## **Supporting Information**

# Hydrogen bond reconstruction strategy of eutectic solvents that

### realizes room temperature dissolution of cellulose

Zhihan Tong, Wen Wang, Suqing Zeng, Yasu Sun, Juan Meng, Yongzhuang Liu, Qinqin

Xia, Haipeng Yu\*

Key laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, Heilongjiang, China

\*Corresponding Author: Haipeng Yu: <u>yuhaipeng20000@nefu.edu.cn</u>

Notes

#### Note S1. Measurement for binding energy of hydrogen bonds of formic acid.

In previous study of Luo et al <sup>[1]</sup>, they proposed a linear formula (1) for determining the hydrogen bonding energy via <sup>1</sup>H NMR chemical shift of proton, revealing that the compensated natural logarithm of the chemical shift  $(\ln \delta + \Delta \delta)$  is linearly correlated with 1/T.

$$ln\delta + \Delta_{\delta} = \frac{A}{R} \cdot \frac{1}{T} + B$$

$$\Delta_{\delta} = ln\left(1 - \frac{\delta_{0}}{\delta}\right) - 2ln^{\text{ind}}\left(1 - \frac{\delta}{\delta_{\infty}}\right), A = -\frac{E_{binding}}{R}, \text{ and } B = -ln\frac{\delta_{\infty} - \delta_{0}}{2A_{Arrhenius}C_{0}\delta_{\infty}^{2}}$$

$$(1)$$

where

In addition, according to the theory "continuous association of hydrogen-bonds", an experimental COOH proton chemical shift  $\delta$  and the concentration of the carboxyl compound monomer C satisfied the linear equation (2):

$$\delta = \delta_{\infty} - \frac{\delta_{\infty} - \delta_0}{C_0} \times C \tag{2}$$

 $\delta_{\infty}$  is the ideal <sup>1</sup>H chemical shift of completed H-bonded COOH proton, and  $\delta_0$  is the ideal <sup>1</sup>H chemical shift of "free" COOH proton that does not form the hydrogen bonds,  $C_0$  is the analytical concentration of the carboxyl compound and satisfied the equation (3):

$$\left(K_{1}K_{2} - K_{2}^{2}\right)C^{3} - \left(2K_{1} - 2K_{2} - K_{2}^{2}C_{0}\right)C^{2} - \left(2K_{2}C_{0} + 1\right)C + C_{0} = 0$$
(3)

Meanwhile,  $\delta$  and C satisfied the equation (1) and equation (4) could be deduced:

$$\delta = \delta_{\infty} - \frac{\delta_{\infty} - \delta_0}{C_0} \left| \frac{2c}{3a} + 2 \sqrt{\left(\frac{3ab + 4c^2}{9a^2}\right)} \cos\left\{ \frac{1}{3} \cos^{-1} \frac{\left(\frac{8c^3}{27} - \frac{a^2}{2C_0} + \frac{abc}{3}\right)}{\left(\frac{ab}{3} + \frac{4c^2}{9}\right)^{3/2}} - \frac{2\pi}{3} \right\} \right|$$
(4)
$$w_a = K_1 K_2 - K_2^2 \quad b = 2K_2 C_0 + 1 \qquad c = K_1 - K_2 - \frac{K_2^2 C_0}{2}$$

Where  $u = K_1 K_2 - K_2$ ,  $b = 2K_2 C_0 + 1$ , and 2 2. To determine the  $\delta_0$ ,  $\delta_\infty$ ,  $K_1$ ,  $K_2$ ,  $\Delta G_1$  and  $\Delta E_{\text{HB},1}$  (binding energy of FA dimer), the

concentration and temperature dependence of the <sup>1</sup>H NMR shift of COOH in FA were

implemented in the weak HBA solvent CDCl<sub>3</sub>. Furthermore, in accordance with the results in **Table S4** and **Figure S1**a,b, Origin 2018 software was employed to fit the curve as shown in **Figure 1**c,d, and the parameters ( $\delta_0$ ,  $\delta_\infty$ ,  $K_1$ ,  $K_2$ ,  $\Delta G_1$  and  $\Delta E_{\text{HB},1}$ ) were enumerated in **Table S5**.  $K_1$  is 4 orders of magnitude large than  $K_2$ , hence we can speculate that the intermolecular HBs almost only exist dimer form of FA. The binding energy (BE) value for FA dimer is -8.258 kcal·mol<sup>-1</sup>.

#### Note S2. Measurement for binding energy between HBA and HBD.

In previous study of Luo, Y., et al <sup>[2]</sup>, they proposed a linear formula (5) for determining the association constant K for the reversible process that forms HBD····HBA between monomer HBD and molecular HBA.

$$\frac{1}{\Delta\delta} = \frac{a}{K} \cdot \frac{1}{C} + a \tag{5}$$

 $1/\Delta\delta$  is the reciprocal of the proton chemical shift changes and 1/C is the reciprocal of the proton-acceptor concentration. They also developed experimental method to determine the hydrogen bonds binding energy ( $E_{\text{HB}}$ ) by a linear equation (6) as a function of the natural logarithm of chemical shifts.

$$ln\delta + \sigma_{\delta} = -\frac{E_{HB}}{RT} + A \tag{6}$$

Where the compensated term  $\sigma_{\delta}$  at different temperature could be obtained according to equation (7):

$$\sigma_{\delta} = ln^{\text{iro}} \left[ \frac{\delta_{DA} - \delta_{D}}{\delta \cdot (\delta - \delta_{0})} \cdot \frac{C_{D}}{C_{D_{0}}} \cdot C - \frac{1}{\delta} \cdot C \right]$$
(7)

In the light of the <sup>1</sup>H NMR experimental data in **Tables S6** and **S7** and **Figures S4-S9**, Origin 2018 software was employed to fit the curve as shown in **Figures S2** and **S3**.

#### Note S3. Calculation of Huggins constant<sup>[3]</sup>.

From the perspective of thermodynamic, intrinsic viscosity  $[\eta]$  is one of the important parameters to reflect the solubility of a solvent, and its value can be calculated by equations (8) and (9):

$$\eta_{sp} = \frac{\eta - \eta_s}{\eta_s} \tag{8}$$

$$[\eta] = lim^{[n]} (\frac{\eta_{sp}}{C})_{c \to 0}$$
<sup>(9)</sup>

Where  $\eta_{sp}$  and  $\eta$  are the specific viscosity and viscosity of solutions, and  $\eta_s$  is the viscosity of the pure solvent. *C* is the concentration of solution.

The Huggins-equation is a truncated version of equation (10) and is defined as follows:

$$\eta_{sp} = C \cdot [\eta] + K_H \cdot (C \cdot [\eta])^2 + A \cdot (C \cdot [\eta])^n \tag{10}$$

Where  $K_{\rm H}$  is the Huggins constant, A and n are obtained from the non-linear regression.

# Note S4. Determination of the formyl group content and DS of regenerated formate cellulose.

The content of formyl groups in the regenerated formate cellulose was measured according to the calcium acetate method.<sup>[4]</sup> Firstly, 50 grams of deionized water and 30 grams of 0.25 M calcium acetate solution were mixed in a flask and then 0.5 gram of regenerated formate cellulose was added. After reaction for 12 hours with continuously shaking, 30 grams of the dispersion liquid was titrated with 0.01 M sodium hydroxide using a phenolphthalein indicator. Then, the formyl contents were calculated according to the formula (11):

Formyl content (mmol/g) = 
$$\frac{\frac{50 + 30 + 0.5}{30} \times 0.01 \times V_{NaOH}}{m}$$

(11)

Where 0.01 is the molar concentration (mol/L) of NaOH,  $V_{\text{NaOH}}$  is the volume (mL) of NaOH solution used for titration, and m is the weight (gram) of regenerated formate cellulose.

The degree of substitution (DS) values of the regenerated formate cellulose were

determined according to the back-titration method.<sup>[5]</sup> The regenerated formate cellulose (0.3 g) was mixed with 0.2 M potassium hydroxide in 50% aqueous alcohol (30 mL) in a conical flask. Then, the flask was shaken at 120 rpm at room temperature for 24 hours. After that, 0.2 M hydrochloric acid (30 mL) was added. A further half an hour later, the solution was titrated with 0.1 M sodium hydroxide, and phenolphthalein was used as an indicator. The formyl content was calculated by the formula (12), and then the DS value was calculated by the formula (13). Native cellulose was also carried out using the same procedures as a blank.

Formyl (%) = 
$$\frac{(V_S - V_B) \times N_{NaOH} \times M_{formyl} \times 10^{-3} \times 100}{W}$$

(12)

$$DS = \frac{162 \times Formyl\%}{M_{formyl} \times 100 - ((M_{formyl} - 1) \times Formyl\%)}$$

(13)

Here,  $V_{\rm B}$  (mL) is the volume of NaOH required for titration of the blank,  $V_{\rm S}$  (mL) is the volume of NaOH required to titrate the regenerated formate cellulose,  $N_{\rm NaOH}$  is the normality of the NaOH solution,  $M_{\rm formyl}$  is the molecular weight of the formyl group (29 g/mol), W is the mass of sample used, and 162 is the molecular weight of the anhydroglucose units.

#### Note S5. The process of regenerating cellulose and recycling solvent.

Water was added to the dissolved cellulose mixture solution (10:1), and the mixture was stirred for around twenty minutes. The precipitated cellulose was filtrated and putted it into a vacuum drying oven 60 °C for 12 hours. The excess water was removed using rotary evaporator. Finally, we obtain the regenerated formate cellulose and recycled DES. In consideration of FA tends to be evaporated with water, the loss of FA is approximate 2-3 grams, so pristine solvent (DES) is used to make up for it.

