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Figure S1. SEM-EDX spectrum and elemental mapping of as-synthesized Pd@PDA@PUF. 

 

 

 

Figure S2. XPS survey spectra of Pd@PDA@PUF: (A) as-synthesized, (B) spent (after 15 cycling 
tests). 
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Figure S3. XRD profiles of Pd@PDA@PUF: black curve, as-synthesized; red curve, spent (after 15 
cycling tests). 

 

 

Figure S4. TGA curves of PUF, PDA@PUF, as-synthesized Pd@PDA@PUF and spent 
Pd@PDA@PUF (after 15 cycling tests). 
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Figure S5. Standard setup for all semi-hydrogenation experiments. 
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Optimization studies for the semi-hydrogenation of phenylacetylene (PA) to styrene (ST) with 

Pd@PDA@PUF in EtOH at RT 

All successive experiments were carried out with the same Pd@PDA@PUF foam of ca. 8 cm3 

whose mass was adjusted in function of its Pd content to have a Pd loading of 7 µmol. The two first 

trials, run with a Pd loading of 0.46 mol% and a H2 flow of 13 mL/min, displayed similar reaction 

kinetics, with 98% conversion of PA and 97% selectivity to ST after 3.3 h for the 1st run (TON = 213, 

TOF = 65 h-1), and 93% conversion and 90% ST selectivity after 3 h in the 2nd run  (TON = 202, TOF = 

67 h-1) (Table S1, entries A and B). Once all alkyne had been consumed, the selectivity began to drop 

down as over-hydrogenation occurred (Fig. S6A and S6B). In view of these encouraging results, 

notably the little acceleration of the reaction kinetics between the two runs, we performed a third run 

under the same conditions. As can be seen in Figure S6C, we again observed a very selective 

conversion of PA to ST without any appreciable competition of further hydrogenation of the latter to 

give ethylbenzene (EB) until all PA had been consumed. Thus, 97% conversion was reached in 3 h 

with a ST selectivity of 88% (TON = 211, TOF = 70 h-1) (Table S1, entry C). In the 4th run, the rate of 

H2 flow was decreased from 13 to 2 mL/min in order to map out its influence on the catalytic 

performance. No positive effect was observed on the hydrogenation selectivity, as only 94% ST 

selectivity at 81% PA conversion was observed after 2 h reaction and as it dropped similarly one all PA 

was consumed (Figure S6D and Table S1, entry D). We thus maintained the H2 flow rate to 13 mL/min 

for the next two experiments, but increased the reactant’s concentration to 3 and 6 mmol, conversely 

decreasing the catalyst loading from 0.46 mol% to 0.23 mol% in the 5th run (Figure S6E) and to 0.11 

mol% in the 6th run (Figure S6F). Remarkably, the Pd@PDA@PUF catalyst maintained a very high 

chemoselectivity with higher kinetics in the 5th run, achieving as high as 91% conversion with 95% 

selectivity to ST after 2 h (TON = 396; TOF = 197 h-1) (Table S1, entry E). Again, ST hydrogenation to 

EB occurred appreciably only after full consumption of PA. When the substrate loading was doubled 

again to 6 mmol, the selectivity and the turnover frequency gratifyingly maintained to the same level, 

with 98% PA conversion with 94% selectivity after 4.25 h, thus giving a TON of 891 and a TOF of 210 

h-1 (Table S1, entry F). The latter conditions were chosen as the standard conditions. 
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Figure S6. Kinetic monitoring of the optimization tests of PA semi-hydrogenation with 
Pd@PDA@PUF (ca. 8 cm3, Pd content 7.00.10-3 mmol) in EtOH (20 mL) at RT under 625 rpm. A, B, 
C: PA (1.52 mmol), H2 (13 mL/min); D: PA (1.52 mmol), H2 (2 mL/min); E: PA (3 mmol), H2 (13 
mL/min); F: PA (6 mmol), H2 (13 mL/min). Black curves: PA conversion. Red curves: selectivity to 
ST. Blue curves: selectivity to ethylbenzene (EB). 

 

Table S1. Results of optimization tests of PA semi-hydrogenation to ST. 

