Hydrogels with protective effects against cellular oxidative stress via enzymatic

crosslinking of feruloylated arabinoxylan from corn fibre

Secil Yilmaz-Turan^a, Kun Jiang^{a, b, c}, Patricia Lopez-Sanchez^d, Amparo-Jiménez-Quero^a, Thomas Crouzier^{a, b, c}, Tomás S. Plivelic^e, Francisco Vilaplana^{a, *}

^a Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, SE-106

91, Stockholm, Sweden

^b AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden

^c Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden

^d Division of Food and Nutrition Science, Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden

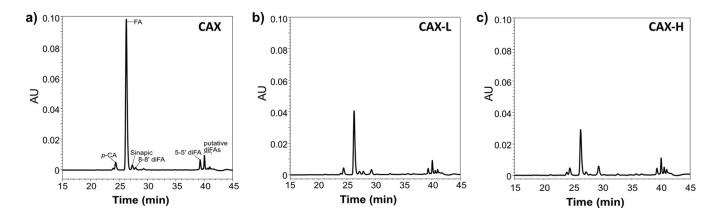
^e MAX IV Laboratory, Lund University, PO box 118, 221 00 Lund, Sweden

* Corresponding author: Francisco Vilaplana (franvila@kth.se)

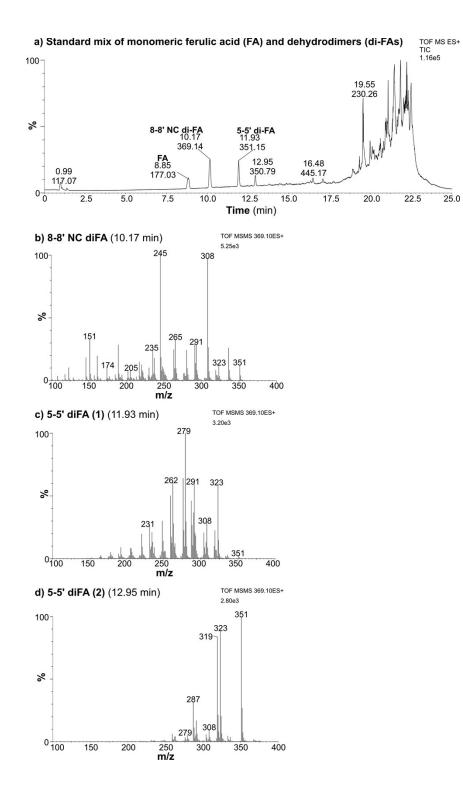
Table S1. Composition of feruloylated arabinoxylan extracted from corn bran by subcritical water

Carbohydrate content (mg/g DW) ^a	999.3 ± 32.4
Ara (%)	22.1 ± 0.4
Xyl (%)	52.9 ± 0.1
Glc (%)	12.1 ± 0.5
Gal (%)	6.4 ± 0.0
Man (%)	1.1 ± 0.0
Rha (%)	0.7 ± 0.1
Fuc (%)	0.3 ± 0.0
GlcA (%)	3.1 ± 0.3
GalA (%)	1.3 ± 0.2
GAX (%) ^b	84.5 ± 0.8
Ara/Xyl ^c	0.4
Soluble protein content (%) ^d	2.4 ± 0.2
Phenolic acid content (mg g ⁻¹ DW) ^e	47.1 ± 0.3
<i>p</i> -coumaric acid (%)	4.2 ± 0.1
Ferulic acid (%)	76.7 ± 0.3
Sinapic acid (%)	2.5 ± 0.1
8-8' di-FA (%)	1.6 ± 0.4
5-5' di-FA (%)	5.6 ± 0.1
Putative di-FAs (%) ^f	9.1 ± 0.6

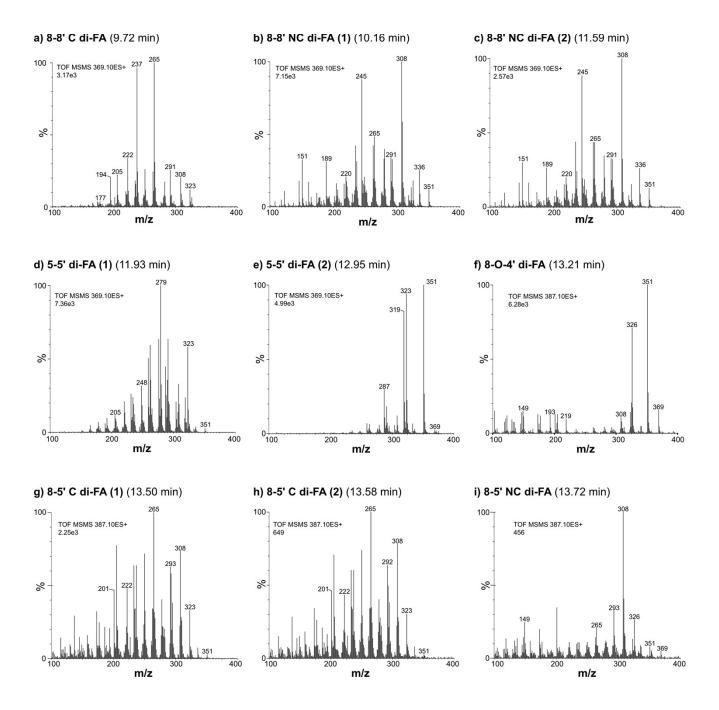
^a Carbohydrate content was determined by HPAEC-PAD after two-step methanolysis ¹;