#### Note S6. The preparation of hydrogel.

The cellulose dissolved solution was centrifuged at 5000 rpm for 5 minutes to remove

the bubbles, and the solution was evenly poured into petri dish, then 30 wt% calcium chloride aqueous solution was added and soaked for about 4–5 hours. Take out the sample and then soak it in ethanol for about 1–2 hours to obtain the regenerated formate cellulose hydrogel.



Figure S1 (a) Concentration and (b) temperature dependence experiment of <sup>1</sup>H NMR spectra of FA in CDCl<sub>3</sub>. (c) Concentration dependence of the <sup>1</sup>H NMR shift of COOH in FA in CDCl<sub>3</sub>. (d) Plot of 1/T versus  $\ln \delta + \Delta \delta$  of COOH protons for FA.



**Figure S2** Plot of 1/C versus  $1/\Delta\delta$  for D1-A*n* couples.



**Figure S3** Plot of 1000/T versus  $-(\ln(\delta \times 10^6) + \sigma_{\delta})$  for D1-An couples.



Figure S4 Concentration dependence experiment of <sup>1</sup>H NMR spectra of D1 with (a) A1, (b)

A2, (c) A3, (d) A4, (e) A5, and (f) A6 in CDCl<sub>3</sub>.



**Figure S5** Concentration dependence experiment of <sup>1</sup>H NMR spectra of D1 with (a) A7, (b) A8, (c) A9, (d) A10, (e) A11, and (f) A12 in CDCl<sub>3</sub>.



**Figure S6** Concentration dependence experiment of <sup>1</sup>H NMR spectra of D1 with (a) A13, (b) A14, (c) A15, (d) A16, (e) A17, and (f) A18 in CDCl<sub>3</sub>.



**Figure S7** Temperature dependence experiment of <sup>1</sup>H NMR spectra of D1 with (a) A1, (b) A2, (c) A3, (d) A4, (e) A5, and (f) A6 in CDCl<sub>3</sub>.



Figure S8 Temperature dependence experiment of <sup>1</sup>H NMR spectra of D1 with (a) A7, (b)

A8, (c) A9, (d) A10, (e) A11, and (f) A12 in CDCl<sub>3</sub>.



**Figure S9** Temperature dependence experiment of <sup>1</sup>H NMR spectra of D1 with (a) A13, (b) A14, (c) A15, (d) A16, (e) A17, and (f) A18 in CDCl<sub>3</sub>.



**Figure S10** (a) Relationship of <sup>1</sup>H NMR fit the curve calculated  $E_{\text{HB},2}$  and  $\Delta G_2$  for D1-A*n* couples. (b) The relationship between  $E_{\text{HB}}$  and  $\Delta G$  of D1-A*n* couples.



Figure S11 Illustration of the synthesis process of the eutectic solvent D1A2.



Figure S12 (a) Dependence of DP of the regenerated formate cellulose on  $\alpha$  for different combination of HBA and HBD. (b) Photographic images of preparation of transparent hydrogel.



**Figure S13** (a) Flow chart and (b) photographic images of the dissolving biomass process using the D1A2 and regenerating cellulose using water. (c) Micrographs of MCC, Poplar, pulp and cotton dissolved by the D1A2 at room temperature.



**Figure S14** (a) Concentration dependence of  $\eta_{sp}/C$  for cellulose/solvent solution at room temperature. (b) The specific viscosity ( $\eta_{sp}$ ), as a function of  $C[\eta]$  for cellulose/solvent solution at room temperature.



Figure S15 (a) The distribution of elements in EDX spectrum. (b) EDX elemental (C, O,

Zn, and Cl) mapping images of the regenerated formate cellulose (magnification:  $\times$ 5000).



**Figure S16** FTIR spectra of the regenerated formate cellulose (process 1) and that after boiling in water for 6 hours (process 2).



Figure S17 Photographic pictures of (a) the D1A2 solvent after seven successive recycles

and (b) their corresponding dissolved cellulose solutions.

| Parameters               | MCC                  | Wood cellulose       | Pulp cellulose       | Cotton linters       |
|--------------------------|----------------------|----------------------|----------------------|----------------------|
| Degree of polymerization | 183                  | 717                  | 1539                 | 2243                 |
| Average molecular weight | 2.96×10 <sup>4</sup> | 1.16×10 <sup>5</sup> | 2.49×10 <sup>5</sup> | 3.63×10 <sup>5</sup> |
| Content of α-cellulose   | 98.31%               | 95.75%               | 93.90%               | 99.97%               |
| Content of hemicellulose | 1.73%                | 3.89%                | 5.90%                | -                    |
| Content of lignin        | _                    | 0.36%                | 0.20%                | 0.03%                |
| Crystallinity index      | 62.12%               | 62.41%               | 53.58%               | 60.72%               |

 Table S1 Properties of four types of cellulose feedstocks [6].

| HBD | BE (kcal mol <sup>-1</sup> ) | рКа  |
|-----|------------------------------|------|
| FA  | -7.196                       | 3.75 |
| AA  | -10.279                      | 4.76 |
| LA  | -16.876                      | 3.86 |
| MA  | -8.946                       | 15.5 |
| ME  | -6.826                       | 23.5 |

**Table S2** The binding energy (BE) and pKa <sup>[7]</sup> of formic acid (FA), acetic acid (AA), lactic acid (LA), methanol (MA), and methanamide (ME).

| Concentration vari         | ation experiments | Temperature vari | ation experiments |
|----------------------------|-------------------|------------------|-------------------|
| $C \pmod{\mathrm{L}^{-1}}$ | $\delta$ (ppm)    | <i>T</i> (K)     | $\delta$ (ppm)    |
| 0.150                      | 8.51              | 298              | 9.96              |
| 0.200                      | 9.01              | 303              | 9.91              |
| 0.250                      | 9.26              | 308              | 9.79              |
| 0.333                      | 9.62              | 313              | 9.65              |
| 0.417                      | 9.84              | 318              | 9.49              |
| 0.500                      | 9.97              | 323              | 9.34              |
|                            |                   | 328              | 9.06              |

Table S3 Concentration dependent and temperature dependent experiments of FA.

**Table S4** Parameters of formic acid determined by concentration variation and temperature

 variation experiments at 296K.

| Concentration variation experiments |                         |                                    |                              |                                        |  |  |  |  |  |
|-------------------------------------|-------------------------|------------------------------------|------------------------------|----------------------------------------|--|--|--|--|--|
| $\delta_0$ (ppm)                    | $\delta_{\infty}$ (ppm) | $\frac{K_1}{(L \text{ mol}^{-1})}$ | $K_2$ (L mol <sup>-1</sup> ) | $\Delta G_1$ (kcal mol <sup>-1</sup> ) |  |  |  |  |  |
| 8.263                               | 10.575                  | 2.665                              | 9.482×10 <sup>-4</sup>       | -0.577                                 |  |  |  |  |  |
|                                     | Tempe                   | rature variation exp               | eriments                     |                                        |  |  |  |  |  |
| $E_{\mathrm{HB},1}$                 |                         | $\Delta S_1$                       |                              | $\Delta G_{\mathrm{T1}}$               |  |  |  |  |  |
| (kcal mo                            | l <sup>-1</sup> )       | (cal mol <sup>-1</sup> )           | (ko                          | cal mol <sup>-1</sup> )                |  |  |  |  |  |
| -8.258                              | }                       | -21.286                            |                              | -1.957                                 |  |  |  |  |  |

| D1A1 | C (A1)                 | 1/C                    | δ        | $\Delta\delta$ | $1/\Delta\delta$     |
|------|------------------------|------------------------|----------|----------------|----------------------|
|      | (mol L <sup>-1</sup> ) | $(L mol^{-1})$         | (ppm)    | (ppm)          | (ppm <sup>-1</sup> ) |
|      | 0                      |                        | 9.81     |                |                      |
|      | 0.333                  | 3.003                  | 11.32    | 1.51           | 0.662                |
|      | 0.417                  | 2.398                  | 11.37    | 1.56           | 0.641                |
|      | 0.550                  | 1.818                  | 11.41    | 1.60           | 0.625                |
|      | 0.833                  | 1.200                  | 11.44    | 1.63           | 0.613                |
| D1A2 | C (A2)                 | 1/C                    | δ        | $\Delta\delta$ | $1/\Delta\delta$     |
|      | (mol L <sup>-1</sup> ) | $(L mol^{-1})$         | (ppm)    | (ppm)          | (ppm <sup>-1</sup> ) |
|      | 0                      |                        | 9.81     |                |                      |
|      | 0.333                  | 3.003                  | 10.94    | 1.13           | 0.885                |
|      | 0.417                  | 2.398                  | 10.98    | 1.17           | 0.855                |
|      | 0.550                  | 1.818                  | 11.08    | 1.27           | 0.787                |
|      | 0.833                  | 1.200                  | 11.16    | 1.35           | 0.741                |
|      | 1.667                  | 0.600                  | 11.24    | 1.43           | 0.699                |
| D1A3 | C (A3)                 | 1/C                    | $\delta$ | $\Delta\delta$ | $1/\Delta\delta$     |
|      | (mol L <sup>-1</sup> ) | $(L mol^{-1})$         | (ppm)    | (ppm)          | (ppm <sup>-1</sup> ) |
|      | 0                      |                        | 9.81     |                |                      |
|      | 0.333                  | 3.003                  | 10.58    | 0.77           | 1.299                |
|      | 0.417                  | 2.398                  | 10.73    | 0.92           | 1.087                |
|      | 0.550                  | 1.818                  | 10.80    | 0.99           | 1.010                |
|      | 0.833                  | 1.200                  | 10.82    | 1.01           | 0.990                |
|      | 1.667                  | 0.600                  | 10.90    | 1.09           | 0.917                |
| D1A4 | C (A4)                 | 1/C                    | $\delta$ | $\Delta\delta$ | $1/\Delta\delta$     |
|      | $(mol L^{-1})$         | (L mol <sup>-1</sup> ) | (ppm)    | (ppm)          | (ppm <sup>-1</sup> ) |
|      | 0                      |                        | 9.81     |                |                      |
|      | 0.333                  | 3.003                  | 10.22    | 0.41           | 2.439                |
|      | 0.417                  | 2.398                  | 10.28    | 0.47           | 2.128                |
|      | 0.550                  | 1.818                  | 10.33    | 0.52           | 1.923                |
|      | 0.833                  | 1.200                  | 10.45    | 0.64           | 1.563                |
|      | 1.667                  | 0.600                  | 10.56    | 0.75           | 1.333                |
| D1A5 | C (A5)                 | 1/C                    | $\delta$ | $\Delta\delta$ | $1/\Delta\delta$     |
|      | (mol L <sup>-1</sup> ) | $(L mol^{-1})$         | (ppm)    | (ppm)          | (ppm <sup>-1</sup> ) |
|      | 0                      |                        | 9.81     |                |                      |
|      | 0.333                  | 3.003                  | 9.97     | 0.16           | 6.250                |
|      | 0.417                  | 2.398                  | 10.01    | 0.20           | 5.000                |
|      | 0.550                  | 1.818                  | 10.07    | 0.26           | 3.846                |
|      | 0.833                  | 1.200                  | 10.31    | 0.50           | 2.000                |
|      | 1.667                  | 0.600                  | 10.42    | 0.61           | 1.639                |
| D1A6 | C (A6)                 | 1/C                    | $\delta$ | $\Delta\delta$ | $1/\Delta\delta$     |
|      | (mol L <sup>-1</sup> ) | $(L mol^{-1})$         | (ppm)    | (ppm)          | (ppm <sup>-1</sup> ) |