Entry Cat. loading 
(Pd mol%) 

H2 flow 
speed 

Time (h) Conv. 
(%)a 

Select. 
(%)a 

TONb TOF (h-1) 

A 0.46 13 3.3 98 97 207 63 

B 0.46 13 3 93 90 182 61 

C 0.46 13 3 97 88 186 62 

D 0.46 2 2 81 94 166 83 

E 0.23 13 2 91 95 376 188 

F 0.12 13 4.25 98 95 776 183 

a PA conversion and ST selectivity were determined by GC analysis. b Turnover number expressed as 
mol of PA converted to ST vs. the catalytic loading. 
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Figure S7. Photo of the reaction medium after the hydrogenation of phenylacetylene with 
[Pd(NH3)4Cl2]×H2O (0.23 mol%). 
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Figure S8. Stop-and-go experiment on 4-octyne’ semi-hydrogenation with Pd@PDA@PUF. Reaction 
conditions: 4-octyne (3 mmol), Pd@PUF@PDA (8 cm3, Pd: 0.23 mol%), EtOH (20 mL), H2 flow rate 
(13 mL/min), room temperature, 625 rpm. 
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Figure S9. HR-SEM images with different magnifications of spent Pd@PDA@PUF (after 15 cycling 
tests). 
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Figure S10. SEM-EDX spectrum and elemental maps of spent Pd@PDA@PUF (after 15 cycling tests). 
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Figure S11. 1H NMR ((CD3)2CO, 400.13 MHz) spectra of the reaction mixture of the semi-
hydrogenation of 1,2-diphenylethyne after 1, 2, 3, 4, 5 and 6 h reaction. 
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Figure S12. 1H NMR ((CD3)2CO, 400.13 MHz)) spectrum of 1,2-diphenylethyne. 

 

 
Figure S13. 1H NMR ((CD3)2CO, 400.13 MHz)) spectrum of (Z)-1,2-diphenylethene. 
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Figure S14. 1H NMR ((CD3)2CO, 400.13 MHz)) spectrum of (E)-1,2-diphenylethene. 
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Figure S15. 1H NMR (CD3CN, 400.13 MHz) spectrum of the reaction mixture of the semi-
hydrogenation of ethyl 3-phenylpropiolate after 4 h reaction. 
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Figure S16. 1H-NMR (CD3CN, 400.13 MHz) spectrum of ethyl 3-phenylpropiolate. 

 

 
Figure S17. 1H NMR (CD3CN, 400.13 MHz) spectrum of ethyl cinnamate. 
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Figure S18. 1H NMR (CD3CN, 400.13 MHz) spectrum of ethyl 3-phenylpropanoate. 
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Figure S19. 1H NMR (CDCl3) spectrum of biphenyl. 
1H NMR (CDCl3, 400.13 MHz): δ 7.68–7.62 (m, 4H), 7.53–7.46 (m, 4H), 7.43 – 7.37 (m, 2H). 

 

Figure S20. 13C NMR (CDCl3) spectrum of biphenyl. 
13C{1H} NMR (CDCl3, 100.61 MHz): δ 141.4, 128.9, 127.4. 
1H and 13C NMR data in agreement with the literature.1 
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Figure S21. 1H NMR (CDCl3) spectrum of 4-cyanobiphenyl. 
1H NMR (CDCl3, 400.13 MHz): δ 7.76–7.66 (m, 4H), 7.62–7.56 (m, 2H), 7.49 (tt, J = 6.5, 1.1 Hz, 2H), 
7.46–7.40 (m, 1H).  

 
Figure S22. 13C NMR (CDCl3) spectrum of 4-cyanobiphenyl. 
13C{1H} NMR (CDCl3, 100.61 MHz): δ 145.8, 139.3, 132.7, 129.2, 128.8, 127.9, 127.3, 119.1, 111.0. 
1H and 13C NMR data in agreement with the literature.2,3 
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Figure S23. 1H NMR (CDCl3) spectrum of 4-tert-butylbiphenyl.  
1H NMR (CDCl3, 400.13 MHz): δ 7.62–7.52 (m, 4H), 7.50–7.40 (m, 4H), 7.36–7.30 (m, 1H), 1.37 (s, 
9H).  

 
Figure S24. 13C NMR (CDCl3) spectrum of 4-tert-butylbiphenyl. 
13C{1H} NMR (CDCl3, 100.61 MHz): δ 150.4, 141.2, 138.5, 128.8, 127.2, 127.1, 126.9, 125.9, 34.7, 
31.5.  
1H and 13C NMR data in agreement with the literature.2  
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Figure S25. 1H NMR (CDCl3) spectrum of 4-methoxybiphenyl.  
1H NMR (CDCl3, 400.13 MHz): δ 7.59–7.51 (m, 4H), 7.46–7.39 (m, 2H), 7.35–7.28 (m, 1H), 7.02–
6.96 (m, 2H), 3.86 (s, 3H).  

