-F} = 12.0$ Hz), 120.4, 117.6, 113.7, 113.1 (d, ² $J_{C-F} = 26.0$ Hz), 97.9 (d, ² $J_{C-F} =$ 28.0 Hz), 33.2, 29.9. ¹⁹F NMR (565 MHz, DMSO-*d*₆): -109.57. HRMS (ESI-TOF) m/z Calcd for C₁₉H₁₆FN₃NaO₄S [M+Na]⁺ 424.0738, found 424.0736.

4-(4-(Benzo[*d*]isothiazol-3-yl)piperazin-1-yl)benzo[*e*][1,2,3]oxathiazine 2,2-dioxi de (5e)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and 3-(piperazin-1-yl)benzo[*d*]isothiazole **4e** (52.6 mg, 0.24 mmol). After 4 h, purification by column chromatography on silica gel (PE/EA: 5/1 – 1/1) yielded **5e** (61.0 mg, 76%) as a yellow solid. **M. p.**: 241.6 – 244.7 °C. ¹**H NMR** (**400 MHz, DMSO-***d*₆): δ 8.15 (d, *J* = 8.4 Hz, 1 H), 8.09 (d, *J* = 8.0 Hz, 1 H), 7.94 (dd, *J* = 7.6, 1.2 Hz, 1 H), 7.82 – 7.77 (m, 1 H), 7.62 – 7.56 (m, 1 H), 7.53 – 7.45 (m, 3 H), 4.07 (s, 4 H), 3.73 (t, *J* = 4.8 Hz, 4 H). ¹³**C NMR (100 MHz, DMSO-***d*₆): δ 163.0, 162.6, 153.9, 152.6, 136.1, 129.8, 128.5, 127.6, 125.8, 125.0, 124.6, 121.6, 120.4, 113.6, 49.1, 46.0. **HRMS** (ESI-TOF) m/z Calcd for C₁₈H₁₇N₄O₃S₂ [M+H]⁺ 401.0737,

found 401.0731.

4-(4-(Pyrimidin-2-yl)piperazin-1-yl)benzo[e][1,2,3]oxathiazine 2,2- dioxide (5f)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and 2-(piperazin-1-yl)pyrimidine **4f** (39.4 mg, 0.24 mmol). After 3.5 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **5f** (55.3 mg, 80%) as a white solid. **M. p.**: 245.3 – 248.7 °C. ¹H NMR (**400 MHz, DMSO-***d*₆): δ 8.43 (d, *J* = 4.8 Hz, 2 H), 7.92 (dd, *J* = 7.6, 1.2 Hz, 1 H), 7.82 – 7.77 (m, 1 H), 7.53 – 7.46 (m, 2 H), 6.71 (t, *J* = 4.8 Hz, 1 H), 3.95 (s, 8 H). ¹³C NMR (**100 MHz, DMSO-***d*₆): δ 162.5, 161.3, 158.5, 153.8, 136.0, 129.8, 125.8, 120.3, 113.6, 111.1, 43.0, 29.6. HRMS (ESI-TOF) m/z Calcd for C₁₅H₁₆N₅O₃S [M+H]⁺ 346.0968, found 346.0966.

4-(3-(Trifluoromethyl)-5,6-dihydro-[1,2,4]triazolo[4,3-*a*]pyrazin-7(8*H*)-yl)benzo[*e*][1,2,3]oxathiazine 2,2-dioxide (5g)

The general procedure was followed using benzo[e][1,2,3]oxathiazine 2,2-dioxide 1a

(36.6 mg, 0.2 mmol) and 3-(trifluoromethyl)-5,6,7,8-tetrahydro-[1,2,4]triazolo[4,3-*a*] pyrazine **4g** (46.1 mg, 0.24 mmol). After 3 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **5g** (40.4 mg, 54%) as a white solid. **M. p.**: 269.8 – 272.6 °C. ¹**H NMR (600 MHz, DMSO-***d*₆): δ 7.98 (d, *J* = 8.4 Hz, 1 H), 7.82 (t, *J* = 7.8 Hz, 1 H), 7.54 – 7.49 (m, 2 H), 5.22 (s, 2 H), 4.42 (s, 2 H), 4.26 (t, *J* = 5.4 Hz, 2 H). ¹³**C NMR (150 MHz, DMSO-***d*₆): δ 167.2, 161.5, 152.6, 135.8 (d, *J*_{C-F} = 13.5 Hz), 132.1 (d, *J*_{C-F} = 466.5 Hz), 126.5, 125.4 (q, *J*_{C-F} = 15.0 Hz), 124.0, 123.4 (q, *J*_{C-F} = 75.0 Hz), 122.3 (d, ¹*J*_{C-F} = 4.5 Hz), 47.7, 39.1, 5.3. ¹⁹**F NMR (565 MHz, DMSO-***d*₆): -73.34. **HRMS** (ESI-TOF) m/z Calcd for C₁₃H₁₁F₃N₅O₃S [M+H]⁺ 374.0529, found 374.0528.

4-((1*R*,3*R*,5*S*)-3-Hydroxy-8-azabicyclo[3.2.1]octan-8-yl)benzo[*e*][1,2,3]oxathiazine 2,2-dioxide (5h)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and (1*R*,3*R*,5*S*)-8-azabicyclo[3.2.1]octan-3-ol **4h** (30.5 mg, 0.24 mmol). After 6 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **5h** (54.0 mg, 88%) as a white solid. **M. p**.: 229.4 – 232.6 °C. ¹**H NMR** (**400 MHz, DMSO-***d*₆): δ 7.85 (dd, *J* = 8.0, 1.6 Hz, 1 H), 7.79 – 7.73 (m, 1 H), 7.49 – 7.42 (m, 2 H), 4.83 (d, *J* = 6.8 Hz, 2 H), 4.72 (d, *J* = 7.2 Hz, 1 H), 4.02 (t, *J* = 4.8 Hz, 1 H), 2.38 – 2.27 (m, 2 H), 2.23 – 2.12 (m, 2 H), 2.10 – 2.00 (m, 1 H), 1.89 (t, *J* = 12.4

Hz, 3 H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 157.8, 153.6, 135.8, 128.9, 126.0, 120.2, 114.0, 63.0, 59.1, 55.2, 38.2, 28.4, 25.8. HRMS (ESI-TOF) m/z Calcd for C₁₄H₁₆N₂NaO₄S [M+Na]⁺ 331.0723, found 331.0724.

4-(4-((2,2-Dioxidobenzo[*e*][1,2,3]oxathiazin-4-yl)amino)phenyl)-4-ethylpiperidine-2,6-dione (5i)

The general procedure was followed using benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (36.6 mg, 0.2 mmol) and 4-(4-aminophenyl)-4-ethylpiperidine-2,6-dione **4i** (55.7 mg, 0.24 mmol). After 4.5 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **5i** (45.6 mg, 55%) as a yellow solid. **M. p.**: 155.8 – 159.2 °C. ¹**H NMR (400 MHz, DMSO-***d***₆): \delta 10.93 (s, 1 H), 10.90 (s, 1 H), 8.31 (d,** *J* **= 7.2 Hz, 1 H), 7.87 – 7.82 (m, 1 H), 7.70 (d,** *J* **= 8.4 Hz, 2 H), 7.58 – 7.53 (m, 1 H), 7.49 (dd,** *J* **= 8.4, 1.2 Hz, 1 H), 7.42 (d,** *J* **= 8.8 Hz, 2 H), 2.55 – 2.33 (m, 2 H), 2.26 – 2.13 (m, 2 H), 1.97 – 1.83 (m, 2 H), 0.80 (t,** *J* **= 7.2 Hz, 3 H). ¹³C NMR (100 MHz, DMSO-***d***₆): \delta 176.1, 173.2, 158.7, 153.4, 138.5, 136.8, 135.8, 127.5, 127.4, 126.0, 124.5, 119.7, 113.1, 50.5, 32.5, 29.6, 26.6, 9.43. HRMS** (ESI-TOF) m/z Calcd for C₂₀H₂₀N₃O₅S [M+H]⁺ 414.1118, found 414.1114.

8-Methyl-4-morpholinobenzo[*e*][1,2,3]oxathiazine 2,2-dioxide (6a)

The general procedure was followed using 8-methylbenzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1b** (39.4 mg, 0.2 mmol) and morpholine **2n** (20.9 mg, 0.24 mmol). After 4 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **6a** (52.0 mg, 92%) as a white solid. ¹H NMR (**600** MHz, CDCl₃): δ 7.49 (d, *J* = 7.8 Hz, 1 H), 7.38 (dd, *J* = 7.8, 1.2 Hz, 1 H), 7.22 (t, *J* = 7.8 Hz, 1 H), 3.89 – 3.84 (m, 4 H), 3.83 – 3.79 (m, 4 H), 2.39 (s, 3 H). ¹³C NMR (**150** MHz, CDCl₃): δ 163.7, 152.7, 136.7, 130.4, 125.7, 124.3, 112.6, 66.5, 49.3, 15.4. The spectral data are in accordance with those reported in the literature^[1].

7-Methyl-4-morpholinobenzo[*e*][1,2,3]oxathiazine 2,2-dioxide (6b)

The general procedure was followed using 7-methylbenzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1c** (39.4 mg, 0.2 mmol) and morpholine **2n** (20.9 mg, 0.24 mmol). After 4 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **6b** (47.8 mg, 85%) as a white solid. ¹H NMR (**600 MHz, CDCl**₃): δ 7.43 (d, *J* = 7.8 Hz, 1 H), 7.16 (s, 1 H), 7.12 (d, *J* = 7.8 Hz, 1 H), 3.88 – 3.85 (m, 4 H), 3.83 – 3.80 (m, 4 H), 2.46 (s, 3 H). ¹³C NMR (**150 MHz, CDCl**₃): δ 163.3, 154.5, 147.4, 127.9, 125.9, 120.8, 110.2, 66.5, 49.0, 21.9. The spectral data are in accordance with those reported

in the literature^[1].