Table S5 Concentration dependence experiment of D1 with A1-A18. (stock [D1] = 1 mmol)

|       | <u>^</u>               |                        | 0.01     |                |                      |
|-------|------------------------|------------------------|----------|----------------|----------------------|
|       | 0 222                  | 2.002                  | 9.81     | 1 50           | 0.000                |
|       | 0.333                  | 3.003                  | 11.40    | 1.59           | 0.629                |
|       | 0.370                  | 2.703                  | 11.44    | 1.63           | 0.613                |
|       | 0.417                  | 2.398                  | 11.47    | 1.66           | 0.602                |
|       | 0.476                  | 2.101                  | 11.49    | 1.68           | 0.595                |
|       | 0.550                  | 1.818                  | 11.52    | 1.71           | 0.585                |
| D1A7  | C (A7)                 | 1/C                    | $\delta$ | $\Delta\delta$ | $1/\Delta\delta$     |
|       | $(mol L^{-1})$         | $(L mol^{-1})$         | (ppm)    | (ppm)          | (ppm <sup>-1</sup> ) |
|       | 0                      |                        | 9.81     |                |                      |
|       | 0.333                  | 3.003                  | 11.20    | 1.39           | 0.719                |
|       | 0.417                  | 2.398                  | 11.31    | 1.50           | 0.671                |
|       | 0.550                  | 1.818                  | 11.36    | 1.55           | 0.645                |
|       | 0.833                  | 1.200                  | 11.40    | 1.59           | 0.629                |
| D1A8  | C (A8)                 | 1/C                    | $\delta$ | $\Delta\delta$ | $1/\Delta\delta$     |
|       | $(mol L^{-1})$         | $(L mol^{-1})$         | (ppm)    | (ppm)          | (ppm <sup>-1</sup> ) |
|       | 0                      |                        | 9.81     |                |                      |
|       | 0.333                  | 3.003                  | 10.79    | 0.98           | 1.020                |
|       | 0.417                  | 2.398                  | 10.92    | 1.11           | 0.901                |
|       | 0.550                  | 1.818                  | 11.01    | 1.20           | 0.833                |
|       | 0.833                  | 1.200                  | 11.09    | 1.28           | 0.781                |
|       | 1.667                  | 0.600                  | 11.18    | 1.37           | 0.729                |
| D1A9  | C (A9)                 | 1/C                    | δ        | $\Delta\delta$ | $1/\Delta\delta$     |
|       | $(mol L^{-1})$         | $(L mol^{-1})$         | (ppm)    | (ppm)          | (ppm <sup>-1</sup> ) |
|       | 0                      |                        | 9.81     |                |                      |
|       | 0.333                  | 3.003                  | 10.36    | 0.55           | 1.818                |
|       | 0.417                  | 2.398                  | 10.46    | 0.65           | 1.538                |
|       | 0.550                  | 1.818                  | 10.56    | 0.75           | 1.333                |
|       | 0.833                  | 1.200                  | 10.70    | 0.89           | 1.124                |
|       | 1.667                  | 0.600                  | 10.72    | 0.91           | 1.099                |
| D1A10 | C (A10)                | 1/C                    | δ        | $\Delta\delta$ | $1/\Delta\delta$     |
|       | (mol L <sup>-1</sup> ) | (L mol <sup>-1</sup> ) | (ppm)    | (ppm)          | (ppm <sup>-1</sup> ) |
|       | 0                      | · · · · · ·            | 9.81     |                |                      |
|       | 0.333                  | 3.003                  | 10.07    | 0.26           | 3.846                |
|       | 0.417                  | 2.398                  | 10.18    | 0.37           | 2.703                |
|       | 0.550                  | 1.818                  | 10.22    | 0.41           | 2.439                |
|       | 0.833                  | 1.200                  | 10.55    | 0.74           | 1.351                |
|       | 1.667                  | 0.600                  | 10.98    | 1.17           | 0.855                |
| D1A11 | C (A11)                | 1/C                    | δ        | $\Delta\delta$ | $1/\Delta\delta$     |
|       | $(\text{mol } L^{-1})$ | $(L \text{ mol}^{-1})$ | (ppm)    | (ppm)          | $(ppm^{-1})$         |
|       | 0                      | ( )                    | 9.81     | vrr/           | <u>(11)</u>          |
|       | 0.333                  | 3.003                  | 11.12    | 1.31           | 0.763                |
|       | 0.370                  | 2.703                  | 11.14    | 1.33           | 0.752                |
|       | 0.417                  | 2.398                  | 11.15    | 1.34           | 0.746                |
|       | 0.476                  | 2.101                  | 11.16    | 1.35           | 0.741                |
|       | 5.170                  | 29                     |          | 1.00           | ~·· / · · I          |

|       | 0.550                  | 1.818                  | 11.17    | 1.36           | 0.735                |
|-------|------------------------|------------------------|----------|----------------|----------------------|
| D1A12 | C (A12)                | 1/C                    | δ        | $\Delta\delta$ | $1/\Delta\delta$     |
|       | (mol L <sup>-1</sup> ) | $(L mol^{-1})$         | (ppm)    | (ppm)          | (ppm <sup>-1</sup> ) |
|       | 0                      |                        | 9.81     |                |                      |
|       | 0.333                  | 3.003                  | 10.94    | 1.13           | 0.885                |
|       | 0.417                  | 2.398                  | 11.02    | 1.21           | 0.826                |
|       | 0.550                  | 1.818                  | 11.06    | 1.25           | 0.800                |
|       | 0.833                  | 1.200                  | 11.09    | 1.28           | 0.781                |
| D1A13 | C (A13)                | 1/C                    | $\delta$ | $\Delta\delta$ | $1/\Delta\delta$     |
|       | $(mol L^{-1})$         | $(L mol^{-1})$         | (ppm)    | (ppm)          | (ppm <sup>-1</sup> ) |
|       | 0                      |                        | 9.81     |                |                      |
|       | 0.333                  | 3.003                  | 10.45    | 0.64           | 1.563                |
|       | 0.417                  | 2.398                  | 10.51    | 0.70           | 1.429                |
|       | 0.550                  | 1.818                  | 10.56    | 0.75           | 1.333                |
|       | 0.833                  | 1.200                  | 10.59    | 0.78           | 1.282                |
|       | 1.667                  | 0.600                  | 10.77    | 0.96           | 1.042                |
| D1A14 | C (A14)                | 1/C                    | $\delta$ | $\Delta\delta$ | $1/\Delta\delta$     |
|       | (mol L <sup>-1</sup> ) | (L mol <sup>-1</sup> ) | (ppm)    | (ppm)          | (ppm <sup>-1</sup> ) |
|       | 0                      |                        | 9.81     |                |                      |
|       | 0.333                  | 3.003                  | 10.24    | 0.43           | 2.326                |
|       | 0.417                  | 2.398                  | 10.37    | 0.56           | 1.786                |
|       | 0.550                  | 1.818                  | 10.41    | 0.60           | 1.667                |
|       | 0.833                  | 1.200                  | 10.56    | 0.75           | 1.333                |
|       | 1.667                  | 0.600                  | 10.71    | 0.90           | 1.111                |
| D1A15 | C (A15)                | 1/C                    | δ        | $\Delta\delta$ | $1/\Delta\delta$     |
|       | $(mol L^{-1})$         | $(L mol^{-1})$         | (ppm)    | (ppm)          | (ppm <sup>-1</sup> ) |
|       | 0                      |                        | 9.81     |                |                      |
|       | 0.333                  | 3.003                  | 11.01    | 1.20           | 0.833                |
|       | 0.370                  | 2.703                  | 11.09    | 1.28           | 0.781                |
|       | 0.417                  | 2.398                  | 11.14    | 1.33           | 0.752                |
|       | 0.476                  | 2.101                  | 11.19    | 1.38           | 0.725                |
|       | 0.550                  | 1.818                  | 11.21    | 1.40           | 0.714                |
| D1A16 | C (A16)                | 1/C                    | $\delta$ | $\Delta\delta$ | $1/\Delta\delta$     |
|       | $(mol L^{-1})$         | $(L \text{ mol}^{-1})$ | (ppm)    | (ppm)          | (ppm <sup>-1</sup> ) |
|       | 0                      |                        | 9.81     |                |                      |
|       | 0.333                  | 3.003                  | 10.91    | 1.10           | 0.909                |
|       | 0.417                  | 2.398                  | 10.98    | 1.17           | 0.855                |
|       | 0.550                  | 1.818                  | 11.11    | 1.30           | 0.769                |
|       | 0.833                  | 1.200                  | 11.17    | 1.36           | 0.735                |
| D1A17 | C (A17)                | 1/C                    | δ        | $\Delta\delta$ | $1/\Delta\delta$     |
|       | $(mol L^{-1})$         | $(L mol^{-1})$         | (ppm)    | (ppm)          | (ppm <sup>-1</sup> ) |
|       | 0                      |                        | 9.81     |                |                      |
|       | 0.333                  | 3.003                  | 10.66    | 0.85           | 1.176                |