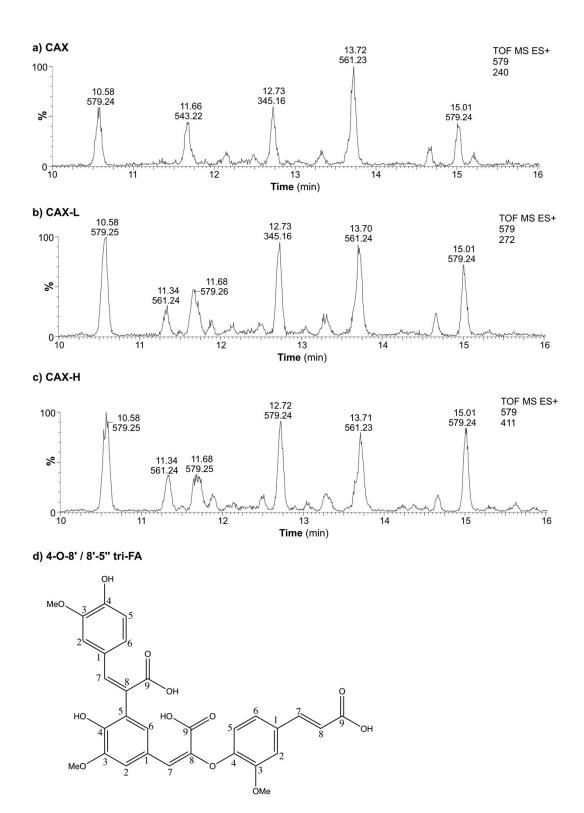

^b Glucuronoarabinoxylan (GAX) content was calculated based on the total of arabinose (Ara), xylose (Xyl), galactose (Gal) and glucuronic acid (GlcA) composition;

^c Ara/Xyl is the ratio between arabinose and xylose;


^d Soluble protein content was determined by the dye-binding Bradford assay ²;

^e Phenolic acid content was determined after saponification followed by HPLC analysis;


f The unknown di-FAs in HPLC chromatograms were combined as putative di-FAs and their amount was estimated using the response factor of 8-8' and 5-5' di-FAs.


Figure S1. Phenolic acid profile of (a) the native (CAX), (b) laccase- crosslinked (CAX-L) and (c) HRP-crosslinked glucuronoarabinoxylan (CAX-H).

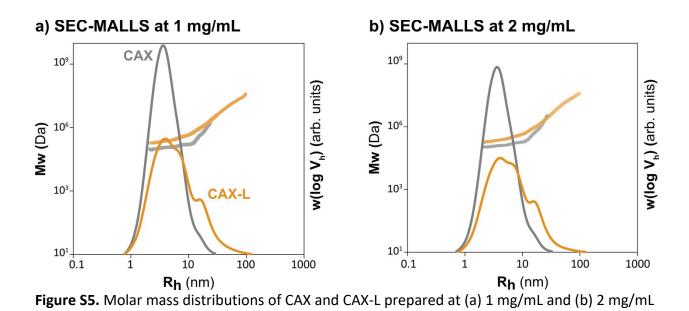

Figure S2. a) Ion extracted HPLC-ESI-MS chromatogram of ferulic acid standard mixture containing monomeric FA, 8-8' NC di-FA and 5-5' di-FA. CID-MS² spectra of (b) 8-8' NC di-FA standard, (c) 5-5' di-FA and (d) 5-5' di-FA isomer eluting at 12.95 min. Assignment of isomer-specific fragments was implemented according to ³.

Figure S3. CID-MS² spectra of ferulic acid dehydrodimers (di-FAs) from native (CAX) and crosslinked (CAX-L and CAX-H) corn bran glucuronoarabinoxylan. Assignment of isomer-specific fragments was implemented according to ³.

Figure S4. Ion extracted HPLC-ESI-MS chromatogram of ferulic acid dehydrotrimers (tri-FAs) in (a) CAX, (b) CAX-L and (c) CAX-H identified by the 579 m/z ion, and (d) Chemical structure of a hypothetical tri-FA. Molecular mass of tri-FAs was determined according to ⁴.

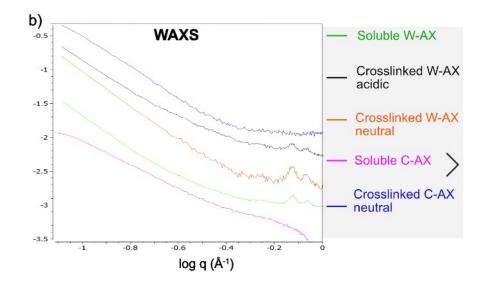


Figure S6. Wide-angle X-ray scattering profiles of soluble and crosslinked corn C-AX that reveal

the absence of order (crystallinity) compared to similar soluble and crosslinked wheat W-AX

(presented in our previous publication Yilmaz-Turan et al⁵).

References

- 1. A. Martínez-Abad, N. Giummarella, M. Lawoko and F. Vilaplana, *Green Chemistry*, 2018, **20**, 2534-2546.
- 2. M. M. Bradford, *Anal Biochem*, 1976, **72**, 248-254.
- 3. R. Vismeh, F. Lu, S. P. Chundawat, J. F. Humpula, A. Azarpira, V. Balan, B. E. Dale, J. Ralph and A. D. Jones, *Analyst*, 2013, **138**, 6683-6692.
- 4. M. Bunzel, J. Ralph, C. Funk and H. Steinhart, *Tetrahedron Letters*, 2005, **46**, 5845-5850.
- 5. S. Yilmaz-Turan, P. Lopez-Sanchez, A. Jiménez-Quero, T. S. Plivelic and F. Vilaplana, *Food Hydrocolloids*, 2022, **128**, 107575.