6-Methyl-4-morpholinobenzo[*e*][1,2,3]oxathiazine 2,2-dioxide (6c)

The general procedure was followed using 6-methylbenzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1d** (39.4 mg, 0.2 mmol) and morpholine **2n** (20.9 mg, 0.24 mmol). After 4 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **6c** (54.6 mg, 97%) as a white solid. ¹H NMR (**600 MHz, CDCl**₃): δ 7.44 (dd, *J* = 8.4, 1.8 Hz, 1 H), 7.31 (d, *J* = 1.8 Hz, 1 H), 7.25 (d, *J* = 8.4 Hz, 1 H), 3.88 (t, *J* = 4.8 Hz, 4 H), 3.82 (t, *J* = 4.8 Hz, 4 H), 2.41 (s, 3 H). ¹³C NMR (**150 MHz, CDCl**₃): δ 163.3, 152.4, 136.2, 134.9, 128.0, 120.4, 112.6, 66.5, 49.2, 21.1. The spectral data are in accordance with those reported in the literature^[1].

6-Methoxy-4-morpholinobenzo[e][1,2,3]oxathiazine 2,2-dioxide (6d)

The general procedure was followed using 6-methoxybenzo[e][1,2,3]oxathiazine 2,2-dioxide **1e** (42.6 mg, 0.2 mmol) and morpholine **2n** (20.9 mg, 0.24 mmol). After 4 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **6d**

(37.1 mg, 62%) as a white solid. ¹H NMR (600 MHz, DMSO-*d*₆): δ 7.45 (d, *J* = 9.0 Hz, 1 H), 7.36 (dd, *J* = 9.0, 3.0 Hz, 1 H), 7.28 (d, *J* = 2.4 Hz, 1 H), 3.91 – 3.86 (m, 4 H), 3.85 (s, 3 H), 3.77 – 3.73 (m, 4 H). ¹³C NMR (150 MHz, DMSO-*d*₆): δ 162.3, 156.2, 147.5, 112.0, 121.5, 113.9, 113.6, 66.1, 56.5. The spectral data are in accordance with those reported in the literature^[1].

7-Methoxy-4-morpholinobenzo[e][1,2,3]oxathiazine 2,2-dioxide (6e)

The general procedure was followed using 7-methoxybenzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1f** (42.6 mg, 0.2 mmol) and morpholine **2n** (20.9 mg, 0.24 mmol). After 3 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **6e** (54.9 mg, 92%) as a yellow solid. **M. p**.: 195.2 – 198.5 °C. ¹H NMR (**600 MHz**, **DMSO-***d*₆): δ 7.77 (d, *J* = 9.0 Hz, 1 H), 7.10 (d, *J* = 3.0 Hz, 1 H), 6.98 (dd, *J* = 9.0, 3.0 Hz, 1 H), 3.90 (s, 3 H), 3.80 (t, *J* = 4.2 Hz, 4 H), 3.74 (t, *J* = 4.2 Hz, 4 H). ¹³C NMR (**150 MHz, DMSO-***d*₆): δ 165.0, 162.6, 156.1, 131.1, 112.7, 105.7, 104.9, 66.1, 56.9, 40.5. HRMS (ESI-TOF) m/z Calcd for C₁₂H₁₄N₂NaO₅S [M+Na]⁺ 321.0516, found 321.0522.

6-(*tert*-Butyl)-4-morpholinobenzo[*e*][1,2,3]oxathiazine 2,2-dioxide (6f)

The general procedure was followed using 6-(*tert*-butyl)benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1g** (47.9 mg, 0.2 mmol) and morpholine **2n** (20.9 mg, 0.24 mmol). After 3 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **6f** (58.3 mg, 90%) as a yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 7.68 (dd, J = 8.4, 2.4 Hz, 1 H), 7.52 (d, J = 2.0 Hz, 1 H), 7.27 (d, J = 8.8 Hz, 1 H), 3.90 – 3.86 (m, 4 H), 3.84 – 3.80 (m, 4 H), 1.34 (s, 9 H). ¹³C NMR (100 MHz, CDCl₃): δ 163.6, 152.2, 148.1, 132.9, 124.8, 120.0, 112.0, 66.4, 49.3, 34.8, 31.2. The spectral data are in accordance with those reported in the literature^[1].

7-(Diethylamino)-4-morpholinobenzo[*e*][1,2,3]oxathiazine 2,2-dioxide (6g)

The general procedure was followed using 7-(diethylamino)benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1h** (50.9 mg, 0.2 mmol) and morpholine **2n** (20.9 mg, 0.24 mmol). After 3 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **6g** (38.1 mg, 56%) as a yellow solid. **M. p**.: 192.4 – 195.6 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.30 (d, *J* = 9.6 Hz, 1 H), 6.47 (dd, *J* = 9.6, 3.0 Hz, 1 H), 6.41 (d, *J* = 2.4 Hz, 1 H), 3.79 (s, 8 H), 3.42 (q, *J* = 7.2 Hz, 4 H), 1.22 (t, *J* = 7.2 Hz, 6 H). ¹³C NMR (150 MHz, CDCl₃): δ 164.1, 156.9, 152.7, 129.6, 107.7, 100.4, 99.1, 66.6, 66.0, 49.2, 46.3,

44.9, 12.4. **HRMS** (ESI-TOF) m/z Calcd for C₁₅H₂₁N₃NaO₄S [M+Na]⁺ 362.1145, found 362.1146.

4-Morpholino-6-phenylbenzo[*e*][1,2,3]oxathiazine 2,2-dioxide (6h)

The general procedure was followed using 6-phenylbenzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1i** (51.9 mg, 0.2 mmol) and morpholine **2n** (20.9 mg, 0.24 mmol). After 4 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **6h** (57.2 mg, 83%) as a white solid. ¹H NMR (**400 MHz, DMSO-***d*₆): δ 8.07 – 8.02 (m, 2 H), 7.77 – 7.72 (m, 2 H), 7.59 (d, *J* = 8.4 Hz, 1 H), 7.53 (t, *J* = 7.2 Hz, 2 H), 7.47 – 7.42 (m, 1 H), 3.93 (s, 4 H), 3.76 (t, *J* = 4.8 Hz, 4 H). ¹³C NMR (**100 MHz, DMSO-***d*₆): δ 162.1, 153.2, 138.6, 137.8, 134.2, 129.6, 128.6, 127.5, 121.0, 113.9, 66.1, 51.6. The spectral data are in accordance with those reported in the literature^[1].

6-Fluoro-4-morpholinobenzo[e][1,2,3]oxathiazine 2,2-dioxide (6i)

The general procedure was followed using 6-fluorobenzo[e][1,2,3]oxathiazine 2,2-dioxide **1j** (40.0 mg, 0.2 mmol) and morpholine **2n** (20.9 mg, 0.24 mmol). After 4

h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **6i** (34.3 mg, 60%) as a yellow solid. **M. p.**: 269.8 – 272.6 °C. ¹H NMR (400 MHz, **DMSO-***d*₆): δ 7.74 (dd, J = 8.8, 2.8 Hz, 1 H), 7.69 (td, J = 8.8, 2.8 Hz, 1 H), 7.59 (dd, J = 8.8, 4.8 Hz, 1 H), 3.85 (s, 4 H), 3.74 (t, J = 4.8 Hz, 4 H). ¹³C NMR (100 MHz, **DMSO-***d*₆): δ 161.3, 158.4 (d, ¹*J*_{C-F} = 242.0 Hz), 150.1, 123.1 (d, ²*J*_{C-F} = 24.0 Hz), 122.5 (d, ³*J*_{C-F} = 8.0 Hz), 116.2 (d, ²*J*_{C-F} = 26.0 Hz), 114.5 (d, ³*J*_{C-F} = 8.0 Hz), 66.0, 55.4. ¹⁹F NMR (376 MHz, **DMSO-***d*₆): -114.73. HRMS (ESI-TOF) m/z Calcd for C₁₁H₁₂FN₂O₄S [M+H]⁺ 287.0496, found 287.0494.

6-Chloro-4-morpholinobenzo[e][1,2,3]oxathiazine 2,2-dioxide (6j)

The general procedure was followed using 6-chlorobenzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1k** (43.5 mg, 0.2 mmol) and morpholine **2n** (20.9 mg, 0.24 mmol). After 9 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **6j** (49.5 mg, 82%) as a white solid. ¹H NMR (**600** MHz, CDCl₃): δ 7.92 (d, *J* = 2.4 Hz, 1 H), 7.85 (dd, *J* = 9.0, 2.4 Hz, 1 H), 7.57 (d, *J* = 9.0 Hz, 1 H), 3.85 (s, 4 H), 3.74 (t, *J* = 4.8 Hz, 4 H). ¹³C NMR (**150** MHz, CDCl₃): δ 165.8, 157.4, 140.5, 134.5, 133.8, 133.7, 127.2, 119.8, 70.8, 33.8. The spectral data are in accordance with those reported in the literature^[1].

7-Chloro-4-morpholinobenzo[*e*][1,2,3]oxathiazine 2,2-dioxide (6k)

The general procedure was followed using 7-chlorobenzo[*e*][1,2,3]oxathiazine 2,2-dioxide **11** (43.5 mg, 0.2 mmol) and morpholine **2n** (20.9 mg, 0.24 mmol). After 9 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **6k** (30.3 mg, 50%) as a white solid. ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.87 (d, *J* = 8.4 Hz, 1 H), 7.76 (d, *J* = 2.0 Hz, 1 H), 7.52 (dd, *J* = 8.4, 2.0 Hz, 1 H), 3.85 – 3.79 (m, 4 H), 3.74 (t, *J* = 4.8 Hz, 4 H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 161.1, 154.1, 139.4, 130.7, 125.5, 120.1, 112.0, 65.6, 29.0. The spectral data are in accordance with those reported in the literature^[1].

6-Bromo-4-morpholinobenzo[e][1,2,3]oxathiazine 2,2-dioxide (6l)

The general procedure was followed using 6-bromobenzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1m** (52.0 mg, 0.2 mmol) and morpholine **2n** (20.9 mg, 0.24 mmol). After 3 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **6l** (59.1 mg, 85%) as a yellow solid. **M. p.**: 243.6 – 246.8 °C. ¹H NMR (**600 MHz**, **DMSO-***d*₆): δ 8.03 (d, *J* = 1.8 Hz, 1 H), 7.97 (dd, *J* = 8.4, 1.8 Hz, 1 H), 7.50 (d, *J* = 8.4 Hz, 1 H), 3.86 (s, 4 H), 3.74 (t, *J* = 4.8 Hz, 4 H). ¹³C NMR (**150 MHz, DMSO-***d*₆): δ

160.9, 153.1, 138.5, 131.7, 122.6, 117.5, 115.4, 66.0, 46.1. **HRMS** (ESI-TOF) m/z Calcd for C₁₁H₁₁BrN₂NaO₄S [M+Na]⁺ 368.9515, found 368.9514.