|       | 0.417          | 2.398          | 10.79    | 0.98           | 1.020                |
|-------|----------------|----------------|----------|----------------|----------------------|
|       | 0.550          | 1.818          | 10.87    | 1.06           | 0.943                |
|       | 0.833          | 1.200          | 10.91    | 1.10           | 0.909                |
|       | 1.667          | 0.600          | 10.99    | 1.18           | 0.847                |
| D1A18 | C (A18)        | 1/C            | $\delta$ | $\Delta\delta$ | $1/\Delta\delta$     |
|       | $(mol L^{-1})$ | $(L mol^{-1})$ | (ppm)    | (ppm)          | (ppm <sup>-1</sup> ) |
|       | 0              |                | 9.81     |                |                      |
|       | 0.333          | 3.003          | 10.22    | 0.41           | 2.439                |
|       | 0.417          | 2.398          | 10.35    | 0.54           | 1.852                |
|       | 0.550          | 1.818          | 10.46    | 0.65           | 1.538                |
|       | 0.833          | 1.200          | 10.57    | 0.76           | 1.316                |
|       | 1.667          | 0.600          | 10.69    | 0.88           | 1.136                |

| D1A1 | [D1]                   | [A1]                   | Т   | 1/T×1000           | δ        | 1 6          |                 |
|------|------------------------|------------------------|-----|--------------------|----------|--------------|-----------------|
|      | $(mol L^{-1})$         | $(mol L^{-1})$         | (K) | (K <sup>-1</sup> ) | (ppm)    | ln∂          | $\sigma_\delta$ |
|      | 1.667                  | 0.417                  | 298 | 3.356              | 10.82    | 2.381        | -2.815          |
|      | 1.667                  | 0.417                  | 303 | 3.300              | 10.59    | 2.360        | -2.117          |
|      | 1.667                  | 0.417                  | 308 | 3.247              | 10.36    | 2.338        | -1.477          |
|      | 1.667                  | 0.417                  | 313 | 3.195              | 10.13    | 2.316        | -0.759          |
|      | 1.667                  | 0.417                  | 318 | 3.145              | 9.89     | 2.292        | 0.417           |
|      | 1.667                  | 0.417                  | 323 | 3.096              | 9.64     | 2.266        | 0.884           |
|      | 1.667                  | 0.417                  | 328 | 3.049              | 9.44     | 2.245        | 1.444           |
| D1A2 | [D1]                   | [A2]                   | Т   | 1/ <i>T</i> ×1000  | δ        | 15           | _               |
|      | (mol L <sup>-1</sup> ) | (mol L <sup>-1</sup> ) | (K) | (K <sup>-1</sup> ) | (ppm)    | In <i>o</i>  | $\sigma_\delta$ |
|      | 1.667                  | 0.417                  | 298 | 3.356              | 11.16    | 2.412        | -4.778          |
|      | 1.667                  | 0.417                  | 303 | 3.300              | 11.00    | 2.398        | -3.545          |
|      | 1.667                  | 0.417                  | 308 | 3.247              | 10.82    | 2.381        | -2.815          |
|      | 1.667                  | 0.417                  | 313 | 3.195              | 10.64    | 2.365        | -2.259          |
|      | 1.667                  | 0.417                  | 318 | 3.145              | 10.43    | 2.345        | -1.673          |
|      | 1.667                  | 0.417                  | 323 | 3.096              | 10.24    | 2.326        | -1.122          |
|      | 1.667                  | 0.417                  | 328 | 3.049              | 10.05    | 2.308        | -0.451          |
| D1A3 | [D1]                   | [A3]                   | Т   | 1/T×1000           | $\delta$ | ln S         | -               |
|      | $(mol L^{-1})$         | $(mol L^{-1})$         | (K) | $(K^{-1})$         | (ppm)    | mo           | $o_{\delta}$    |
|      | 1.667                  | 0.417                  | 298 | 3.356              | 10.37    | 2.339        | -1.505          |
|      | 1.667                  | 0.417                  | 303 | 3.300              | 10.16    | 2.318        | -0.863          |
|      | 1.667                  | 0.417                  | 308 | 3.247              | 9.91     | 2.294        | -0.022          |
|      | 1.667                  | 0.417                  | 313 | 3.195              | 9.62     | 2.264        | 0.602           |
|      | 1.667                  | 0.417                  | 318 | 3.145              | 9.37     | 2.238        | 1.025           |
|      | 1.667                  | 0.417                  | 323 | 3.096              | 9.11     | 2.209        | 1.479           |
|      | 1.667                  | 0.417                  | 328 | 3.049              | 8.84     | 2.179        | 2.224           |
| D1A4 | [D1]                   | [A4]                   | Т   | 1/ <i>T</i> ×1000  | $\delta$ | Ins          | c               |
|      | $(mol L^{-1})$         | $(mol L^{-1})$         | (K) | (K <sup>-1</sup> ) | (ppm)    | 1110         | $0_{\delta}$    |
|      | 1.667                  | 0.417                  | 298 | 3.356              | 10.39    | 2.341        | -1.562          |
|      | 1.667                  | 0.417                  | 303 | 3.300              | 10.25    | 2.327        | -1.153          |
|      | 1.667                  | 0.417                  | 308 | 3.247              | 10.11    | 2.314        | -0.686          |
|      | 1.667                  | 0.417                  | 313 | 3.195              | 9.91     | 2.294        | -0.266          |
|      | 1.667                  | 0.417                  | 318 | 3.145              | 9.74     | 2.276        | 0.508           |
|      | 1.667                  | 0.417                  | 323 | 3.096              | 9.54     | 2.255        | 0.895           |
|      | 1.667                  | 0.417                  | 328 | 3.049              | 9.31     | 2.231        | 1.297           |
| D1A5 | [D1]                   | [A5]                   | Т   | 1/T×1000           | $\delta$ | $\ln \delta$ | ς.              |
|      | $(mol L^{-1})$         | $(mol L^{-1})$         | (K) | (K <sup>-1</sup> ) | (ppm)    | 1110         | U <sub>0</sub>  |
|      | 1.667                  | 0.417                  | 298 | 3.356              | 9.76     | 2.278        | -2.521          |
|      | 1.667                  | 0.417                  | 303 | 3.300              | 9.60     | 2.262        | -2.326          |
|      | 1.667                  | 0.417                  | 308 | 3.247              | 9.40     | 2.241        | -2.025          |
|      | 1.667                  | 0.417                  | 313 | 3.195              | 9.24     | 2.219        | -1.659          |

Table S6 Temperature dependence experiment of D1 with A1-A18. (stock [D1] = 1 mmol)

