Supporting information

Oxygen and sulfur dual vacancies engineering on 3D Co₃O₄/Co₃S₄ heterostructure to improve overall water splitting activity

Qing Wang, Hui Xu, Xingyue Qian, Guangyu He*, Haiqun Chen*

Key Laboratory of Advanced Catalytic Materials and Technology,

Advanced Catalysis and Green Manufacturing Collaborative Innovation Center,

Changzhou University, Changzhou, Jiangsu Province 213164, China.

^{*} Corresponding author. E-mail address: hegy@cczu.edu.cn; chenhq@cczu.edu.cn.

Table S1. Peak area ratios and Co atomic ratios of Co_3O_4/Co_3S_4 @NF and DV- Co_3O_4/Co_3S_4 @NF in the XPS spectra.

Amounts		2p _{1/2} Co ²⁺	$2p_{1/2}Co^{3+}$	2p _{3/2} Co ²⁺	2p _{3/2} Co ³⁺	Co ²⁺ /Co ³⁺
Co ₃ O ₄ /Co ₃ S ₄ @NF	Co ₃ O ₄	0.13	0.87	0.38	0.62	0.34
	Co_3S_4	0.60	0.40	0.62	0.38	1.56
DV-Co ₃ O ₄ /Co ₃ S ₄ @NF	Co ₃ O ₄	0.31	0.69	0.59	0.41	0.81
	Co ₃ S ₄	0.64	0.36	0.92	0.08	3.55

Table S2. Peak area ratios and O atomic ratios of Co₃O₄@NF, Co₃O₄/Co₃S₄@NF, and

DV-Co₃O₄/Co₃S₄@NF in the XPS spectra.

Amounts	OI	O _{II}	O _{III}	O _{II} /O _I	O _{II} /O _{III}
Co ₃ O ₄ @NF	0.27	0.18	0.55	0.67	0.33
Co ₃ O ₄ /Co ₃ S ₄ @NF	0.19	0.51	0.30	2.68	1.70
DV-Co ₃ O ₄ /Co ₃ S ₄ @NF	0.14	0.80	0.06	5.71	13.33

Table S3. Peak area ratios and S atomic ratios of $Co_3O_4/Co_3S_4@NF$ and DV-

Co ₃ O ₄	$_{4}/Co_{3}S_{4}@NF$ in the XPS spectra.	

Amounts	S 2p _{1/2}	S 2p _{3/2}	$2p_{1/2}/2p_{3/2}$
Co ₃ O ₄ /Co ₃ S ₄ @NF	0.57	0.43	1.33
DV-Co ₃ O ₄ /Co ₃ S ₄ @NF	0.75	0.25	3

Catalyst	OER	Tafel	Ref.	
	$\eta_{100} (\mathrm{mV})$			
DV- Co ₃ O ₄ /Co ₃ S ₄ @NF	233	75	This work	
C03O4/C03S4@NF	288	102	This work	
NiCo ₂ S ₄ /CoNi-LDH@CC	337	111	[1]	
NiCo ₂ S ₄ @CC	370	96	[2]	
CoMo ₂ S ₄ @NF	370	66	[3]	
CuCo ₂ S ₄ @NF	245	68	[4]	
FeCo ₂ S ₄ /CoFe-LDH@NF	259	69	[5]	
NiCo ₂ O ₄ /NiMo ₂ S ₄ @NF	420	95	[6]	
Ru-NiCo ₂ O ₄ @NF	260	83	[7]	
MgO/NiCo ₂ S ₄ @CC	310	115	[8]	
CuCo ₂ S ₄ /CuCo@CF	300	70	[9]	
NW-MnCo ₂ O ₄ /CC	482	111	[10]	
NiCo-LDH/NiCo ₂ S ₄ /CC	280	48	[11]	
MnCo ₂ O ₄ /Ni ₂ P@NF	350	114	[12]	
Ru-NiCoP@NF	285	85	[13]	
CoS/NiS@NF	420	78	[14]	

 Table S4. Comparison of OER performance with other Co-based electrocatalysts.

* η_{100} : The required overpotential at the current density of 100 mA·cm⁻².