6-Iodo-4-morpholinobenzo[e][1,2,3]oxathiazine 2,2-dioxide (6m)

The general procedure was followed using 6-iodobenzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1n** (61.8 mg, 0.2 mmol) and morpholine **2n** (20.9 mg, 0.24 mmol). After 5 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **6m** (49.0 mg, 62%) as a yellow solid. **M. p.**: 213.7 – 216.4 °C. ¹H NMR (400 MHz, **DMSO-***d*₆): δ 8.12 (d, *J* = 2.0 Hz, 1 H), 8.09 (dd, *J* = 8.4, 2.0 Hz, 1 H), 7.31 (d, *J* = 8.8 Hz, 1 H), 3.84 (t, *J* = 4.8 Hz, 4 H), 3.73 (t, *J* = 4.8 Hz, 4 H). ¹³C NMR (100 MHz, **DMSO-***d*₆): δ 160.8, 153.7, 144.2, 137.3, 122.5, 115.6, 89.7, 66.0, 47.2. HRMS (ESI-TOF) m/z Calcd for C₁₁H₁₂IN₂O₄S [M+H]⁺ 394.9557, found 394.9557.

4-Morpholino-6-(trifluoromethyl)benzo[*e*][1,2,3]oxathiazine 2,2-dioxide (6n)

The general procedure was followed using 6-(trifluoromethyl)benzo[e][1,2,3] oxathiazine 2,2-dioxide **10** (50.2 mg, 0.2 mmol) and morpholine **2n** (20.9 mg, 0.24

mmol). After 6 h, purification by column chromatography on silica gel (PE/EA: 5/1 – 1/1) yielded **6n** (30.3 mg, 45%) as a yellow solid. **M. p.**: 190.7 – 193.4 °C. ¹**H NMR** (**600 MHz, CDCl₃**): δ 7.90 (dd, *J* = 9.0, 2.4 Hz, 1 H), 7.80 (d, *J* = 1.8 Hz, 1 H), 7.50 (d, *J* = 9.0 Hz, 1 H), 3.90 (t, *J* = 4.8 Hz, 4 H), 3.85 (t, *J* = 4.8 Hz, 4 H). ¹³C NMR (150 MHz, CDCl₃): δ 161.8, 156.9, 132.1 (q, ³*J*_{C-F} = 3.0 Hz), 127.5 (q, ²*J*_{C-F} = 34.5 Hz), 125.5 (q, ³*J*_{C-F} = 3.0 Hz), 123.8, 121.8, 113.1, 66.4, 29.7. ¹⁹F NMR (565 MHz, CDCl₃): -62.41. HRMS (ESI-TOF) m/z Calcd for C₁₂H₁₁F₃N₂NaO₄S [M+Na]⁺ 359.0284, found 359.0284.

Methyl 4-morpholinobenzo[*e*][1,2,3]oxathiazine-6-carboxylate 2,2-dioxide (60)

The general procedure was followed using methyl benzo[*e*][1,2,3]oxathiazine -6-carboxylate 2,2-dioxide **1p** (48.2 mg, 0.2 mmol) and morpholine **2n** (20.9 mg, 0.24 mmol). After 4 h, purification by column chromatography on silica gel (PE/EA: 5/1 – 1/1) yielded **6o** (40.3 mg, 62%) as a white solid. **M. p**.: 231.2 – 234.7 °C. ¹H NMR (**600 MHz, DMSO-***d*₆): δ 8.34 (d, *J* = 1.8 Hz, 1 H), 8.27 (dd, *J* = 8.4, 1.8 Hz, 1 H), 7.64 (d, *J* = 8.4 Hz, 1 H), 3.91 (s, 3 H), 3.89 (s, 4 H), 3.75 (t, *J* = 4.8 Hz, 4 H). ¹³C NMR (**150 MHz, DMSO-***d*₆): δ 165.1, 161.3, 157.1, 136.1, 130.7, 127.0, 121.1, 113.7, 66.0, 53.2, 46.4. HRMS (ESI-TOF) m/z Calcd for C₁₃H₁₄N₂NaO₆S [M+Na]⁺ 349.0465, found 349.0458. 4-Morpholino-[1,3]dioxolo[4',5':4,5]benzo[1,2-*e*][1,2,3]oxathiazine 2,2 -dioxide (6p)

The general procedure was followed using [1,3]dioxolo[4',5':4,5]benzo[1,2-*e*][1,2,3] oxathiazine 2,2-dioxide **1q** (45.4 mg, 0.2 mmol) and morpholine **2n** (20.9 mg, 0.24 mmol). After 3 h, purification by column chromatography on silica gel (PE/EA: 5/1 – 1/1) yielded **6p** (36.2 mg, 58%) as a white solid. **M. p.**: 199.8 – 202.9 °C. **¹H NMR** (**600 MHz, DMSO-***d*₆): δ 7.32 (s, 1 H), 7.22 (s, 1 H), 6.24 (s, 2 H), 3.78 (t, *J* = 4.2 Hz, 4 H), 3.72 (t, *J* = 4.2 Hz, 4 H). ¹³C NMR (**150 MHz, DMSO-***d*₆): δ 163.0, 153.3, 151.2, 145.2, 107.3, 105.9, 103.8, 101.7, 66.1, 49.9. **HRMS** (ESI-TOF) m/z Calcd for C₁₂H₁₂KN₂O₆S [M+K]⁺ 351.0048, found 351.0048.

Morpholinonaphtho[1,2-e][1,2,3]oxathiazine 3,3-dioxide (6q)

The general procedure was followed using naphtho[1,2-*e*][1,2,3]oxathiazine 3,3-dioxide **1r** (46.6 mg, 0.2 mmol) and morpholine **2n** (20.9 mg, 0.24 mmol). After 3 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **6q** (35.1 mg, 55%) as a white solid. **M. p.**: 241.3 – 244.1 °C. ¹H NMR (400 MHz,

DMSO-*d*₆): δ 8.38 (d, J = 8.8 Hz, 1 H), 8.18 (d, J = 8.8 Hz, 1 H), 8.12 (d, J = 8.0 Hz, 1 H), 7.79 (t, J = 8.0 Hz, 1 H), 7.69 – 7.60 (m, 2 H), 4.10 – 3.44 (m, 7 H), 3.11 (s, 1 H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 162.9, 154.9, 137.6, 131.2, 129.9, 129.8, 128.5, 127.0, 125.1, 118.8, 108.6, 66.2, 65.6, 52.5, 47.0. HRMS (ESI-TOF) m/z Calcd for C₁₅H₁₄N₂NaO₄S [M+Na]⁺ 341.0566, found 341.0565.

(3a*S*,3b*R*,11b*S*,13a*S*)-13a-Methyl-10-morpholino-2,3,3a,3b,4,5,11b,12,13,13a-deca hydro-1*H*-cyclopenta[7,8]phenanthro[3,2-*e*][1,2,3]oxathiazin-1-one 8,8-dioxide (6r)

The general procedure was followed using (3aS,3bR,11bS,13aS)-13a-methyl-2,3,3a,3b, 4,5,11b,12,13,13a-decahydro-1*H*-cyclopenta[7,8]phenanthro[3,2-*e*][1,2,3]oxathiazin-1 -one 8,8-dioxide **1s** (71.9 mg, 0.2 mmol) and morpholine **2n** (20.9 mg, 0.24 mmol). After 3 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **6r** (38.8 mg, 43%) as a white solid. **M. p**.: 225.6 – 228.3 °C. ¹**H NMR (400 MHz, CDCl**₃): δ 7.42 (s, 1 H), 7.08 (s, 1 H), 3.90 – 3.86 (m, 4 H), 3.84 – 3.80 (m, 4 H), 3.04 – 2.95 (m, 2 H), 2.54 (q, *J* = 8.8 Hz, 1 H), 2.35 – 2.28 (m, 2 H), 2.24 – 2.17 (m, 2 H), 2.14 – 2.09 (m, 1 H), 2.03 – 1.98 (m, 2 H), 1.66 – 1.59 (m, 2 H), 1.55 – 1.50 (m, 2 H), 0.92 (s, 3 H), 0.88 (t, *J* = 7.2 Hz, 1 H). ¹³**C NMR (100 MHz, CDCl**₃): δ 163.6, 152.3, 146.2, 137.2, 129.9, 124.9, 120.2, 110.3, 66.5, 50.3, 47.7, 43.8, 37.6,

35.8, 31.9, 31.4, 29.8, 29.3, 27.2, 25.8, 22.7, 21.5, 13.8. **HRMS** (ESI-TOF) m/z Calcd for C₂₃H₂₈N₂NaO₅S [M+Na]⁺ 467.1611, found 467.1611.

7-Morpholinodibenzo[*d*,*f*][1,2]thiazepine 5,5-dioxide (6s)

The general procedure was followed using dibenzo[d_f][1,2]thiazepine 5,5-dioxide **1t** (48.7 mg, 0.2 mmol) and morpholine **2n** (20.9 mg, 0.24 mmol). After 3.5 h, purification by column chromatography on silica gel (PE/EA: 5/1 – 1/1) yielded **6s** (59.9 mg, 91%) as a white solid. **M. p**.: 192.1 – 195.4 °C. ¹**H NMR** (**600 MHz**, **CDCl**₃): δ 8.12 (d, J = 7.8 Hz, 1 H), 7.68 – 7.61 (m, 4 H), 7.54 (td, J = 7.8, 1.8 Hz, 1 H), 7.49 (td, J = 7.8, 1.8 Hz, 1 H), 7.45 (d, J = 7.8 Hz, 1 H), 4.00 – 3.94 (m, 1 H), 3.87 – 3.82 (m, 1 H), 3.76 – 3.71 (m, 1 H), 3.71 – 3.66 (m, 2 H), 3.59 – 3.52 (m, 1 H), 3.47 – 3.42 (m, 1 H), 3.25 – 3.20 (m, 1 H). ¹³**C NMR** (**150 MHz**, **CDCl**₃): δ 165.4, 144.0, 139.6, 135.4, 132.2, 131.7, 131.2, 129.8, 129.6, 129.1, 128.6, 128.0, 126.0, 66.9, 66.3, 50.3, 46.1. **HRMS** (ESI-TOF) m/z Calcd for C₁₇H₁₆N₂NaO₃S [M+Na]⁺ 351.0774, found 351.0774.