32

|       | 1.667                  | 0.417                  | 318 | 3.145              | 9.04     | 2.202 | -1.341          |
|-------|------------------------|------------------------|-----|--------------------|----------|-------|-----------------|
|       | 1.667                  | 0.417                  | 323 | 3.096              | 8.82     | 2.177 | -1.176          |
|       | 1.667                  | 0.417                  | 328 | 3.049              | 8.62     | 2.154 | -0.889          |
| D1A6  | [D1]                   | [A6]                   | Т   | 1/T×1000           | δ        | 1 6   |                 |
|       | $(mol L^{-1})$         | $(mol L^{-1})$         | (K) | (K <sup>-1</sup> ) | (ppm)    | ln∂   | $\sigma_\delta$ |
|       | 1.667                  | 0.417                  | 298 | 3.356              | 11.08    | 2.405 | -4.020          |
|       | 1.667                  | 0.417                  | 303 | 3.300              | 10.94    | 2.392 | -3.268          |
|       | 1.667                  | 0.417                  | 308 | 3.247              | 10.78    | 2.378 | -2.683          |
|       | 1.667                  | 0.417                  | 313 | 3.195              | 10.62    | 2.363 | -2.202          |
|       | 1.667                  | 0.417                  | 318 | 3.145              | 10.47    | 2.349 | -1.784          |
|       | 1.667                  | 0.417                  | 323 | 3.096              | 10.31    | 2.333 | -1.333          |
|       | 1.667                  | 0.417                  | 328 | 3.049              | 10.13    | 2.316 | -0.759          |
| D1A7  | [D1]                   | [A7]                   | Т   | 1/T×1000           | δ        | 15    | _               |
|       | (mol L <sup>-1</sup> ) | (mol L <sup>-1</sup> ) | (K) | (K <sup>-1</sup> ) | (ppm)    | Ino   | $\sigma_\delta$ |
|       | 1.667                  | 0.417                  | 298 | 3.356              | 10.80    | 2.380 | -2.745          |
|       | 1.667                  | 0.417                  | 303 | 3.300              | 10.70    | 2.370 | -2.435          |
|       | 1.667                  | 0.417                  | 308 | 3.247              | 10.52    | 2.353 | -1.922          |
|       | 1.667                  | 0.417                  | 313 | 3.195              | 10.36    | 2.338 | -1.477          |
|       | 1.667                  | 0.417                  | 318 | 3.145              | 10.19    | 2.321 | -0.963          |
|       | 1.667                  | 0.417                  | 323 | 3.096              | 10.00    | 2.303 | -0.229          |
|       | 1.667                  | 0.417                  | 328 | 3.049              | 9.83     | 2.285 | 0.977           |
| D1A8  | [D1]                   | [A8] (mol              | Т   | 1/T×1000           | δ        | le S  | -               |
|       | $(mol L^{-1})$         | L-1)                   | (K) | (K <sup>-1</sup> ) | (ppm)    | mo    | $o_{\delta}$    |
|       | 1.667                  | 0.417                  | 298 | 3.356              | 10.11    | 2.314 | -0.686          |
|       | 1.667                  | 0.417                  | 303 | 3.300              | 9.93     | 2.296 | 0.146           |
|       | 1.667                  | 0.417                  | 308 | 3.247              | 9.70     | 2.272 | 0.878           |
|       | 1.667                  | 0.417                  | 313 | 3.195              | 9.55     | 2.257 | 1.271           |
|       | 1.667                  | 0.417                  | 318 | 3.145              | 9.37     | 2.238 | 1.452           |
|       | 1.667                  | 0.417                  | 323 | 3.096              | 9.18     | 2.217 | 2.186           |
|       | 1.667                  | 0.417                  | 328 | 3.049              | 8.94     | 2.191 | 2.212           |
| D1A9  | [D1]                   | [A9]                   | Т   | $1/T \times 1000$  | $\delta$ | Ins   | 6.              |
|       | $(mol L^{-1})$         | $(mol L^{-1})$         | (K) | (K <sup>-1</sup> ) | (ppm)    | mo    | $0_{\delta}$    |
|       | 1.667                  | 0.417                  | 298 | 3.356              | 10.59    | 2.360 | -2.117          |
|       | 1.667                  | 0.417                  | 303 | 3.300              | 10.42    | 2.344 | -1.698          |
|       | 1.667                  | 0.417                  | 308 | 3.247              | 10.26    | 2.328 | -1.145          |
|       | 1.667                  | 0.417                  | 313 | 3.195              | 10.07    | 2.309 | -1.777          |
|       | 1.667                  | 0.417                  | 318 | 3.145              | 9.93     | 2.296 | -2.219          |
|       | 1.667                  | 0.417                  | 323 | 3.096              | 9.71     | 2.273 | -2.442          |
|       | 1.667                  | 0.417                  | 328 | 3.049              | 9.52     | 2.253 | -2.953          |
| D1A10 | [D1]                   | [A10]                  | Т   | 1/T×1000           | $\delta$ | Ins   | σ.              |
|       | $(mol L^{-1})$         | $(mol L^{-1})$         | (K) | (K <sup>-1</sup> ) | (ppm)    | 1110  | Uδ              |
|       | 1.667                  | 0.417                  | 298 | 3.356              | 9.98     | 2.301 | -0.131          |
|       | 1.667                  | 0.417                  | 303 | 3.300              | 9.86     | 2.288 | 0.665           |
|       | 1.667                  | 0.417                  | 308 | 3.247              | 9.67     | 2.269 | 0.779           |