Catalyst	HER	Tafel	Ref.
	$\eta_{10} (\mathrm{mV})$		
DV- C0 ₃ O ₄ /C0 ₃ S ₄ @NF	26	58	This work
C03O4/C03S4@NF	134	99	This work
CoMo ₂ S ₄ @NF	162	116	[3]
CuCo ₂ S ₄ @NF	61	53	[4]
FeCo ₂ S ₄ /CoFe-LDH@NF	115	3	[5]
NiCo ₂ O ₄ /NiMo ₂ S ₄ @NF	159	53	[6]
NiCo-LDH/NiCo ₂ S ₄ @CC	150	41	[11]
P-Co ₃ S ₄ @CC	65	125	[15]
NiCo ₂ S _{4-x} @CC	150	83	[16]
MnCo2O4/Ni2P@NF	57	89	[12]
Ru-NiCoP@NF	44	45	[13]
Co ₃ S ₄ /NiMoO ₄ /rGO@NF	40	47	[17]
NiCo ₂ S ₄ /NiFe-LDH@NF	200	101	[18]
Fe-Co-S@NF	143	80	[19]
Co(OH) ₂ /Ni-Co-S@NF	148	88	[20]

Table S5. Comparison of HER performance with other Co-based electrocatalysts.

* η_{10} : The required overpotential at the current density of 10 mA·cm⁻².

Catalyst	OWS	Dof	
	P ₁₀ (V)	Kel.	
DV- C0 ₃ O ₄ /C0 ₃ S ₄ @NF	1.44	This work	
C03O4/C03S4@NF	1.54	This work	
CoMo ₂ S ₄ @NF	1.65	[3]	
CuCo ₂ S ₄ @NF	1.54	[4]	
FeCo ₂ S ₄ /CoFe-LDH@NF	1.60	[5]	
Ru-NiCo ₂ O ₄ @NF	1.45	[7]	
NW-MnCo ₂ O ₄ /CC	1.47	[10]	
MnCo ₂ O ₄ /Ni ₂ P@NF	1.63	[12]	
Ru-NiCoP@NF	1.52	[13]	
Co ₃ S ₄ @FNC	1.58	[21]	
CoMoP/Co ₃ O _{4-x} @NF	1.61	[22]	
CoNi/CoFe ₂ O ₄ @NF	1.57	[23]	
Co ₃ O ₄ /Mo-Co ₃ S ₄ -Ni ₃ S ₂ @NF	1.62	[24]	
Ni ₃ S ₂ /Co ₃ S ₄ /FeOOH@NF	1.58	[25]	
V _o B-Co ₃ O ₄ @NF	1.67	[26]	
v-NiS ₂ /CeO ₂ HSs@NF	1.64	[27]	

 Table S6. Comparison of overall water splitting (OWS) performance with other

 bifunctional electrocatalysts.

*P₁₀: The required a cell voltage to drive a current density of 10 mA \cdot cm⁻².

Fig. S1. SEM images of NF.

Fig. S2. FT-IR spectra of Co₃O₄ @NF, Co₃O₄/Co₃S₄@NF, and DV-Co₃O₄/Co₃S₄@NF.

Fig. S3. (a) UV-vis absorption spectra and (b) the band gap energy of $Co_3O_4/Co_3S_4@NF$ and DV- $Co_3O_4/Co_3S_4@NF$.

Fig. S4. CV curves at different scan rates for Co_3O_4 @NF.

Fig. S5. CV curves at different scan rates for $Co_3O_4/Co_3S_4@NF$.

Fig. S6. CV curves at different scan rates for DV-Co₃O₄/Co₃S₄@NF.

Fig. S7. CV curves at different scan rates for Co₃O₄ @NF.

Fig. S8. CV curves at different scan rates for $Co_3O_4/Co_3S_4@NF$.

Fig. S9. CV curves at different scan rates for DV-Co₃O₄/Co₃S₄@NF.

Fig. 10. OER polarization curves of Co₃O₄/Co₃S₄@NF by different sulphuration time

Fig. S11. The chrono-potentiometric curve of $RuO_2@NF \parallel Pt/C@NF$.

Fig. S12. SEM image of DV-Co₃O₄/Co₃S₄@NF after OER test.

Fig. S13. XRD pattern of DV-Co₃O₄/Co₃S₄@NF after OER test.

Figure S14. EPR spectra of DV- Co_3O_4/Co_3S_4 (2) NF before and after OER test.

Fig. S15 (a) XPS spectra of DV-Co₃O₄/Co₃S₄@NF, high-resolution XPS of (b) O 1s,

(c) S 2p, and (d) Co 2p after 100 h stability test for OER.

Fig. S16 (a) XPS spectra of DV-Co₃O₄/Co₃S₄@NF, high-resolution XPS of (b) O 1s,

(c) S 2p, and (d) Co 2p after 100 h stability test for HER.