3-Morpholinobenzo[*d*]isothiazole 1,1-dioxide (6t)

The general procedure was followed using benzo[*d*]isothiazole 1,1-dioxide 1u (33.4 mg, 0.2 mmol) and morpholine 2n (20.9 mg, 0.24 mmol). After 3.5 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded 6t (40.5 mg, 80%) as a yellow solid. M. p.: 228.1 – 231.4 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.97 (d, *J* = 7.8 Hz, 1 H), 7.83 (d, *J* = 8.4 Hz, 1 H), 7.72 (t, *J* = 7.8 Hz, 1 H), 7.66 (td, *J* = 8.4, 1.2 Hz, 1 H), 4.06 (t, *J* = 4.8 Hz, 4 H), 3.89 (t, *J* = 4.8 Hz, 4 H). ¹³C NMR (150 MHz, CDCl₃): δ 160.6, 145.0, 133.1, 132.7, 127.9, 125.2, 123.0, 66.3, 48.3. HRMS (ESI-TOF) m/z Calcd for C₁₁H₁₂N₂NaO₃S [M+Na]⁺ 275.0461, found 275.0455.

5-Methoxy-3-morpholinobenzo[*d*]isothiazole 1,1-dioxide (6u)

The general procedure was followed using 5-methoxybenzo[*d*]isothiazole 1,1-dioxide **1v** (39.4 mg, 0.2 mmol) and morpholine **2n** (20.9 mg, 0.24 mmol). After 8 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **6u** (35.5 mg, 63%) as a white solid. **M. p.**: 227.5 – 230.7 °C. ¹H NMR (400 MHz, **DMSO-***d*₆): δ 7.94 (d, *J* = 8.4 Hz, 1 H), 7.58 (d, *J* = 2.0 Hz, 1 H), 7.36 (dd, *J* = 8.4, 2.0 Hz, 1 H), 3.92 (s, 4 H), 3.80 – 3.75 (m, 4 H), 3.34 (s, 3 H). ¹³C NMR (100 MHz, **DMSO-***d*₆): δ 163.1, 159.8, 136.3, 129.9, 123.8, 118.0, 113.6, 66.1, 56.9, 48.1. HRMS (ESI-TOF) m/z Calcd for C₁₂H₁₄N₂NaO₄S [M+Na]⁺ 305.0566, found 305.0568.

5-Fluoro-3-morpholinobenzo[d]isothiazole 1,1-dioxide (6v)

The general procedure was followed using 5-fluorobenzo[*d*]isothiazole 1,1-dioxide **1w** (37.0 mg, 0.2 mmol) and morpholine **2n** (20.9 mg, 0.24 mmol). After 7.5 h, purification by column chromatography on silica gel (PE/EA: 5/1 - 1/1) yielded **6v** (37.8 mg, 70%) as a white solid. **M. p.**: 218.7 – 221.8 °C. ¹**H NMR (600 MHz, DMSO-***d*₆): δ 8.13 – 8.09 (m, 2 H), 7.71 (td, J = 8.4, 1.8 Hz, 1 H), 4.16 – 3.91 (m, 4 H), 3.80 – 3.77 (m, 4 H). ¹³C NMR (150 MHz, DMSO-*d*₆): δ 165.6, 164.0, 158.9, 140.6, 130.4 (d, ³*J*_{C-F} = 10.5 Hz), 124.5 (d, ³*J*_{C-F} = 10.5 Hz), 120.8 (d, ²*J*_{C-F} = 24.0 Hz), 115.3 (d, ²*J*_{C-F} = 27.0 Hz), 66.0, 48.2. ¹⁹F NMR (565 MHz, DMSO-*d*₆): -105.77. HRMS (ESI-TOF) m/z Calcd for C₁₁H₁₁FN₂NaO₃S [M+Na]⁺ 293.0367, found 293.0364.

8 Preliminary Mechanistic Studies

8.1 Control Experiments for the Investigation of Traditional Chemical Oxidants

	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	O, O O, S N N Me Bn
	1a 2au	3au
Entry	Conditions	Yield (%)
1	I ₂ (2.0 equiv.), 27 °C	nr
2	NIS (2.0 equiv.), 27 °C	14
3	I ₂ (50 mol%), TBHP (2.0 equiv.), 60 °C	17
4	DDQ (2.0 equiv.), air, 60 °C	<5
5	PhI(OAc) ₂ (2.0 equiv.), 27 °C	27
6	CAN (2.0 equiv.), air, 60 °C	nr
7	PCC (2.0 equiv.), air, 60 °C	nr
8	KMnO ₄ (2.0 equiv.), air, 60 °C	nr

Table S4 Control Experiments for the Investigation of Traditional Chemical Oxidants

8.2 Radical Scavenger Addition Experiments

Two parallel radical scavenger addition experiments were conducted under standard conditions using **1a** (36.6 mg, 0.2 mmol) and **2n** (20.9 mg, 0.24 mmol, 1.2 equiv.) as substrates with 1 equiv BHT (44.1 mg, 0.2 mmol), and 1,1-diphenylethylene (36.1 mg, 0.2 mmol) respectively. The electrochemical C-H amination was completely inhibited.

8.3 Radical-Trapping Experiment

Figure S3 ESI-HMRS of [M+H]⁺ for 7

The radical-trapping experiment were conducted under standard conditions using **1a** (36.6 mg, 0.2 mmol) and **2n** (20.9 mg, 0.24 mmol, 1.2 equiv.) as substrates with 1 equiv BHT (44.1 mg, 0.2 mmol). No product **3n** was detected in the reaction, and BHT adduct **7** was detected by ESI-HRMS, indicating that the N-centered radical intermediate was formed during this process.

8.4 Kinetic Isotope Effect Studies

General Procedure for the Preparation of Deuterated Benzo[*e*][1,2,3] oxathiazine 2,2-dioxide [D]₁-1a

Following a known literature report, ^[2] to a solution of deuterated salicylaldehyde (15 mmol) in dimethyl-acetamide (100 mL) at 0 °C was carefully added freshly prepared chlorosulfonamide (40 mmol) in small portions and the resulting solution was stirred for 12 h. The reaction was quenched carefully with ice-cold water (100 mL) and the mixture was transferred to a separating funnel containing dichloromethane (200 mL). The aqueous layer was separated and extracted with dichloromethane (3×50 mL), and the combined organic layers were washed with saturated sodium bicarbonate solution (100 mL), dried over sodium sulfate, filtered through a short pad of silica using dichloro-methane as eluent and concentrated in vacuo. The residue was heated to 180 °C under vacuum to remove volatile impurities to get **[D]₁-1a.** The deuterization rate was determined to be 98% by NMR.

White solid. **M. p.**: 67.4 – 69.8 °C. ¹**H NMR (400 MHz, CDCl₃)**: δ 7.80 – 7.74 (m, 1 H), 7.73 (dd, *J* = 8.0, 2.0 Hz, 1 H), 7.44 (td, *J* = 7.6, 0.8 Hz, 1 H), 7.28 (dd, *J* = 8.4, 0.8 Hz, 1 H). ¹³**C NMR (100 MHz, CDCl₃)**: δ 167.7 (t, *J* = 28.0 Hz), 154.2, 137.9, 131.1, 126.4, 118.5, 115.2. **HRMS** (ESI-TOF) m/z Calcd for C₇H₅DNO₃S [M+H]⁺ 185.0126, found 185.0126.

Intermolecular Kinetic Isotope Effect Studies

Reaction (A): according to general procedure, the electrocatalysis was carried out in an undivided cell equipped with two platinum electrode $(15 \times 10 \times 0.2 \text{ mm}^3)$. The benzo[*e*][1,2,3]oxathiazine 2,2-dioxide **1a** (0.2 mmol), morpholine **2a** (0.24 mmol, 1.2 equiv.) and KI (6.7 mg, 0.04 mmol, 20 mol%) were dissolved in the solvent CH₃CN (3 mL). The reaction mixture was electrolyzed at 27 °C (oil bath temperature) for and stopped respectively at 0.5 h, 1 h, 1.5 h, 2 h, and 2.5 h. In similar, substrate **[D]₁-1a** (36.8 mg, 0.20 mmol) was used instead of **1a** for the reaction (B). The yield of products was determined by ¹H NMR with CH₂Br₂ as internal standard and the reaction rate was obtained by plotting the percentage yield of the product versus time. The kinetic isotope effect ($k_{\text{H}}/k_{\text{D}}$) was determined to be 1.00.

Time/h	0.5	1	1.5	2	2.5
Yield/%	5	14	23	34	43

Table S5 Kinetic Isotope Effect Studies for 1a

Figures S4 Plots to Determine the KIE were taken for 1a.

Table S6 Kinetic Isotope Effect Studies for [D]1-1a

Time/h	0.5	1	1.5	2	2.5
Yield/%	4	13	24	32	41

Figures S5 Plots to Determine the KIE were taken for [D]₁-1a.

8.5 Catalytic Reactivity of N-Iodomorpholine

The electrocatalysis was carried out in an undivided cell equipped with two platinum electrode ($15 \times 10 \times 0.2 \text{ mm}^3$). The substrates **1a** (36.6 mg, 0.2 mmol), substrates **2n** (20.9 mg, 0.24 mmol, 1.2 equiv.) and N-Iodomorpholine **2n'** (13.64 mg, 0.04 mmol, 20 mol%) were dissolved in the solvent CH₃CN (3 mL). The electrolysis was carried out at 27 °C (oil bath temperature) using a constant current of 3.0 mA until complete consumption of the substrate (monitored by TLC). After the reaction, the solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography with PE/EA (1:1) as eluent to yielded **3n** (48.2 mg, 90%).

The electrocatalysis was carried out in an undivided cell equipped with two platinum electrode ($15 \times 10 \times 0.2 \text{ mm}^3$). The substrates **1a** (36.6 mg, 0.2 mmol) and N-Iodomorpholine **2n'** (81.8 mg, 0.24 mmol, 1.2 equiv.) were dissolved in the solvent CH₃CN (3 mL). The electrolysis was carried out at 27 °C (oil bath temperature) using a constant current of 3.0 mA for 24 h. After the reaction, the solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography with PE/EA as eluent to yielded **3n** (10.7 mg, 20%).