 
Figure S26. 13C NMR (CDCl3) spectrum of 4-methoxybiphenyl. 
13C{1H} NMR (CDCl3, 100.61 MHz): δ 159.3, 141.0, 133.9, 128.9, 128.3, 126.9, 126.8, 114.3, 55.5. 
1H and 13C NMR data in agreement with the literature.3,4 
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Figure S27. 1H NMR (CDCl3) spectrum of 4-trifluoromethylbiphenyl.  
1H NMR (CDCl3, 400.13 MHz): δ 7.70 (m, 4H), 7.63–7.58 (m, 2H), 7.52–7.45 (m, 2H), 7.44–7.39 (m, 
1H). 

 
Figure S28. 13C NMR (CDCl3) spectrum of 4-trifluoromethylbiphenyl. 
13C{1H} NMR (CDCl3, 100.61 MHz): δ 144.9, 139.9, 129.4 (q, 2J = 32.4 Hz), 129.1, 128.3, 127.6, 
127.4, 125.9 (q, 3J = 3.7 Hz), 124.5 (q, 1J = 272.0 Hz). 
1H and 13C NMR data in agreement with the literature.5 
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Figure S29. 1H NMR (CDCl3) spectrum of 2-phenylnaphthalene. 
1H NMR (CDCl3, 400.13 MHz): δ 8.06 (d, J = 1.8 Hz, 1H), 7.97–7.85 (m, 3H), 7.81–7.70 (m, 3H), 
7.57–7.45 (m, 4H), 7.44–7.37 (m, 1H). 

 
Figure S30. 13C NMR (CDCl3) spectrum of 2-phenylnaphthalene. 
13C{1H} NMR (CDCl3, 100.61 MHz): δ 141.3, 138.7, 133.8, 132.8, 129.0, 128.6, 128.3, 127.8, 127.6, 
127.5, 126.4, 126.1, 126.0, 125.7. 
1H and 13C NMR data in agreement with the literature.3,4  
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Figure S31. 1H NMR (CDCl3) spectrum of 4-methyl-1,1'-biphenyl. 
1H NMR (CDCl3, 400.13 MHz): δ 7.61–7.57 (m, 2H), 7.53–7.48 (m, 2H), 7.47–7.41 (m, 2H), 7.36–
7.31 (m, 1H), 7.29–7.24 (m, 2H), 2.41 (s, 3H). 

 
Figure S32. 13C NMR (CDCl3) spectrum of 4-methyl-1,1'-biphenyl. 
13C{1H} NMR (CDCl3, 100.61 MHz): δ 141.3, 138.5, 137.2, 129.6, 128.9, 127.1, 127.1, 127.1, 21.2. 
1H and 13C NMR data in agreement with the literature.3,4 
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Figure S33. 1H NMR (CDCl3) spectrum of o-terphenyl. 
1H NMR (CDCl3, 400.13 MHz): δ 7.47–7.41 (m, 4H), 7.26–7.18 (m, 6H), 7.18–7.12 (m, 4H). 

 

Figure S34. 13C NMR (CDCl3) spectrum of o-terphenyl. 
13C{1H} NMR (CDCl3, 100.61 MHz): δ 141.7, 140.7, 130.7, 130.0, 128.0, 127.6, 126.6. 
1H and 13C NMR data in agreement with the literature.6 
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Figure S35. 1H NMR (CDCl3) spectrum of methyl 2-phenylbenzoate. 
1H NMR (CDCl3, 400.13 MHz): δ 7.83 (ddd, J = 7.6, 1.4, 0.5 Hz, 1H), 7.53 (td, J = 7.5, 1.4 Hz, 1H), 
7.44–7.35 (m, 5H), 7.34–7.29 (m, 2H), 3.64 (s, 3H). 

 

Figure S36. 13C NMR (CDCl3) spectrum of methyl 2-phenylbenzoate. 
13C{1H} NMR (CDCl3, 100.61 MHz): δ 169.3, 142.6, 141.5, 131.4, 131.0, 130.8, 129.9, 128.4, 128.2, 
127.4, 127.3, 52.1. 
1H and 13C NMR data in agreement with the literature.7 
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Figure S37. 1H NMR (CDCl3) spectrum of 2-methoxy-5-methyl-1,1'-biphenyl. 
1H NMR (CDCl3, 400.13 MHz): δ 7.58–7.52 (m, 2H), 7.45–7.38 (m, 2H), 7.37–7.30 (m, 1H), 7.19–
7.10 (m, 2H), 6.91 (d, J = 8.2 Hz, 1H), 3.80 (s, 3H), 2.36 (s, 3H). 

 

Figure S38. 13C NMR (CDCl3) spectrum of 2-methoxy-5-methyl-1,1'-biphenyl. 
13C{1H} NMR (CDCl3, 100.61 MHz): δ 154.5, 138.8, 131.8, 130.6, 130.1, 129.6, 129.0, 128.1, 127.0, 
111.5, 55.9, 20.6. 
1H and 13C NMR data in agreement with the literature.8 
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