References

- 1. F. Yuan, J. Wei, G. Qin and Y. Ni, J. Alloys Compd., 2020, 830, 154658.
- D. Wang, L. Tian, J. Huang, D. Li, J. Liu, Y. Xu, H. Ke and Q. Wei, *Electrochim.* Acta, 2020, 334, 135636.
- S. Tang, X. Li, M. Courté, J. Peng and D. Fichou, *Inorg. Chem. Front.*, 2020, 7, 2241-2247.
- L. Shao, Z.-X. Liang, H. Chen, Z.-X. Song, X.-H. Deng, G. Huo, X.-M. Kang, L. Wang, X.-Z. Fu and J.-L. Luo, *J. Alloys Compd.*, 2020, 845, 155392.
- Y. Huang, X. Chen, S. Ge, Q. Zhang, X. Zhang, W. Li and Y. Cui, *Catal. Sci. Technol.*, 2020, 10, 1292-1298.
- D. Zhao, M. Dai, H. Liu, K. Chen and J. Liu, Adv. Mater. Interfaces, 2019, 6, 1901308.
- D. Wang, Y. Chen, L. Fan, T. Xiao, T. Meng, Z. Xing and X. Yang, *Appl. Catal.* B., 2022, 305, 121081.
- W.-Z. Chen, M. Zhang, Y. Liu, X.-M. Yao, P.-Y. Liu, Z. Liu, J. He and Y.-Q. Wang, *Appl. Catal. B.*, 2022, **312**, 121432.
- H. Xu, D. Song, J. Li, Y. Zhao, R. Yang and J. Zhao, *J Colloid Interface Sci.*, 2021, 601, 437-445.
- L. Qi, Z. Zheng, C. Xing, Z. Wang, X. Luan, Y. Xue, F. He and Y. Li, *Adv. Funct. Mater.*, 2021, **32**, 2107179.
- 11. Y. Liu, Y. Bai, W. Yang, J. Ma and K. Sun, Electrochim. Acta, 2021, 367, 137534.
- 12. J. Ge, W. Zhang, J. Tu, T. Xia, S. Chen and G. Xie, Small, 2020, 16, 2001856.

- D. Chen, R. Lu, Z. Pu, J. Zhu, H.-W. Li, F. Liu, S. Hu, X. Luo, J. Wu, Y. Zhao and S. Mu, *Appl. Catal. B.*, 2020, **279**, 119396.
- R. Guo, S. Zhang, H. Wen, Z. Ni, Y. He, T. Yu and J. You, New J. Chem., 2021, 45, 1887-1892.
- Z. Guo, G. Tian, L. Liu, B. Zhang, Q. Wu, Y. Cao, J. Tu, L. Ding and X. Zhang, J. Mater. Sci. Technol., 2021, 89, 52-58.
- X. Guo, Z. Liu, F. Liu, J. Zhang, L. Zheng, Y. Hu, J. Mao, H. Liu, Y. Xue and C. Tang, *Catal. Sci. Technol.*, 2020, **10**, 1056-1065.
- M. Jiang, Z. Hu, Y. Wang, C. Xiang, Y. Zou, F. Xu, Q. Yang, J. Zhang and L. Sun, J. Alloys Compd., 2022, 927, 166824.
- J. Liu, J. Wang, B. Zhang, Y. Ruan, L. Lv, X. Ji, K. Xu, L. Miao and J. Jiang, ACS Appl. Mater. Interfaces., 2017, 9, 15364-15372.
- 19. G. Ma, X. Du and X. Zhang, Chemistry-Asian J., 2021, 16, 959-965.
- F. Wu, X. Guo, G. Hao, Y. Hu and W. Jiang, *J. solid state electr*. 2019, 23, 2627-2637.
- X. Zhu, J. Dai, L. Li, D. Zhao, Z. Wu, Z. Tang, L.-J. Ma and S. Chen, *Carbon*, 2020, 160, 133-144.
- Y. Hao, G. Du, Y. Fan, L. Jia, D. Han, W. Zhao, Q. Su, S. Ding and B. Xu, ACS Appl. Mater. Interfaces, 2021, 13, 55263-55271.
- L. Shasha, S. Suchada, Y. Akihiro, A. Xiaowei, H. Xiaogang, A. Abuliti and G. Guoqing, J. Mater. Chem. A, 2018, 6, 19221-19230.
- 24. Q. Wu, A. Dong, C. Yang, L. Ye, L. Zhao and Q. Jiang, Chem. Eng. J., 2021, 413,

127482.

- 25. F. Chen, B. Xs, C.B. Jia, A. Ll, A. Gl, B. Zj and B. Gz, *Colloid Surface A*, 2021, 631, 127689.
- H. Yuan, S. Wang, Z. Ma, M. Kundu, B. Tang, J. Li and X. Wang, *Chem. Eng. J.*, 2021, **404**, 126474.
- 27. W.Y. Liao, W.D.Z. Li and Y. Zhang, Mater. Today Chem., 2022, 24, 1-8.