9 Cyclic Voltammetry Studies

Cyclic voltammograms were recorded with a CHI660E potentiostat at room temperature in CH₃CN. $^{n}Bu_{4}NPF_{6}$ (0.1 M) was used as the supporting electrolyte, and a Pt electrode (area = 0.03 cm²) was used as the working electrode. The auxiliary electrode was a Pt sheet. All potentials are referenced against the Ag/AgCl redox couple.

Figure S6 Cyclic voltammograms recorded on a Pt disk working electrode (area = 0.03 cm^2). The scan rate was 100 mV/s. (a) CH₃CN containing 0.1 M ^{*n*}Bu₄NPF₆, after the addition of 10 mM **1a**; (b) CH₃CN containing 0.1 M ^{*n*}Bu₄NPF₆, after the addition of 10 mM **2n**; (c) CH₃CN containing 0.1 M ^{*n*}Bu₄NPF₆, after the addition of 10 mM **3n**; (d) CH₃CN containing 0.1 M ^{*n*}Bu₄NPF₆, after the addition of 10 mM KI; (e) solution d after the addition of 10 mM KI and 10 mM morpholine.

Figure S8. Full potential window CVs. a) KI, b) KI+morpholine

10 X-Ray Crystallographic Data

General Procedure for Crystal Preparation:

Compound (around 20 mg) were dissolved in hexane-DCM (1:1, 10 mL). The single crystals were grown by slow evaporation of solvents at room temperature.

The single crystals compound was collected on a Rigaku Oxford Diffraction Supernova Dual Source, Cu at Zero equipped with an AtlasS2 CCD. The data were collected and processed using CrysAlisPro³. The structures were solved by direct methods using Olex2 software⁴, and the non-hydrogen atoms were located from the trial structure and then refined anisotropically with SHELXL-2018⁵ using a full-matrix least squares procedure based on F². The weighted R factor, wR and goodness-of-fit S values were obtained based on F^2 . The hydrogen atom positions were fixed geometrically at the calculated distances and allowed to ride on their parent atoms. Crystallographic data for the structure reported in this paper have been deposited at the Cambridge Crystallographic Data Center and allocated with the deposition number: CCDC 2191372 for compound 3a, CCDC 2191371 for compound 3al, CCDC 2191368 for compound 3as, CCDC 2191370 for compound 3au, CCDC 2195094 for compound 6q, CCDC 2202654 for compound 6t, basic information pertaining to crystal parameters and structure refinement are summarized in Table S7, S8, S9, S10, S11, S12.

Compound 3a (CCDC 2191372)

Table S7 X-ray structure of **3a** with 50% ellipsoid probability

Empirical formula	$C_{13}H_{10}N_2O_3S$		
Formula weight	274.29		
Temperature/K	169.99(10)		
Crystal system	triclinic		
Space group	P-1		
a/Å	6.9208(9)		
b/Å	7.4115(6)		
c/Å	11.9359(12)		
α/°	101.965(7)		
β/°	90.131(9)		
γ/°	92.439(8)		
Volume/Å ³	598.35(11)		
Z	2		
$\rho_{calc}g/cm^3$	1.522		
µ/mm ⁻¹	2.475		
F(000)	284.0		
Crystal size/mm ³	0.15 imes 0.1 imes 0.08		
Radiation	Cu Ka ($\lambda = 1.54184$)		
2Θ range for data collection/°	7.572 to 133.188		
Index ranges	$-8 \le h \le 8, -7 \le k \le 8, -13 \le l \le 14$		
Reflections collected	3550		
Independent reflections	2102 [$R_{int} = 0.0401$, $R_{sigma} = 0.0528$]		
Data/restraints/parameters	2102/0/197		
Goodness-of-fit on F ²	1.205		
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.1261, wR_2 = 0.3218$		
Final R indexes [all data]	$R_1 = 0.1294, wR_2 = 0.3232$		
Largest diff. peak/hole / e Å ⁻³	0.79/-0.76		

Compound 3al (CCDC 2191371)

Table S8 X-ray structure of **3al** with 50% ellipsoid probability

Empirical formula	$C_{11}H_{12}N_2O_3S$		
Formula weight	252.29		
Temperature/K	293(2)		
Crystal system	triclinic		
Space group	P-1		
a/Å	7.9773(4)		
b/Å	8.6323(4)		
c/Å	8.8553(4)		
α/°	92.357(4)		
β/°	103.812(4)		
γ/°	111.690(4)		
Volume/Å ³	544.55(5)		
Z	2		
$\rho_{calc}g/cm^3$	1.539		
μ/mm ⁻¹	2.653		
F(000)	264.0		
Crystal size/mm ³	0.3 imes 0.3 imes 0.3		
Radiation	Cu Ka ($\lambda = 1.54184$)		
2Θ range for data collection/°	10.394 to 142.324		
Index ranges	$-7 \le h \le 9, -10 \le k \le 10, -10 \le l \le 10$		
Reflections collected	3648		
Independent reflections	2064 [$R_{int} = 0.0208$, $R_{sigma} = 0.0254$]		
Data/restraints/parameters	2064/0/155		
Goodness-of-fit on F ²	1.058		
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0421, wR_2 = 0.1115$		
Final R indexes [all data]	$R_1 = 0.0440, wR_2 = 0.1128$		
Largest diff. peak/hole / e Å ⁻³	0.38/-0.46		

Compound 3as (CCDC 2191368)

Table S9 X-ray structure of **3as** with 50% ellipsoid probability

Empirical formula	C ₁₁ H ₁₄ N ₂ O ₃ S		
Formula weight	254.30		
Temperature/K	293(2)		
Crystal system	monoclinic		
Space group	P2 ₁ /n		
a/Å	8.9547(2)		
b/Å	8.41310(10)		
c/Å	16.3860(3)		
α/°	90		
β/°	99.853(2)		
γ/°	90		
Volume/Å ³	1216.26(4)		
Z	4		
$\rho_{calc}g/cm^3$	1.389		
μ/mm ⁻¹	2.376		
F(000)	536.0		
Crystal size/mm ³	0.3 imes 0.2 imes 0.2		
Radiation	Cu Ka ($\lambda = 1.54184$)		
2Θ range for data collection/°	10.572 to 142.96		
Index ranges	$-10 \le h \le 11, -10 \le k \le 4, -20 \le l \le 19$		
Reflections collected	5020		
Independent reflections	2313 [R _{int} = 0.0226, R _{sigma} = 0.0296]		
Data/restraints/parameters	2313/0/157		
Goodness-of-fit on F ²	1.051		
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0398, wR_2 = 0.1122$		
Final R indexes [all data]	$R_1 = 0.0434, wR_2 = 0.1169$		
Largest diff. peak/hole / e Å ⁻³	0.28/-0.45		

Compound 3au (CCDC 2191370)

Table S10 X-ray structure of 3au with 50% ellipsoid probability

	5	
Empirical formula	$C_{15}H_{14}N_2O_3S$	
Formula weight	302.34	
Temperature/K	293(2)	
Crystal system	monoclinic	
Space group	P21/c	
a/Å	9.8870(2)	
b/Å	7.8158(2)	
c/Å	18.9459(4)	
α/°	90	
β/°	101.306(2)	
γ/°	90	
Volume/Å ³	1435.63(6)	
Z	4	
$\rho_{calc}g/cm^3$	1.399	
µ/mm ⁻¹	2.114	
F(000)	632.0	
Crystal size/mm ³	0.3 imes 0.2 imes 0.2	
Radiation	Cu Ka (λ = 1.54184)	
2Θ range for data collection/°	9.122 to 142.968	
Index ranges	$-11 \le h \le 12, -5 \le k \le 9, -22 \le l \le 23$	
Reflections collected	6295	
Independent reflections	2745 [$R_{int} = 0.0266, R_{sigma} = 0.0320$]	
Data/restraints/parameters	2745/0/191	
Goodness-of-fit on F ²	1.061	
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0560, wR_2 = 0.1512$	
Final R indexes [all data]	$R_1 = 0.0606, wR_2 = 0.1601$	
Largest diff. peak/hole / e Å ⁻³	0.29/-0.48	_

Compound 6q (CCDC 2195094)

Table S11 X-ray structure of **6q** with 50% ellipsoid probability

a d
$C_{15}H_{14}N_2O_4S$
318.34
293(2)
orthorhombic
P212121
11.27050(10)
12.2230(2)
20.2303(2)
90
90
90
2786.91(6)
8
1.517
2.265
1328.0
0.3 imes 0.2 imes 0.2
Cu Ka ($\lambda = 1.54184$)
8.452 to 142.77
$-13 \le h \le 13, -14 \le k \le 11, -23 \le l \le 24$
8630
4686 [$R_{int} = 0.0171$, $R_{sigma} = 0.0270$]
4686/0/398
1.044
$R_1 = 0.0322, wR_2 = 0.0879$
$R_1 = 0.0340, wR_2 = 0.0896$
0.22/-0.25

Compound 6t (CCDC 2202654)

Table S12 X-ray structure of **6t** with 50% ellipsoid probability

Empirical formula	C ₁₁ H ₁₂ N ₂ O ₃ S		
Formula weight	252.29		
Temperature/K	295.12(10)		
Crystal system	triclinic		
Space group	P-1		
a/Å	8.0147(2)		
b/Å	8.1452(2)		
c/Å	9.4761(2)		
α/°	94.600(2)		
β/°	107.839(2)		
γ/°	107.022(2)		
Volume/Å ³	553.18(2)		
Z	2		
$\rho_{calc}g/cm^3$	1.515		
µ/mm ⁻¹	2.612		
F(000)	264.0		
Crystal size/mm ³	0.14 imes 0.11 imes 0.09		
Radiation	Cu Ka ($\lambda = 1.54184$)		
20 range for data collection/°	9.982 to 150.862		
Index ranges	$-9 \le h \le 10, -10 \le k \le 7, -11 \le l \le 11$		
Reflections collected	7331		
Independent reflections	2163 [$R_{int} = 0.0462, R_{sigma} = 0.0341$]		
Data/restraints/parameters	2163/2/155		
Goodness-of-fit on F ²	1.053		
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0414, wR_2 = 0.1188$		
Final R indexes [all data]	$R_1 = 0.0424, wR_2 = 0.1203$		
Largest diff. peak/hole / e Å ⁻³	0.37/-0.39		

11 References

[1] X. Liu, J. Wang, Z. Wu, F. Li, K. Gao, F. Peng, J. Wang, R. Shen, Y. Zhou and L. Liu, Org. Biomol. Chem., 2021, 19, 3595–3600.