|                         | 1.667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 313                                                                                                                                                                                                                                                                                                                                                                 | 3.195                                                                                                                                                                                             | 9.50                                                                                                                                                                                              | 2.251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.899                                                                                                                                                                                                                             |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         | 1.667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 318                                                                                                                                                                                                                                                                                                                                                                 | 3.145                                                                                                                                                                                             | 9.37                                                                                                                                                                                              | 2.237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.290                                                                                                                                                                                                                             |
|                         | 1.667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 323                                                                                                                                                                                                                                                                                                                                                                 | 3.096                                                                                                                                                                                             | 9.13                                                                                                                                                                                              | 2.212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.667                                                                                                                                                                                                                             |
|                         | 1.667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 328                                                                                                                                                                                                                                                                                                                                                                 | 3.049                                                                                                                                                                                             | 8.89                                                                                                                                                                                              | 2.185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.923                                                                                                                                                                                                                             |
| D1A11                   | [D1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [A11]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Т                                                                                                                                                                                                                                                                                                                                                                   | 1/ <i>T</i> ×1000                                                                                                                                                                                 | δ                                                                                                                                                                                                 | 1 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                   |
|                         | (mol L <sup>-1</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $(mol L^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (K)                                                                                                                                                                                                                                                                                                                                                                 | (K <sup>-1</sup> )                                                                                                                                                                                | (ppm)                                                                                                                                                                                             | ln∂                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\sigma_\delta$                                                                                                                                                                                                                   |
|                         | 1.667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 298                                                                                                                                                                                                                                                                                                                                                                 | 3.356                                                                                                                                                                                             | 10.97                                                                                                                                                                                             | 2.395                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -3.401                                                                                                                                                                                                                            |
|                         | 1.667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 303                                                                                                                                                                                                                                                                                                                                                                 | 3.300                                                                                                                                                                                             | 10.80                                                                                                                                                                                             | 2.379                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -2.748                                                                                                                                                                                                                            |
|                         | 1.667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 308                                                                                                                                                                                                                                                                                                                                                                 | 3.247                                                                                                                                                                                             | 10.61                                                                                                                                                                                             | 2.362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -2.174                                                                                                                                                                                                                            |
|                         | 1.667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 313                                                                                                                                                                                                                                                                                                                                                                 | 3.195                                                                                                                                                                                             | 10.42                                                                                                                                                                                             | 2.343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1.646                                                                                                                                                                                                                            |
|                         | 1.667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 318                                                                                                                                                                                                                                                                                                                                                                 | 3.145                                                                                                                                                                                             | 10.22                                                                                                                                                                                             | 2.324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1.060                                                                                                                                                                                                                            |
|                         | 1.667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 323                                                                                                                                                                                                                                                                                                                                                                 | 3.096                                                                                                                                                                                             | 10.04                                                                                                                                                                                             | 2.306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.409                                                                                                                                                                                                                            |
|                         | 1.667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 328                                                                                                                                                                                                                                                                                                                                                                 | 3.049                                                                                                                                                                                             | 9.83                                                                                                                                                                                              | 2.285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.977                                                                                                                                                                                                                             |
| D1A12                   | [D1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [A12]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Т                                                                                                                                                                                                                                                                                                                                                                   | 1/ <i>T</i> ×1000                                                                                                                                                                                 | $\delta$                                                                                                                                                                                          | 1m \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                 |
|                         | $(mol L^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $(mol L^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (K)                                                                                                                                                                                                                                                                                                                                                                 | $(K^{-1})$                                                                                                                                                                                        | (ppm)                                                                                                                                                                                             | IIIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $o_{\delta}$                                                                                                                                                                                                                      |
|                         | 1.667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 298                                                                                                                                                                                                                                                                                                                                                                 | 3.356                                                                                                                                                                                             | 10.66                                                                                                                                                                                             | 2.366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -2.317                                                                                                                                                                                                                            |
|                         | 1.667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 303                                                                                                                                                                                                                                                                                                                                                                 | 3.300                                                                                                                                                                                             | 10.48                                                                                                                                                                                             | 2.349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1.812                                                                                                                                                                                                                            |
|                         | 1.667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 308                                                                                                                                                                                                                                                                                                                                                                 | 3.247                                                                                                                                                                                             | 10.26                                                                                                                                                                                             | 2.328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1.184                                                                                                                                                                                                                            |
|                         | 1.667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 313                                                                                                                                                                                                                                                                                                                                                                 | 3.195                                                                                                                                                                                             | 10.04                                                                                                                                                                                             | 2.306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.409                                                                                                                                                                                                                            |
|                         | 1.667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 318                                                                                                                                                                                                                                                                                                                                                                 | 3.145                                                                                                                                                                                             | 9.81                                                                                                                                                                                              | 2.283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.064                                                                                                                                                                                                                            |
|                         | 1.667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 323                                                                                                                                                                                                                                                                                                                                                                 | 3.096                                                                                                                                                                                             | 9.58                                                                                                                                                                                              | 2.259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.244                                                                                                                                                                                                                             |
|                         | 1.667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 328                                                                                                                                                                                                                                                                                                                                                                 | 3.049                                                                                                                                                                                             | 9.36                                                                                                                                                                                              | 2.236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.717                                                                                                                                                                                                                             |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                   |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                   |
| D1A13                   | [D1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [A13]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Т                                                                                                                                                                                                                                                                                                                                                                   | 1/ <i>T</i> ×1000                                                                                                                                                                                 | $\delta$                                                                                                                                                                                          | Ins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.                                                                                                                                                                                                                                |
| D1A13                   | [D1]<br>(mol L <sup>-1</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [A13]<br>(mol L <sup>-1</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Т<br>(К)                                                                                                                                                                                                                                                                                                                                                            | 1/ <i>T</i> ×1000<br>(K <sup>-1</sup> )                                                                                                                                                           | $\delta$ (ppm)                                                                                                                                                                                    | $\ln\!\delta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\sigma_\delta$                                                                                                                                                                                                                   |
| D1A13                   | [D1]<br>(mol L <sup>-1</sup> )<br>1.667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [A13]<br>(mol L <sup>-1</sup> )<br>0.417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Т<br>(К)<br>298                                                                                                                                                                                                                                                                                                                                                     | 1/T×1000<br>(K <sup>-1</sup> )<br>3.356                                                                                                                                                           | δ<br>(ppm)<br>10.21                                                                                                                                                                               | lnδ<br>2.323                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | σ <sub>δ</sub>                                                                                                                                                                                                                    |
| D1A13                   | [D1]<br>(mol L <sup>-1</sup> )<br>1.667<br>1.667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [A13]<br>(mol L <sup>-1</sup> )<br>0.417<br>0.417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T<br>(K)<br>298<br>303                                                                                                                                                                                                                                                                                                                                              | 1/T×1000<br>(K <sup>-1</sup> )<br>3.356<br>3.300                                                                                                                                                  | δ<br>(ppm)<br>10.21<br>9.99                                                                                                                                                                       | lnδ<br>2.323<br>2.302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | σ <sub>δ</sub><br>-1.028<br>-0.181                                                                                                                                                                                                |
| D1A13                   | [D1]<br>(mol L <sup>-1</sup> )<br>1.667<br>1.667<br>1.667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [A13]<br>(mol L <sup>-1</sup> )<br>0.417<br>0.417<br>0.417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T<br>(K)<br>298<br>303<br>308                                                                                                                                                                                                                                                                                                                                       | 1/T×1000<br>(K <sup>-1</sup> )<br>3.356<br>3.300<br>3.247                                                                                                                                         | δ<br>(ppm)<br>10.21<br>9.99<br>9.73                                                                                                                                                               | ln∂<br>2.323<br>2.302<br>2.275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | σ <sub>δ</sub><br>-1.028<br>-0.181<br>-0.056                                                                                                                                                                                      |
| D1A13                   | [D1]<br>(mol L <sup>-1</sup> )<br>1.667<br>1.667<br>1.667<br>1.667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [A13]<br>(mol L <sup>-1</sup> )<br>0.417<br>0.417<br>0.417<br>0.417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T<br>(K)<br>298<br>303<br>308<br>313                                                                                                                                                                                                                                                                                                                                | 1/T×1000<br>(K <sup>-1</sup> )<br>3.356<br>3.300<br>3.247<br>3.195                                                                                                                                | δ<br>(ppm)<br>10.21<br>9.99<br>9.73<br>9.48                                                                                                                                                       | ln∂<br>2.323<br>2.302<br>2.275<br>2.249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | σ <sub>δ</sub><br>-1.028<br>-0.181<br>-0.056<br>0.254                                                                                                                                                                             |
| D1A13                   | [D1]<br>(mol L <sup>-1</sup> )<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [A13]<br>(mol L <sup>-1</sup> )<br>0.417<br>0.417<br>0.417<br>0.417<br>0.417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T           (K)           298           303           308           313           318                                                                                                                                                                                                                                                                               | 1/T×1000<br>(K <sup>-1</sup> )<br>3.356<br>3.300<br>3.247<br>3.195<br>3.145                                                                                                                       | δ<br>(ppm)<br>10.21<br>9.99<br>9.73<br>9.48<br>9.20                                                                                                                                               | lnδ<br>2.323<br>2.302<br>2.275<br>2.249<br>2.219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | σ <sub>δ</sub><br>-1.028<br>-0.181<br>-0.056<br>0.254<br>0.931                                                                                                                                                                    |
| D1A13                   | [D1]<br>(mol L <sup>-1</sup> )<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [A13]<br>(mol L <sup>-1</sup> )<br>0.417<br>0.417<br>0.417<br>0.417<br>0.417<br>0.417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T           (K)           298           303           308           313           318           323                                                                                                                                                                                                                                                                 | 1/T×1000<br>(K <sup>-1</sup> )<br>3.356<br>3.300<br>3.247<br>3.195<br>3.145<br>3.096                                                                                                              | δ<br>(ppm)<br>10.21<br>9.99<br>9.73<br>9.48<br>9.20<br>8.95                                                                                                                                       | lnδ<br>2.323<br>2.302<br>2.275<br>2.249<br>2.219<br>2.192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\sigma_{\delta}$<br>-1.028<br>-0.181<br>-0.056<br>0.254<br>0.931<br>1.071                                                                                                                                                        |
| D1A13                   | [D1]<br>(mol L <sup>-1</sup> )<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [A13]<br>(mol L <sup>-1</sup> )<br>0.417<br>0.417<br>0.417<br>0.417<br>0.417<br>0.417<br>0.417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T           (K)           298           303           308           313           318           323           328                                                                                                                                                                                                                                                   | 1/T×1000<br>(K <sup>-1</sup> )<br>3.356<br>3.300<br>3.247<br>3.195<br>3.145<br>3.096<br>3.049                                                                                                     | δ<br>(ppm)<br>10.21<br>9.99<br>9.73<br>9.48<br>9.20<br>8.95<br>8.69                                                                                                                               | lnδ<br>2.323<br>2.302<br>2.275<br>2.249<br>2.219<br>2.192<br>2.193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\sigma_{\delta}$<br>-1.028<br>-0.181<br>-0.056<br>0.254<br>0.931<br>1.071<br>1.716                                                                                                                                               |
| D1A13                   | [D1]<br>(mol L <sup>-1</sup> )<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>[D1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [A13]<br>(mol L <sup>-1</sup> )<br>0.417<br>0.417<br>0.417<br>0.417<br>0.417<br>0.417<br>0.417<br>[A14]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T           (K)           298           303           308           313           318           323           328           T                                                                                                                                                                                                                                       | 1/T×1000<br>(K <sup>-1</sup> )<br>3.356<br>3.300<br>3.247<br>3.195<br>3.145<br>3.096<br>3.049<br>1/T×1000                                                                                         | δ<br>(ppm)<br>10.21<br>9.99<br>9.73<br>9.48<br>9.20<br>8.95<br>8.69<br>δ                                                                                                                          | $\frac{\ln\delta}{2.323}$ 2.302 2.275 2.249 2.219 2.192 2.193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $σ_δ$<br>-1.028<br>-0.181<br>-0.056<br>0.254<br>0.931<br>1.071<br>1.716                                                                                                                                                           |
| D1A13                   | [D1]<br>(mol L <sup>-1</sup> )<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>[D1]<br>(mol L <sup>-1</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} [A13]\\ (mol \ L^{-1})\\ \hline 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ \hline 1.417\\ [A14]\\ (mol \ L^{-1})\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T           (K)           298           303           308           313           318           323           328           T           (K)                                                                                                                                                                                                                         | 1/T×1000<br>(K <sup>-1</sup> )<br>3.356<br>3.300<br>3.247<br>3.195<br>3.145<br>3.096<br>3.049<br>1/T×1000<br>(K <sup>-1</sup> )                                                                   | δ<br>(ppm)<br>10.21<br>9.99<br>9.73<br>9.48<br>9.20<br>8.95<br>8.69<br>δ<br>(ppm)                                                                                                                 | lnδ<br>2.323<br>2.302<br>2.275<br>2.249<br>2.219<br>2.192<br>2.193<br>lnδ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $σ_δ$<br>-1.028<br>-0.181<br>-0.056<br>0.254<br>0.931<br>1.071<br>1.716<br>$σ_δ$                                                                                                                                                  |
| D1A13                   | [D1]<br>(mol L <sup>-1</sup> )<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>[D1]<br>(mol L <sup>-1</sup> )<br>1.667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} [A13]\\ (mol \ L^{-1})\\ \hline 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ \hline [A14]\\ (mol \ L^{-1})\\ \hline 0.417\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T         (K)         298         303         308         313         318         323         328         T         (K)         298                                                                                                                                                                                                                                 | 1/T×1000<br>(K <sup>-1</sup> )<br>3.356<br>3.300<br>3.247<br>3.195<br>3.145<br>3.096<br>3.049<br>1/T×1000<br>(K <sup>-1</sup> )<br>3.356                                                          | $\begin{array}{c} \delta \\ (\text{ppm}) \\ 10.21 \\ 9.99 \\ 9.73 \\ 9.48 \\ 9.20 \\ 8.95 \\ 8.69 \\ \delta \\ (\text{ppm}) \\ 10.11 \end{array}$                                                 | $\frac{\ln\delta}{2.323} \\ 2.302 \\ 2.275 \\ 2.249 \\ 2.219 \\ 2.192 \\ 2.193 \\ \ln\delta \\ 2.314$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $σ_δ$<br>-1.028<br>-0.181<br>-0.056<br>0.254<br>0.931<br>1.071<br>1.716<br>$σ_δ$<br>-0.686                                                                                                                                        |
| D1A13                   | [D1]<br>(mol L <sup>-1</sup> )<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>[D1]<br>(mol L <sup>-1</sup> )<br>1.667<br>1.667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} [A13]\\ (mol \ L^{-1})\\ \hline 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ \hline 0.417\\ [A14]\\ (mol \ L^{-1})\\ \hline 0.417\\ 0.417\\ 0.417\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T           (K)           298           303           308           313           318           323           328           T           (K)           298           303                                                                                                                                                                                             | 1/T×1000<br>(K <sup>-1</sup> )<br>3.356<br>3.300<br>3.247<br>3.195<br>3.145<br>3.096<br>3.049<br>1/T×1000<br>(K <sup>-1</sup> )<br>3.356<br>3.300                                                 | δ<br>(ppm)<br>10.21<br>9.99<br>9.73<br>9.48<br>9.20<br>8.95<br>8.69<br>δ<br>(ppm)<br>10.11<br>9.95                                                                                                | $\frac{\ln\delta}{2.323} \\ 2.302 \\ 2.275 \\ 2.249 \\ 2.219 \\ 2.192 \\ 2.193 \\ \ln\delta \\ 2.314 \\ 2.293 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                   |
| D1A13                   | [D1]<br>(mol L <sup>-1</sup> )<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>[D1]<br>(mol L <sup>-1</sup> )<br>1.667<br>1.667<br>1.667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} [A13]\\ (mol \ L^{-1})\\ \hline 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ \hline 0.417\\ [A14]\\ (mol \ L^{-1})\\ \hline 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T           (K)           298           303           308           313           318           323           328           T           (K)           298           303                                                                                                                                                                                             | 1/T×1000<br>(K <sup>-1</sup> )<br>3.356<br>3.300<br>3.247<br>3.195<br>3.145<br>3.096<br>3.049<br>1/T×1000<br>(K <sup>-1</sup> )<br>3.356<br>3.300<br>3.247                                        | $\begin{array}{c} \delta \\ (\rm ppm) \\ 10.21 \\ 9.99 \\ 9.73 \\ 9.48 \\ 9.20 \\ 8.95 \\ 8.69 \\ \delta \\ (\rm ppm) \\ 10.11 \\ 9.95 \\ 9.74 \end{array}$                                       | $\frac{\ln\delta}{2.323} \\ 2.302 \\ 2.275 \\ 2.249 \\ 2.219 \\ 2.192 \\ 2.193 \\ \ln\delta \\ 2.314 \\ 2.293 \\ 2.276 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $     σ_δ   $ -1.028     -0.181     -0.056     0.254     0.931     1.071     1.716 $     σ_δ   $ -0.686     0.029     0.107                                                                                                       |
| D1A13                   | [D1]<br>(mol L <sup>-1</sup> )<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>[D1]<br>(mol L <sup>-1</sup> )<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} [A13]\\ (mol \ L^{-1})\\ \hline 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ \hline 0.417\\ [A14]\\ (mol \ L^{-1})\\ \hline 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T         (K)         298         303         308         313         318         323         328         T         (K)         298         303         328         J         (K)         298         303         308         313                                                                                                                                   | $\frac{1/T \times 1000}{(K^{-1})}$ 3.356 3.300 3.247 3.195 3.145 3.096 3.049 1/T \times 1000 (K^{-1}) 3.356 3.300 3.247 3.195                                                                     | $\frac{\delta}{(\text{ppm})} \\ 10.21 \\ 9.99 \\ 9.73 \\ 9.48 \\ 9.20 \\ 8.95 \\ 8.69 \\ \delta \\ (\text{ppm}) \\ 10.11 \\ 9.95 \\ 9.74 \\ 9.57 \\ \end{cases}$                                  | $\frac{\ln\delta}{2.323} \\ 2.302 \\ 2.275 \\ 2.249 \\ 2.219 \\ 2.192 \\ 2.193 \\ \ln\delta \\ 2.314 \\ 2.293 \\ 2.276 \\ 2.259 \\ 2.259 \\ 2.259 \\ 2.259 \\ 2.323 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.325 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ 2.355 \\ $ |                                                                                                                                                                                                                                   |
| D1A13                   | [D1]<br>(mol L <sup>-1</sup> )<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>[D1]<br>(mol L <sup>-1</sup> )<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} [A13]\\ (mol \ L^{-1})\\ \hline 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ \hline [A14]\\ (mol \ L^{-1})\\ \hline 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T         (K)         298         303         308         313         318         323         328         T         (K)         298         303         308         313         318         323         328         T         (K)         298         303         308         313         318                                                                       | $\frac{1/T \times 1000}{(K^{-1})}$ 3.356<br>3.300<br>3.247<br>3.195<br>3.145<br>3.096<br>3.049<br>1/T \times 1000<br>(K^{-1})<br>3.356<br>3.300<br>3.247<br>3.195<br>3.145                        | $\begin{array}{c} \delta \\ (\text{ppm}) \\ 10.21 \\ 9.99 \\ 9.73 \\ 9.48 \\ 9.20 \\ 8.95 \\ 8.69 \\ \delta \\ (\text{ppm}) \\ 10.11 \\ 9.95 \\ 9.74 \\ 9.57 \\ 9.44 \\ \end{array}$              | $\frac{\ln\delta}{2.323} \\ 2.302 \\ 2.275 \\ 2.249 \\ 2.219 \\ 2.192 \\ 2.193 \\ \ln\delta \\ 2.314 \\ 2.293 \\ 2.276 \\ 2.259 \\ 2.245 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $     σ_δ   $ -1.028     -0.181     -0.056     0.254     0.931     1.071     1.716 $     σ_δ   $ -0.686     0.029     0.107     0.309     0.540                                                                                   |
| D1A13                   | $\begin{array}{c} [D1]\\ (mol \ L^{-1})\\ \hline 1.667\\ \hline 1.67\\ \hline$ | $\begin{array}{c} [A13]\\ (mol \ L^{-1})\\ \hline 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ \hline 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T         (K)         298         303         308         313         318         323         328         T         (K)         298         303         328         J         (K)         298         303         308         313         318         323                                                                                                           | $\frac{1/T \times 1000}{(K^{-1})}$ 3.356 3.300 3.247 3.195 3.145 3.096 3.049 1/T \times 1000 (K^{-1}) 3.356 3.300 3.247 3.195 3.145 3.096                                                         | $\frac{\delta}{(\text{ppm})}$ 10.21 9.99 9.73 9.48 9.20 8.95 8.69 $\delta$ (ppm) 10.11 9.95 9.74 9.57 9.44 9.20                                                                                   | $\frac{\ln\delta}{2.323} \\ 2.302 \\ 2.275 \\ 2.249 \\ 2.219 \\ 2.192 \\ 2.193 \\ \ln\delta \\ 2.314 \\ 2.293 \\ 2.276 \\ 2.259 \\ 2.245 \\ 2.219 \\ 2.219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2219 \\ 3.2$                            |                                                                                                                                                                                                                                   |
| D1A13                   | [D1]<br>(mol L <sup>-1</sup> )<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>[D1]<br>(mol L <sup>-1</sup> )<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} [A13]\\ (mol \ L^{-1})\\ \hline 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ \hline 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T         (K)         298         303         308         313         318         323         328         T         (K)         298         303         308         313         318         303         308         313         318         323         328                                                                                                         | $\frac{1/T \times 1000}{(K^{-1})}$ 3.356 3.300 3.247 3.195 3.145 3.096 3.049 1/T \times 1000 (K^{-1}) 3.356 3.300 3.247 3.195 3.145 3.096 3.049                                                   | δ<br>(ppm)<br>10.21<br>9.99<br>9.73<br>9.48<br>9.20<br>8.95<br>8.69<br>δ<br>(ppm)<br>10.11<br>9.95<br>9.74<br>9.57<br>9.74<br>9.57<br>9.44<br>9.20<br>8.99                                        | $\frac{\ln\delta}{2.323}$ 2.302 2.275 2.249 2.219 2.192 2.193 $\ln\delta$ 2.314 2.293 2.276 2.259 2.245 2.219 2.196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                   |
| D1A13<br>D1A14<br>D1A15 | [D1]<br>(mol L <sup>-1</sup> )<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} [A13]\\ (mol \ L^{-1})\\ \hline 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ \hline 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ \hline 0.417\\ 0.417\\ \hline 1.5] \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c c} T \\ \hline (K) \\ 298 \\ 303 \\ 308 \\ 313 \\ 318 \\ 323 \\ 328 \\ \hline T \\ \hline (K) \\ 298 \\ 303 \\ 308 \\ 313 \\ 318 \\ 323 \\ 318 \\ 323 \\ 328 \\ \hline T \\ \end{array}$                                                                                                                                                           | $\frac{1/T \times 1000}{(K^{-1})}$ 3.356 3.300 3.247 3.195 3.145 3.096 3.049 1/T \times 1000 (K^{-1}) 3.356 3.300 3.247 3.195 3.145 3.096 3.049 1/T × 1000                                        | δ<br>(ppm)<br>10.21<br>9.99<br>9.73<br>9.48<br>9.20<br>8.95<br>8.69<br>δ<br>(ppm)<br>10.11<br>9.95<br>9.74<br>9.57<br>9.74<br>9.57<br>9.44<br>9.20<br>8.99<br>δ                                   | lnδ 2.323 2.302 2.275 2.249 2.219 2.192 2.192 2.193 $lnδ$ 2.314 2.293 2.276 2.259 2.245 2.219 2.196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                   |
| D1A13<br>D1A14<br>D1A15 | [D1]<br>(mol L <sup>-1</sup> )<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>[D1]<br>(mol L <sup>-1</sup> )<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} [A13]\\ (mol \ L^{-1})\\ \hline 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.415\\ [A15]\\ (mol \ L^{-1})\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T         (K)         298         303         308         313         318         323         328         T         (K)         298         303         308         313         318         303         308         313         318         323         328         T         (K)         298         303         308         313         328         T         (K) | $\frac{1/T \times 1000}{(K^{-1})}$ 3.356 3.300 3.247 3.195 3.145 3.096 3.049 1/T \times 1000 (K^{-1}) 3.356 3.300 3.247 3.195 3.145 3.096 3.049 1/T \times 1000 (K^{-1}) 1/T \times 1000 (K^{-1}) | δ<br>(ppm)<br>10.21<br>9.99<br>9.73<br>9.48<br>9.20<br>8.95<br>8.69<br>δ<br>(ppm)<br>10.11<br>9.95<br>9.74<br>9.57<br>9.74<br>9.57<br>9.44<br>9.57<br>9.44<br>9.20<br>8.99<br>δ<br>(ppm)          | $\frac{\ln\delta}{2.323}$ 2.302 2.275 2.249 2.219 2.192 2.193 $\ln\delta$ 2.314 2.293 2.276 2.259 2.245 2.219 2.196 $\ln\delta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $σ_δ$<br>-1.028<br>-0.181<br>-0.056<br>0.254<br>0.931<br>1.071<br>1.716<br>$σ_δ$<br>-0.686<br>0.029<br>0.107<br>0.309<br>0.540<br>0.931<br>1.066<br>$σ_δ$                                                                         |
| D1A13<br>D1A14<br>D1A15 | [D1]<br>(mol L <sup>-1</sup> )<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667<br>1.667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} [A13]\\ (mol \ L^{-1})\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ 0.417\\ $ | T         (K)         298         303         308         313         318         323         328         T         (K)         298         303         328         T         (K)         298         303         313         318         323         328         T         (K)         298                                                                         | $\frac{1/T \times 1000}{(K^{-1})}$ 3.356 3.300 3.247 3.195 3.145 3.096 3.049 1/T \times 1000 (K^{-1}) 3.356 3.300 3.247 3.195 3.145 3.096 3.049 1/T \times 1000 (K^{-1}) 3.356                    | δ<br>(ppm)<br>10.21<br>9.99<br>9.73<br>9.48<br>9.20<br>8.95<br>8.69<br>δ<br>(ppm)<br>10.11<br>9.95<br>9.74<br>9.57<br>9.74<br>9.57<br>9.44<br>9.57<br>9.44<br>9.20<br>8.99<br>δ<br>(ppm)<br>11.08 | $\frac{\ln\delta}{2.323}$ 2.302 2.275 2.249 2.219 2.192 2.192 2.193 $\ln\delta$ 2.314 2.293 2.276 2.259 2.245 2.219 2.196 $\ln\delta$ $\ln\delta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $σ_δ$ -1.028           -0.181           -0.056           0.254           0.931           1.071           1.716 $σ_δ$ -0.686           0.029           0.107           0.309           0.540           0.931           1.066 $σ_δ$ |

