Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2022

Supporting information

Green and facile method for valorization of lignin to highperformance degradable thermosets

Weiqiong Zhang^{1,2}, Binbo Wang^{2,4}, Xiwei Xu^{2,4}, Hongzhi Feng^{2,4}, Kezhen Hu^{2,4}, Yi Su^{1,2}, Sican Zhou^{1,2}, Jin Zhu², Gengsheng Weng¹, Songqi Ma^{2,3*}

¹School of Materials Science & Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China;

²Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China;

³School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China;

⁴University of Chinese Academy of Sciences, Beijing 100049, P. R. China;

*Corresponding authors: (Songqi Ma) E-mail songqi.ma@jiangnan.edu.cn.

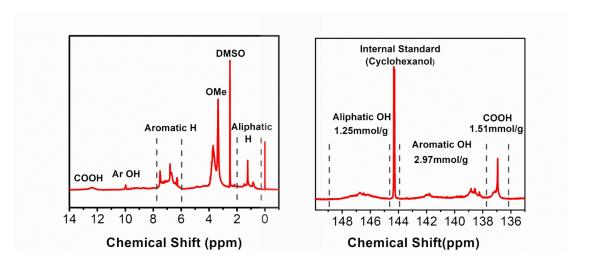


Fig. S1 Characterization of chemical structure of lignin. (a) ¹H NMR spectrum of lignin; (b)

³¹P NMR spectrum of lignin.



Fig. S2 Deconvolution XPS spectra of C1s from KL-70.