[2] Z. Yan, B. Wu, X. Gao, M.-W. Chen and Y.-G. Zhou, *Org. Lett.*, 2016, **18**, 692–695.

12 NMR Spectra

¹H NMR Spectrum of [D]₁-1a at 25 °C (CDCl₃, 400 MHz)

-8.699 -8.699 -7.791 -7.769 -7.769 -7.769 -7.7169 -7.7169 -7.7153 -7.719 -7.719 -7.719 -7.719 -7.719 -7.719 -7.719 -7.719 -7.719 -7.719 -7.719 -7.719 -7.769 -7.77769 -7.7769 -7.77769 -7.77769 -7.7776 -7.7726 -7.7726 -7.7726 -7.7266 -7.7266 -7.7266 -7.7276 -7.7266 -7.72776 -7.7276 -7.7276 -7.7276 -7.7276 -7.72

¹³C NMR Spectrum of [D]₁-1a at 25 °C (CDCl₃, 100 MHz)

$\bigwedge^{168.00}_{167.72}$	- 154.16	- 137.86 - 131.07 - 126.39 - 118.54 - 115.24	77.49 77.17 76.86
\sim			

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR Spectrum of 3a at 25 °C (DMSO-d₆, 400 MHz)

¹³C NMR Spectrum of 3a at 25 °C (DMSO-d₆, 100 MHz)

¹H NMR Spectrum of 3b at 25 °C (DMSO-*d*₆, 600 MHz)

¹³C NMR Spectrum of 3b at 25 °C (DMSO-*d*₆, 150 MHz)

¹H NMR Spectrum of 3c at 25 °C (DMSO-*d*₆, 600 MHz)

¹³C NMR Spectrum of 3c at 25 °C (DMSO-d₆, 150 MHz)

¹H NMR Spectrum of 3d at 25 °C (DMSO-*d*₆, 600 MHz)

¹³C NMR Spectrum of 3d at 25 °C (DMSO-*d*₆, 150 MHz)

¹H NMR Spectrum of 3e at 25 °C (DMSO-*d*₆, 600 MHz)

¹³C NMR Spectrum of 3e at 25 °C (DMSO-*d*₆, 150 MHz)

¹H NMR Spectrum of 3f at 25 °C (DMSO-*d*₆, 600 MHz)

¹³C NMR Spectrum of 3f at 25 °C (DMSO-d₆, 150 MHz)

¹⁹F NMR Spectrum of 3f at 25 °C (DMSO-*d*₆, 565 MHz)

¹H NMR Spectrum of 3g at 25 °C (DMSO-d₆, 600 MHz)

¹³C NMR Spectrum of 3g at 25 °C (DMSO-*d*₆, 150 MHz)

¹H NMR Spectrum of 3h at 25 °C (DMSO-d₆, 400 MHz)

¹³C NMR Spectrum of 3h at 25 °C (DMSO-*d*₆, 100 MHz)

¹H NMR Spectrum of 3i at 25 °C (DMSO-d₆, 600 MHz)

¹³C NMR Spectrum of 3i at 25 °C (DMSO-*d*₆, 150 MHz)

¹H NMR Spectrum of 3j at 25 °C (DMSO-d₆, 600 MHz)

¹³C NMR Spectrum of 3j at 25 °C (DMSO-*d*₆, 150 MHz)

¹⁹F NMR Spectrum of 3j at 25 °C (DMSO-*d*₆, 565 MHz)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H NMR Spectrum of 3k at 25 °C (DMSO-*d*₆, 600 MHz)

¹³C NMR Spectrum of 3k at 25 °C (DMSO-d₆, 150 MHz)

130 120 110 100 f1 (ppm) -10

¹H NMR Spectrum of 3l at 25 °C (DMSO-*d*₆, 400 MHz)

¹³C NMR Spectrum of 3l at 25 °C (DMSO-d₆, 100 MHz)

-10 110 100 f1 (ppm)

¹H NMR Spectrum of 3m at 25 °C (DMSO-*d*₆, 400 MHz)

¹³C NMR Spectrum of 3m at 25 °C (DMSO-d₆, 100 MHz)

¹H NMR Spectrum of 3n at 25 °C (CDCl₃, 400 MHz)

7.6887.6707.6677.6677.6647.76647.7647.75677.75677.75677.75677.75677.75677.75637.75677.75637.75367.73667.73363.36993.38913.38873.38413.38413.3841

¹³C NMR Spectrum of 3n at 25 °C (CDCl₃, 100 MHz)

¹H NMR Spectrum of 30 at 25 °C (CDCl₃, 600 MHz)

¹³C NMR Spectrum of 3o at 25 °C (CDCl₃, 150 MHz)

130 120 110 100 f1 (ppm) -10

¹³C NMR Spectrum of 3p at 25 °C (CDCl₃, 100 MHz)

¹H NMR Spectrum of 3q at 25 °C (CD₂Cl₂, 600 MHz)

¹³C NMR Spectrum of 3q at 25 °C (CD₂Cl₂, 150 MHz)

S103

¹H NMR Spectrum of 3r at 25 °C (CDCl₃, 400 MHz)

¹³C NMR Spectrum of 3r at 25 °C (CDCl₃, 100 MHz)

¹H NMR Spectrum of 3s at 25 °C (DMSO-d₆, 400 MHz)

¹³C NMR Spectrum of 3s at 25 °C (DMSO-d₆, 100 MHz)

¹H NMR Spectrum of 3t at 25 °C (CDCl₃, 400 MHz)

¹³C NMR Spectrum of 3t at 25 °C (CDCl₃, 100 MHz)

¹H NMR Spectrum of 3u at 25 °C (CD₂Cl₂, 400 MHz)

$\begin{array}{c} 7.665\\ 7.647\\ 7.643\\ 7.643\\ 7.557\\ 7.557\\ 7.557\\ 7.557\\ 7.557\\ 7.553\\ 7.553\\ 7.553\\ 7.553\\ 7.555\\ 7.533\\ 7.535\\ 7.3358\\ 7.3358\\ 7.3358\\ 7.3358\\ 7.3338\\ 7.3358\\$

¹³C NMR Spectrum of 3u at 25 °C (CD₂Cl₂, 100 MHz)

¹H NMR Spectrum of 3v at 25 °C (CDCl₃, 400 MHz)

¹³C NMR Spectrum of 3v at 25 °C (CDCl₃, 100 MHz)

¹H NMR Spectrum of 3w at 25 °C (CDCl₃, 400 MHz)

¹³C NMR Spectrum of 3w at 25 °C (CDCl₃, 100 MHz)

¹H NMR Spectrum of 3x at 25 °C (CDCl₃, 600 MHz)

¹³C NMR Spectrum of 3x at 25 °C (CDCl₃, 150 MHz)

¹⁹F NMR Spectrum of 3x at 25 °C (CDCl₃, 565 MHz)

¹H NMR Spectrum of 3y at 25 °C (CDCl₃, 400 MHz)

7.650 7.646 7.630 7.637 7.627 7.610 7.610 7.610 7.582 7.578 7.557 7.557 7.557 7.557 7.557 7.557 7.557 7.557 7.557 7.557 7.557 7.550 7.557 7.557 7.550 7.557 7.557 7.550 7.557 7.578 7.572 7.578 7.572 7.578 7.757 7.578 7.757 7.578 7.757 7.578 7.757 7.578 7.757 7.578 7.757 7.578 7.757 7.578 7.757 7.578 7.757 7.578 7.757 7.578 7.7577 7.7577 7.7578 7.7577 7.7578 7.7577 7.7579 7.75777 7.7579 7.75777 7.7579 7.757777777777	4.471 4.437 3.575 3.575 3.575 3.561 3.193 1.964 1.957 1.950 1.944 1.917 1.917 1.917 1.916 1.917 1.916 1.917	1.881 1.871 1.871 1.855 1.855 1.855 1.855 1.855 1.855 1.475 1.472 1.462 1.4466 1.4466 1.4466 1.44666 1.446666666666

¹³C NMR Spectrum of 3y at 25 °C (CDCl₃, 100 MHz)

¹H NMR Spectrum of 3z at 25 °C (DMSO-d₆, 600 MHz)

¹³C NMR Spectrum of 3z at 25 °C (DMSO-d₆, 150 MHz)

¹H NMR Spectrum of 3aa at 25 °C (DMSO-d₆, 400 MHz)

 7.843

 7.823

 7.823

 7.823

 7.823

 7.823

 7.823

 7.823

 7.823

 7.823

 7.823

 7.755

 7.755

 7.755

 7.755

 7.755

 7.745

 7.745

 7.745

 7.441

 7.443

 7.444

 7.444

 7.444

 7.445

 7.446

 7.447

 7.447

 7.446

 7.447

 7.446

 7.447

 7.446

 7.447

 7.446

 7.447

 7.446

 7.447

 7.446

 7.447

 7.446

 7.447

 7.446

 7.447

 7.446

 7.447

 7.446

 7.447

 7.446</

¹³C NMR Spectrum of 3aa at 25 °C (DMSO-*d*₆, 100 MHz)

¹H NMR Spectrum of 3ab at 25 °C (CDCl₃, 400 MHz)

7.653 7.649 7.631 7.631 7.631 7.631 7.631 7.641 7.564 7.564 7.544 7.544 7.544 7.543 7.543 7.543 7.543 7.543 7.544 7.543 7.544 7.543 7.543 7.543 7.554 7.554 7.554 7.554 7.554 7.557 7.554 7.5577 7.554 7.557777777777	4.430 4.399	3.742 3.719 3.719 3.719 3.719 3.719 2.555 2.555 2.2036 1.737 1.737 1.737 1.737 1.737 1.709 1.647
	\sim	

¹³C NMR Spectrum of 3ab at 25 °C (CDCl₃, 100 MHz)

