Supplementary Information

Targeted H_2O activation to manipulate the selective photocatalytic reduction

of CO₂ to CH₃OH over carbon nitride supported cobalt sulfide

Minzhi Ma^{[a], [b]}, Zeai Huang^{[a], [b]}, Rui Wang^[b], Ruiyang Zhang^[b], Tian Yang^[b], Zhiqiang Rao^[b], Wenjun Fa^[c], Fengying Zhang^[b], Yuehan Cao^[b], Shan Yu^[b], and Ying Zhou*^{[a], [b]}

[a] State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China.

[b] School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China.

[c] Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province
 & College of Chemical and Materials Engineering, Xuchang University, Xuchang, Henan 461000,
 China.

Corresponding authors: Ying Zhou (yzhou@swpu.edu.cn)

Table of contents

1 Experiments	3
1.1 Materials	3
1.2 Photoelectrochemical measurements	4
2 Results and Discussion	5
2.1 The XRD spectra	5
2.2 Cycle experiments of photocatalytic reduction CO ₂ on CN surface	6
2.3 Photocatalytic CO ₂ reduction performance	7
2.4 Cycle experiments of photocatalytic reduction CO_2 by CS/CN-0.5	8
2.5 XAS spectra	9
2.6 XPS spectra	10
2.7 XRD patterns	11
2.8 TG spectra	12
2.9 Isotope experiment	13
2.10 The UV-vis spectra	14
2.11 High-resolution Co 2p and S 2p XPS spectrum	15
2.12 FT of Co K-edge EXAFS spectra of CS/CN-0.5	16
2.13 The N ₂ isothermal adsorption/desorption measurements	17
2.14 Tauc plots and band structure	18
2.15 Radical-trapping experiment	19
2.16 In situ DRIFTS experiments	20
2.17 In situ DRIFTS experiments	21
2.18 The Co K-edge EXAFS fitting parameters	22

1 Experiments

1.1 Materials

All used chemicals were analytical-grade reagents without any further purification. Cobalt nitrate hexahydrate and dicyandiamide were purchased from Aladdin Reagent Corp. Anhydrous H₂SO₄ (98%), absolute ethanol (95%), sodium sulfide nonahydrate and silica sand (70-150 mesh) were purchased from Chengdu Kelong Chemical Reagent Corp. 99% ¹³C enriched ¹³CO₂ was provided by Chengdu Keyuan Gas Corp.

1.2 Photoelectrochemical measurements

The photoelectrochemical measurements were conducted by using a CH760E electrochemical workstation (Chenhua Instrument, Shanghai, China) with a three-electrode system. The Ag/AgCl (KCl sat.) was used as the reference electrode, and Pt wire was used as the counter electrode. The working electrode was as-fabricated by a doctor blading technique (Binder: ethylcellulose; Basal: FTO; Active surface area: 1 cm²), and then it was treated at 90 °C for 3 hours. Photocurrent-time and electrochemical impedance measurements of as-prepared samples at open circuit potential (OCP) were performed in 0.5 M Na₂SO₄.

2 Results and Discussion

2.1 The XRD spectra

Figure S1. XRD spectra of the as-prepared samples.

2.2 Cycle experiments of photocatalytic reduction CO₂ on CN surface

Figure S2. Cycle experiments of photocatalytic reduction CO₂ by CN: (a) CH₃OH production; (b) H₂,

CO, C_2H_4 , CH_4 , and C_3H_6 generation (total: ~16 h).

2.3 Photocatalytic CO₂ reduction performance

Figure S3. Photocatalytic activity of CO₂ photoreduction with H₂O. (a) CH₃OH production; (b) H₂,

CO, CH₄, C₂H₄, C₂H₆, and C₃H₆ prod ucts at 4 hours over the as-prepared photocatalysts.

2.4 Cycle experiments of photocatalytic reduction CO₂ by CS/CN-0.5

Figure S4. Cycle experiments of CS/CN-0.5 for photoreduction of CO_2 : H_2 , CO, C_2H_4 , CH_4 , and C_3H_6

generation rate (total: ~16 h).

2.5 XAS spectra

Figure S5. XAS spectra: (a) Co K-edge XANES spectra; (b) FT k^3 -weight EXAFS spectra of the CS/CN-0.5-fresh and CS/CN-0.5-after reaction 16 h.

2.6 XPS spectra

Figure S6. High-resolution C 1s (a), N 1s (b), (c) Co 2p, and (d) S 2p XPS spectra of the CS/CN-0.5-

fresh and CS/CN-0.5-after reaction 16 h.

2.7 XRD patterns

Figure S7. XRD patterns of the CS/CN-0.5-fresh and CS/CN-0.5-after reaction 16 h.

2.8 TG spectra

Figure S8. TG, DTA, and DTG curves of CS/CN-0.5.

2.9 Isotope experiment

Figure S9. Mass spectra obtained during the photocatalytic conversion of ${}^{13}CO_2$ over CS/CN-0.5.

2.10 The UV-vis spectra

Figure S10. UV-vis diffuse reflectance spectra of CN and CS/CN-0.5.

2.11 High-resolution Co 2p and S 2p XPS spectra

Figure S11. High-resolution Co 2p and S 2p XPS spectra of CS/CN-0.5.

2.12 FT of Co K-edge EXAFS spectra of CS/CN-0.5

Figure S12. Fourier transform of Co K-edge EXAFS spectra in k (a) and q (b) space for the CS/CN-0.5.

2.13 The N_2 isothermal adsorption/desorption measurements

Figure S13. The N_2 isothermal adsorption/desorption measurements over CN and C/CN-0.5.

2.14 Tauc plots and band structure

Figure S14. (a) Tauc plots of CS/CN-0.5 and CN; (b) Band structure of CS/CN-0.5 and CN.

2.15 Radical-trapping experiment

Figure S15. DMPO spin-trapping ESR spectra recorded for (a, c) •OH and (b, d) $\bullet O_2^-$ over CN and

CS/CN-0.5.

2.16 In situ DRIFTS experiments

0.5. (a, c) H₂O adsoprtion under dark, (b, d) H₂O reduction process under light irradiation; (e) CO_2

adsoprtion under dark, (f) CO₂ reduction process under light irradiation.

2.17 In situ DRIFTS experiments

Figure S17. In situ DRIFTS spectra of CO2 photoreduction process over CN (a) CO2 adsoprtion under

dark; and (b) CO₂ reduction process under light irradiation.

2.18 The Co K-edge EXAFS fitting parameters

Samples	bonds	CN	R (Å)	$\sigma^2(10^{-3}\text{\AA}^2)$	ΔE (eV)	χ_v^2/R factor
CS/CN-0.5	Co-C/N	2.5	0.028	5.0	2.87	21/0.0025
	Co-S	0.9	0.028	14.0		
	Co-Co	3.1	0.21	6.7		

 Table S1. Structural parameters obtained from the Co K-edge EXAFS fits.