|       | 1.667          | 0.417          | 308 | 3.247              | 10.79    | 2.379        | -2.715       |
|-------|----------------|----------------|-----|--------------------|----------|--------------|--------------|
|       | 1.667          | 0.417          | 313 | 3.195              | 10.64    | 2.365        | -2.259       |
|       | 1.667          | 0.417          | 318 | 3.145              | 10.48    | 2.349        | -1.812       |
|       | 1.667          | 0.417          | 323 | 3.096              | 10.31    | 2.333        | -1.333       |
|       | 1.667          | 0.417          | 328 | 3.049              | 10.16    | 2.318        | -0.863       |
| D1A16 | [D1]           | [A16]          | Т   | 1/T×1000           | $\delta$ | ln S         |              |
|       | $(mol L^{-1})$ | $(mol L^{-1})$ | (K) | (K <sup>-1</sup> ) | (ppm)    | III <i>0</i> | $o_{\delta}$ |
|       | 1.667          | 0.417          | 298 | 3.356              | 10.96    | 2.394        | -3.355       |
|       | 1.667          | 0.417          | 303 | 3.300              | 10.80    | 2.379        | -2.748       |
|       | 1.667          | 0.417          | 308 | 3.247              | 10.64    | 2.364        | -2.259       |
|       | 1.667          | 0.417          | 313 | 3.195              | 10.49    | 2.392        | -1.839       |
|       | 1.667          | 0.417          | 318 | 3.145              | 10.28    | 2.330        | -1.244       |
|       | 1.667          | 0.417          | 323 | 3.096              | 10.10    | 2.312        | -0.649       |
|       | 1.667          | 0.417          | 328 | 3.049              | 9.92     | 2.295        | -0.479       |
| D1A17 | [D1]           | [A17]          | Т   | 1/T×1000           | $\delta$ | le S         | -            |
|       | $(mol L^{-1})$ | $(mol L^{-1})$ | (K) | (K <sup>-1</sup> ) | (ppm)    | III <i>0</i> | $o_{\delta}$ |
|       | 1.667          | 0.417          | 298 | 3.356              | 10.66    | 2.366        | -2.317       |
|       | 1.667          | 0.417          | 303 | 3.300              | 10.50    | 2.351        | -1.867       |
|       | 1.667          | 0.417          | 308 | 3.247              | 10.24    | 2.326        | -1.409       |
|       | 1.667          | 0.417          | 313 | 3.195              | 10.13    | 2.316        | -1.081       |
|       | 1.667          | 0.417          | 318 | 3.145              | 9.92     | 2.295        | -0.703       |
|       | 1.667          | 0.417          | 323 | 3.096              | 9.72     | 2.274        | -0.291       |
|       | 1.667          | 0.417          | 328 | 3.049              | 9.49     | 2.250        | -0.130       |
| D1A18 | [D1]           | [A18]          | Т   | 1/T×1000           | $\delta$ | ln S         | ~            |
|       | $(mol L^{-1})$ | $(mol L^{-1})$ | (K) | (K <sup>-1</sup> ) | (ppm)    | 1110         | $O_{\delta}$ |
|       | 1.667          | 0.417          | 298 | 3.356              | 10.35    | 2.337        | -1.448       |
|       | 1.667          | 0.417          | 303 | 3.300              | 10.17    | 2.319        | -0.897       |
|       | 1.667          | 0.417          | 308 | 3.247              | 10.08    | 2.311        | -0.572       |
|       | 1.667          | 0.417          | 313 | 3.195              | 9.90     | 2.293        | -0.395       |
|       | 1.667          | 0.417          | 318 | 3.145              | 9.70     | 2.272        | -0.199       |
|       | 1.667          | 0.417          | 323 | 3.096              | 9.51     | 2.252        | 0.074        |
|       | 1.667          | 0.417          | 328 | 3.049              | 9.32     | 2.232        | 0.271        |