¹H NMR Spectrum of 3ac at 25 °C (CDCl₃, 400 MHz)

7.638 7.624 7.624 7.624 7.603 7.552 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.733 7.555 7.733 7.555 7.733 7.555 7.733 7.555 7.733 7.555 7.733 7.732 7.332 7.732 7.332 7.732 7.332 7.732 7.332 7.732 7.332 7.732 7.332 7.732 7.3337 7.332

¹³C NMR Spectrum of 3ac at 25 °C (CDCl₃, 100 MHz)

¹H NMR Spectrum of 3ad at 25 °C (CDCl₃, 600 MHz)

7.682 7.669 7.656 7.591 7.373 7.351 7.350 7.350	3.906 3.868 3.790	1.767 1.767 1.761 1.754 1.748 1.748 1.748 1.031 1.031 1.026 1.013 0.862 0.855 0.851 0.851 0.851 0.851 0.851 0.851

¹³C NMR Spectrum of 3ad at 25 °C (CDCl₃, 150 MHz)

¹H NMR Spectrum of 3ae at 25 °C (CDCl₃, 600 MHz)

¹³C NMR Spectrum of 3ae at 25 °C (CDCl₃, 150 MHz)

¹H NMR Spectrum of 3af at 25 °C (CDCl₃, 400 MHz)

¹³C NMR Spectrum of 3af at 25 °C (CDCl₃, 100 MHz)

¹H NMR Spectrum of 3ag at 25 °C (CDCl₃, 600 MHz)

¹³C NMR Spectrum of 3ag at 25 °C (CDCl₃, 150 MHz)

¹H NMR Spectrum of 3ah at 25 °C (CDCl₃, 600 MHz)

¹³C NMR Spectrum of 3ah at 25 °C (CDCl₃, 150 MHz)

¹H NMR Spectrum of 3ai at 25 °C (CDCl₃, 400 MHz)

¹³C NMR Spectrum of 3ai at 25 °C (CDCl₃, 100 MHz)

¹H NMR Spectrum of 3aj at 25 °C (DMSO-*d*₆, 400 MHz)

7.837 7.833 7.816 7.813 7.77 7.777 7.777 7.777 7.777 7.757 7.757 7.757 7.757	7.434 7.434 7.417 7.417 7.414 7.404 7.404 7.401	4.808 4.778 4.770 4.303 4.303 4.283 4.264	3.346 3.346 2.442 2.427 2.423 2.418 2.418 2.418 2.418 2.383 2.383 2.383 2.364

¹³C NMR Spectrum of 3aj at 25 °C (DMSO-d₆, 100 MHz)

¹H NMR Spectrum of 3ak at 25 °C (CDCl₃, 600 MHz)

¹³C NMR Spectrum of 3ak at 25 °C (CDCl₃, 100 MHz)

¹H NMR Spectrum of 3al at 25 °C (DMSO-*d*₆, 600 MHz)

8.071 8.058 8.058 7.754 7.752 7.455 7.455 7.433 7.433 7.433 7.433	3.959 3.949 3.949 3.637 3.626 3.615 3.626 3.615 3.347 2.511 2.5511 2.5511 2.5511 1.969 1.969 1.958 1.947 1.958

¹³C NMR Spectrum of 3al at 25 °C (DMSO-*d*₆, 150 MHz)

¹H NMR Spectrum of 3am at 25 °C (CDCl₃, 600 MHz)

7.653 7.639 7.618 7.591 7.317 7.317 7.317 7.317 7.317 7.310 7.287 7.287	3.837 3.828 3.818	1.954 1.944 1.935 1.675
	\checkmark	\checkmark

¹³C NMR Spectrum of 3am at 25 °C (CDCl₃, 150 MHz)

¹H NMR Spectrum of 3an at 25 °C (CDCl₃, 400 MHz)

7.654 7.636 7.619 7.600 7.337 7.337 7.338 7.238	4.001	3.988	3.972	3.952	3.936	3.874	3.860	3.846	3.671	3.656	3.642	3.550	3.489	3.474	3.459	2.092	2.080	2.066	2.048	1.426
	_						_ L	_	-	-		_	_	_		5	-	4	_	

¹³C NMR Spectrum of 3an at 25 °C (CDCl₃, 100 MHz)

¹H NMR Spectrum of 3ao at 25 °C (CDCl₃, 600 MHz)

7.845 7.832 7.621 7.628 7.595 7.331 7.331 7.331 7.336 7.336 7.287 7.273	4.701 4.689 4.677	1.036 1.024 3.995 3.986	2.400 2.389 2.379 2.379 2.368 2.196 2.185 2.185 2.185 2.063 2.063 2.052 2.042 2.030 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.00000000
	\sim	land and the second sec	

¹³C NMR Spectrum of 3ao at 25 °C (CDCl₃, 150 MHz)

¹H NMR Spectrum of 3ap at 25 °C (CDCl₃, 600 MHz)

 $\begin{array}{c} 7.775\\ 7.754\\ 7.764\\ 7.754\\ 7.769\\ 7.539\\ 7.604\\ 7.332\\ 7.533\\ 7.533\\ 7.533\\ 7.533\\ 7.533\\ 7.333\\ 7.290\\ 7.333\\ 7.290\\ 7.3333\\ 7.290\\ 7.3333\\ 7.290\\ 7.3333\\ 7.290\\ 7.3333\\ 7.2290\\ 7.3333\\ 7.2233\\ 7.2233\\ 7.2233\\ 7.2233\\ 7.2233\\ 7.2233\\ 7.2233\\ 7.2233\\ 7.2234\\ 7.2336\\ 7.2336\\ 7.2336\\ 7.2336\\ 7.2336\\ 7.2336\\ 7.2336\\ 7.2336\\ 7.2336\\ 7.2336\\ 7.2336\\ 7.2336\\ 7.2336\\ 7.2336\\ 7.2326\\ 7.2$

¹³C NMR Spectrum of 3ap at 25 °C (CDCl₃, 150 MHz)

¹H NMR Spectrum of 3aq at 25 °C (CDCl₃, 400 MHz)

¹³C NMR Spectrum of 3aq at 25 °C (CDCl₃, 100 MHz)

¹H NMR Spectrum of 3ar at 25 °C (CDCl₃, 600 MHz)

7.651 7.649 7.637 7.625 7.625 7.7.625 7.7.625 7.7.625 7.7.625 7.7.625 7.7.625 7.7.625 7.7.625 7.7.625 7.7.625 7.7.625 7.7.625 7.7.625 7.7.625 7.649 7.7.625 7.7.7.737 7.7.737 7.7.737 7.7.737 7.7.737 7.7.737 7.7.737 7.7.737 7.7.331	 4.278 4.256 4.256 3.331 5.330 5.331 	2.7731 2.717 2.717 2.717 2.717 2.717 2.719 2.099 2.2091 2.2091 2.2091 2.2091 1.959 1.9555 1.95555 1.9555 1.9555 1.9555 1.9555 1.9555 1.95555 1.95555 1.95555 1.95555 1.95555 1.955555 1.95555 1.9555555 1.95555 1.955555555 1.95555555555
---	--	---

¹³C NMR Spectrum of 3ar at 25 °C (CDCl₃, 150 MHz)

¹H NMR Spectrum of 3as at 25 °C (CDCl₃, 600 MHz)

7.629 7.627 7.627 7.616 7.603 7.586 7.586 7.584 7.319 7.319 7.315 7.315 7.315 7.315 7.315 7.315 7.315 7.315	3.696 3.684 3.673 3.661	1.411 1.400 1.389
		\checkmark

¹³C NMR Spectrum of 3as at 25 °C (CDCl₃, 150 MHz)

¹H NMR Spectrum of 3at at 25 °C (CDCl₃, 400 MHz)

7.539 7.557 7.557 7.553 7.553 7.553 7.553 7.504 7.504 7.289 7.289 7.289 7.289 7.289 7.289 7.289 7.289 7.289 7.289 7.289 7.289 7.289 7.289 7.289 7.289 7.288	3.906 3.888 3.869 3.223 3.072 3.054 3.035
	\sim

¹³C NMR Spectrum of 3at at 25 °C (CDCl₃, 100 MHz)

¹H NMR Spectrum of 3au at 25 °C (DMSO-*d*₆, 400 MHz)

¹³C NMR Spectrum of 3au at 25 °C (DMSO-d₆, 100 MHz)

¹H NMR Spectrum of 3av at 25 °C (CDCl₃, 400 MHz)

7.628 7.607 7.587 7.355 7.355 7.355 7.335 7.235 7.235 7.235 7.235 7.235	4.838	3.203	2.387

¹³C NMR Spectrum of 3av at 25 °C (CDCl₃, 100 MHz)

¹H NMR Spectrum of 3aw at 25 °C (CDCl₃, 400 MHz)

7.629 7.611 7.607 7.593 7.346 7.345 7.325 7.325 7.325 7.256 7.255 7.255 7.255 7.255 7.255 6.959 6.959	4.816	3.830	3.193

¹³C NMR Spectrum of 3aw at 25 °C (CDCl₃, 100 MHz)

¹H NMR Spectrum of 3ax at 25 °C (CDCl₃, 400 MHz)

¹³C NMR Spectrum of 3ax at 25 °C (CDCl₃, 100 MHz)

¹H NMR Spectrum of 3ay at 25 °C (DMSO-*d*₆, 400 MHz)

8.290	8.221	8.216	8.201	8.195	8.161	8.121	7.884	7.864	7.808	7.804	7.787	7.769	7.765	7.747	7.727	7.707	7.520	7.518	7.500	7.497	7.449	5.059	3.362	2.522	2.518	2.513	2.508	2.504
-	-		-	_	-1-	~	2	111	_	_				_				-	_	_				_		-	_	

¹³C NMR Spectrum of 3ay at 25 °C (DMSO-*d*₆, 100 MHz)

¹H NMR Spectrum of 3az at 25 °C (DMSO-*d*₆, 600 MHz)

2.8 2.1 1.1	2.5.2
--	-------

¹³C NMR Spectrum of 3az at 25 °C (DMSO-*d*₆, 100 MHz)

¹H NMR Spectrum of 3aaa at 25 °C (CDCl₃, 400 MHz)

 $\begin{array}{r} 8.626\\ 8.620\\ 8.620\\ 7.776\\ 7.776\\ 7.7668\\ 7.7648\\ 7.648\\ 7.338\\ 7.338\\ 7.338\\ 7.338\\ 7.338\\ 7.338\\ 7.338\\ 7.338\\ 7.338\\ 7.338\\ 7.338\\ 7.338\\ 7.338\\ 7.338\\ 7.338\\ 7.299\\ 7.299\\ 7.282\\$

¹³C NMR Spectrum of 3aaa at 25 °C (CDCl₃, 100 MHz)

¹H NMR Spectrum of 3aab at 25 °C (CDCl₃, 400 MHz)

7.720	7.716	7.700	7.696	7.648	7.644	7.630	7.627	7.624	7.609	7.605	7.341	7.328	7.323	7.319	7.315	7.298	7.280	7.277	7.263	7.132	7.123	7.032	7.023	7.019	7.010	4.961	3.282
1 L	- L	- L	1	1	1				Ľ.	5	÷.	<u> </u>	<u> </u>		÷.,	1	1	1	1	1	- i.	÷.,	÷.,	<u> </u>	<u> </u>	2	1.

¹³C NMR Spectrum of 3aab at 25 °C (CDCl₃, 100 MHz)

¹H NMR Spectrum of 3aac at 25 °C (CDCl₃, 600 MHz)

7.854 7.646 7.633 7.620 7.339 7.311 7.311 7.311 6.475 6.475 6.475	4.770	3.240
	l I	

¹³C NMR Spectrum of 3aac at 25 °C (CDCl₃, 150 MHz)

¹H NMR Spectrum of 5a at 25 °C (CDCl₃, 400 MHz)

¹³C NMR Spectrum of 5a at 25 °C (CDCl₃, 100 MHz)

¹H NMR Spectrum of 5b at 25 °C (CDCl₃, 400 MHz)

¹³C NMR Spectrum of 5b at 25 °C (CDCl₃, 100 MHz)

¹H NMR Spectrum of 5c at 25 °C (DMSO-d₆, 400 MHz)

¹³C NMR Spectrum of 5c at 25 °C (DMSO-*d*₆, 100 MHz)

¹H NMR Spectrum of 5d at 25 °C (DMSO-d₆, 600 MHz)

¹⁹F NMR Spectrum of 5d at 25 °C (DMSO, 565 MHz)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H NMR Spectrum of 5e at 25 °C (DMSO-*d*₆, 400 MHz)

$\begin{array}{c} 8.160\\ 8.139\\ 8.101\\ 8.139\\ 8.101\\ 8.139\\ 7.948\\ 7.948\\ 7.948\\ 7.948\\ 7.948\\ 7.948\\ 7.912\\ 7.77\\ 7.779\\ 7.770\\ 7.779\\ 7.779\\ 7.770\\ 7.7$

¹³C NMR Spectrum of 5e at 25 °C (DMSO-*d*₆, 100 MHz)

¹H NMR Spectrum of 5f at 25 °C (DMSO-*d*₆, 400 MHz)

¹³C NMR Spectrum of 5f at 25 °C (DMSO-d₆, 100 MHz)

¹³C NMR Spectrum of 5g at 25 °C (DMSO-*d*₆, 150 MHz)

¹⁹F NMR Spectrum of 5g at 25 °C (DMSO-*d*₆, 565 MHz)

¹H NMR Spectrum of 5h at 25 °C (DMSO-d₆, 400 MHz)

¹³C NMR Spectrum of 5h at 25 °C (DMSO-*d*₆, 100 MHz)

¹H NMR Spectrum of 5i at 25 °C (DMSO-d₆, 400 MHz)

¹³C NMR Spectrum of 5i at 25 °C (DMSO-*d*₆, 100 MHz)

¹H NMR Spectrum of 6a at 25 °C (CDCl₃, 600 MHz)

7.494 7.390 7.377 7.377 7.377 7.377 7.377 7.377 7.374 7.217	3.871 3.864 3.856 3.856 3.818 3.818 3.804	- 2.393
--	---	---------

¹³C NMR Spectrum of 6a at 25 °C (CDCl₃, 150 MHz)

¹H NMR Spectrum of 6b at 25 °C (CDCl₃, 600 MHz)

¹³C NMR Spectrum of 6b at 25 °C (CDCl₃, 150 MHz)

¹H NMR Spectrum of 6c at 25 °C (CDCl₃, 600 MHz)

7.449 7.435 7.435 7.315 7.315 7.315 7.312 7.312 7.312 7.312 7.312	$\int_{-3.822}^{-3.888} 3.872$ $\int_{-3.872}^{-3.872} 3.812$ $\int_{-3.812}^{-3.812} 3.812$	- 2.410
---	--	---------

¹³C NMR Spectrum of 6c at 25 °C (CDCl₃, 150 MHz)

¹H NMR Spectrum of 6d at 25 °C (DMSO-d₆, 600 MHz)

7.457 7.442 7.368 7.363 7.353 7.353 7.353 7.353 7.275 7.275	3.874 3.874 3.850 3.759 3.755 3.757 3.739

¹³C NMR Spectrum of 6d at 25 °C (DMSO-*d*₆, 150 MHz)

¹H NMR Spectrum of 6e at 25 °C (DMSO-d₆, 600 MHz)

7777 7.762 7.107 7.107 7.102 - 6.991 6.976 1.6.971	73.904 73.809 73.809 73.809 73.802 73.702 72.501 75

¹³C NMR Spectrum of 6e at 25 °C (DMSO-d₆, 150 MHz)

¹H NMR Spectrum of 6f at 25 °C (CDCl₃, 400 MHz)

¹³C NMR Spectrum of 6f at 25 °C (CDCl₃, 100 MHz)

¹H NMR Spectrum of 6g at 25 °C (CDCl₃, 600 MHz)

7.305 7.289 7.289 6.483 6.478 6.467 6.415 6.415 6.415 6.415 6.411	3.794 3.437 3.425 3.413 3.413 3.401	1.232 1.220 1.208
		\checkmark

¹³C NMR Spectrum of 6g at 25 °C (CDCl₃, 150 MHz)

¹H NMR Spectrum of 6h at 25 °C (DMSO-d₆, 400 MHz)

¹³C NMR Spectrum of 6h at 25 °C (DMSO-*d*₆, 100 MHz)

¹H NMR Spectrum of 6i at 25 °C (DMSO-d₆, 400 MHz)

7.758 7.751 7.736 7.713 7.713 7.713 7.713 7.713 7.713 7.713 7.710 7.769 7.768 7.768 7.768 7.768 7.768 7.768 7.759 7.759 7.759 7.759 7.757 7.757 7.757 7.773 7.775 7.773 7.775 7.775 7.775 7.775 7.775 7.775 7.775 7.775 7.775 7.775 7.775 7.775 7.7757 7.7757 7.7757 7.7757 7.7757 7.7757 7.7757 7.77577 7.77577 7.77577 7.775777 7.7757777 7.7577777777	3.853 3.755 <t< th=""></t<>
---	---

¹³C NMR Spectrum of 6i at 25 °C (DMSO-*d*₆, 100 MHz)

¹⁹F NMR Spectrum of 6i at 25 °C (DMSO-d₆, 376 MHz)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H NMR Spectrum of 6j at 25 °C (CDCl₃, 600 MHz)

¹³C NMR Spectrum of 6j at 25 °C (CDCl₃, 150 MHz)

¹³C NMR Spectrum of 6k at 25 °C (DMSO-d₆, 100 MHz)

fl (ppm)

¹³C NMR Spectrum of 6l at 25 °C (DMSO-d₆, 150 MHz)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C NMR Spectrum of 6m at 25 °C (DMSO-*d*₆, 100 MHz)

S165

¹H NMR Spectrum of 6n at 25 °C (CDCl₃, 600 MHz)

¹³C NMR Spectrum of 6n at 25 °C (CDCl₃, 150 MHz)

¹⁹F NMR Spectrum of 6n at 25 °C (CDCl₃, 565 MHz)

¹H NMR Spectrum of 60 at 25 °C (DMSO-d₆, 600 MHz)

8.338 8.283 8.283 8.280 8.269 8.265 7.642 7.628	3.907 3.933 3.756 3.741 3.374 3.741 3.332 2.515 2.515 2.515 2.512 2.509

¹³C NMR Spectrum of 60 at 25 °C (DMSO-d₆, 150 MHz)

¹H NMR Spectrum of 6p at 25 °C (DMSO-d₆, 600 MHz)

¹³C NMR Spectrum of 6p at 25 °C (DMSO-*d*₆, 150 MHz)

¹H NMR Spectrum of 6q at 25 °C (DMSO-d₆, 400 MHz)

8.389 8.367 8.194 8.172 8.172 8.172 8.172 8.108 8.108 8.172 7.73 7.672 7.672 7.652 7.652 7.652 7.620	4.041 3.926 3.744 3.555 3.555 3.555 3.555 3.555 3.555 3.113 3.368 3.113 2.515 2.515 2.510 2.5505

¹³C NMR Spectrum of 6q at 25 °C (DMSO-d₆, 100 MHz)

¹H NMR Spectrum of 6r at 25 °C (CDCl₃, 400 MHz)

¹³C NMR Spectrum of 6r at 25 °C (CDCl₃, 100 MHz)

¹H NMR Spectrum of 6s at 25 °C (CDCl₃, 600 MHz)

¹³C NMR Spectrum of 6s at 25 °C (CDCl₃, 150 MHz)

¹H NMR Spectrum of 6t at 25 °C (CDCl₃, 600 MHz)

7.973 7.960 7.7822 7.736 7.7736 7.771 7.670 7.670 7.670 7.664 7.655 7.644 7.664 7.664 7.664	(4.073) (4.064) (4.056
---	---

¹³C NMR Spectrum of 6t at 25 °C (CDCl₃, 150 MHz)

¹H NMR Spectrum of 6u at 25 °C (DMSO-d₆, 400 MHz)

¹³C NMR Spectrum of 6u at 25 °C (DMSO-*d*₆, 100 MHz)

¹H NMR Spectrum of 6v at 25 °C (DMSO-d₆, 600 MHz)

¹³C NMR Spectrum of 6v at 25 °C (DMSO-d₆, 150 MHz)

¹⁹F NMR Spectrum of 6v at 25 °C (DMSO-d₆, 565 MHz)