| Elements | С     | 0     | Cl   | Zn   | Total |
|----------|-------|-------|------|------|-------|
| Wt%      | 47.58 | 52.33 | 0.02 | 0.07 | 100   |
| At%      | 54.80 | 45.16 | 0.01 | 0.04 | 100   |

 Table S7 The element content results of the regenerated formate cellulose.

| Chemical          | Price           | Dosage    | Materials cost | Temperature | Time | Energy cost |
|-------------------|-----------------|-----------|----------------|-------------|------|-------------|
| agent             | (\$/kg or \$/L) | (g or mL) | (\$/g)         | (°C)        | (h)  | (\$/g)      |
| BMIMCl            | 719.75          | 8.33      | 5.997          | 100         | 2    | 0.397       |
| NMMO              | 689.13          | 7.14      | 4.922          | 130         | 2    | 0.397       |
| LiCl              | 1223.58         | 1.50      | 1.835          | 150         | 6    | 1.192       |
| DMAc              | 13.78           | 30.00     | 0.414          | 150         |      |             |
| NaOH              | 11.94           | 1.40      | 0.017          | 10          | 12   | 0.109       |
| Urea              | 18.99           | 2.40      | 0.045          | -12         |      |             |
| ZnCl <sub>2</sub> | 48.68           | 2.11      | 0.103          | DT          | 2    | 0           |
| FA                | 15.20           | 2.86      | 0.043          | КI          | 2    |             |

**Table S8** The cost of raw materials of solvent consumed for dissolving one gram of cellulose with different solvents and the energy consumption during the dissolution process<sup>[6]</sup>.

Materials purchased from the Kermel Chemical Reagent Co., Ltd.

#### References

- [1] Y. Luo, H. Ma, Y. Sun, P. Che, X. Nie, T. Wang, J. Xu, Understanding and Measurement for the Binding Energy of Hydrogen Bonds of Biomass-Derived Hydroxyl Compounds. J. Phys. Chem. A 2018, 122, 843-848.
- [2] Y. Luo, H. Ma, S. Zhang, D. Zheng, P. Che, X. Liu, M. Zhang, J. Gao, J. Xu, Binding Energy as Driving Force for Controllable Reconstruction of Hydrogen Bonds with Molecular Scissors. J. Am. Chem. Soc. 2020, 142, 6085-6092.
- [3] W. M. Kulicke, R. Kniewske, The Shear Viscosity Dependence on Concentration, Molecular Weight, and Shear Rate of Polystyrene Solutions. *Rheol. Acta.* 1984, 23, 75-83.
- [4] Y. Zhang, J. Wang, C. Liu, Y. Liu, B. Li, Influence of Drying Methods on the Structure and Properties of Cellulose Formate and Its Application as A Reducing Agent. *Int. J. Biol. Macromol.* 2021, 170, 397–405.
- [5] T. Fujimoto, S. Takahashi, M. Tsuji, T. Miyamoto, H. Inagaki, Reaction of Cellulose with Formic-Acid and Stability of Cellulose Formate. J. Polym. Sci. Part C-Polym. Lett. 1986, 24, 495-501.
- [6] Z. Tong, J. Meng, S. Liu, Y. Liu, S. Zeng, L. Wang, Q. Xia, H. Yu, Room Temperature Dissolving Cellulose with A Metal Salt Hydrate-Based Deep Eutectic Solvent. *Carbohydr. Polym.* 2021, 272, 118473.
- [7] https://organicchemistrydata.org/hansreich/resources/pka