Supporting Information

Catalytic production of Tetrahydropyran (THP): A biomass-derived, economically competitive solvent with demonstrated use in plastic dissolution

Raka G. Dastidar,^a Min Soo Kim,^a Panzheng Zhou,^a Zaneta Luo,^a Changxia Shi,^b Kevin J. Barnett,^c Daniel J. McClelland,^c Eugene Y.-X. Chen,^b Reid C. Van Lehn,^a George W. Huber ^{a,*}

^aDepartment of Chemical and Biological Engineering, University of Wisconsin, 1415 Engineering Drive, Madison, Wisconsin 53706, USA ^bDepartment of Chemistry, Colorado State University, Fort Collins, CO 80523, USA ^cPyran Inc., 505 South Rosa Road, Suite 112, Madison, Wisconsin 53719, USA

*Corresponding author: gwhuber@wisc.edu

Number of pages: 9 Number of figures: 4 Number of tables: 4

Catalyst characterization

Figure S1. Temperature-programmed reduction (TPR) of 10-Ni/SiO₂ in H₂ flow. Experiment carried out on Micromeritics Autochem II chemisorption analyzer with a thermal conductivity detector (TCD).

<u>Ring opening polymerization</u>:

Materials

Tetrahydrofuran (THF) was purified and dried prior polymerization. High-performance liquid chromatography (HPLC)-grade THF were first sparged extensively with nitrogen during filling 20 L solvent reservoirs and then dried by passage through activated alumina followed by passage through Q-5 supported copper catalyst stainless steel columns. Tetrahydropyran (THP) was purchased from TCI America. THP was degassed and dried over CaH₂ overnight, followed by vacuum distillation (CaH₂ was removed before distillation), and then stored over activated Davison 4 Å molecular sieves. Boron trifluoride diethyl etherate (BF₃·Et₂O) and ytterbium(III) trifluoromethanesulfonate (Yb(OTf)₃) were purchased from Sigma-Aldrich Chemical Co. and used as received. Trifluoromethanesulfonic acid (CF₃SO₃H) was purchased from TCI America and used as received.

Nuclear magnetic resonance (NMR) spectroscopy

¹H spectra were recorded on a Bruker Advance NEO 400 MHz. Chemical shifts for all spectra were referenced to internal solvent resonances and were reported as parts per million relative to SiMe₄.

Thermal Analysis

Melting transition (T_m) and cold crystallization (T_c) temperatures were measured by differential scanning calorimetry (DSC) on an Auto Q20, TA Instrument. All T_m and T_g values were obtained from a second scan after the thermal history was removed from the first scan. The second heating rate was 10 °C/min and cooling rate was 10 °C/min unless indicated otherwise in the polymerization tables. Decomposition temperatures (T_d , defined by the temperature of 5 % weight loss) and maximum rate decomposition temperatures (T_{max}) of the polymers were measured by thermal gravimetric analysis (TGA) on a Q50 TGA Analyzer, TA Instrument. Polymer samples were heated from ambient temperature to 700 °C at a heating rate of 10 °C/min. Values of T_{max} were obtained from derivative (wt %/°C) vs. temperature (°C) plots, while T_d and T_{onset} values (initial and end temperatures) were obtained from wt % vs. temperature (°C) plots.

Molecular Weight Measurements

Measurements of polymer weight-average molecular weight (M_w), number-average molecular weight (M_n), and molecular weight distributions or dispersity indices ($D = M_w/M_n$) were performed via gelpermeation chromatography (GPC). The GPC instrument consisted of an Agilent HPLC system equipped with one guard column and two PLgel 5 µm mixed-C gel permeation columns and coupled with a Wyatt DAWN HELEOS II multi (18)-angle light scattering detector and a Wyatt Optilab TrEX dRI detector; the analysis was performed at 40 °C using chloroform as the eluent at a flow rate of 1.0 mL/min, using Wyatt ASTRA 7.1.2 molecular weight characterization software.

Figure S2. ¹H NMR (23 °C, CDCl₃) spectra stack of: (1) THF polymerization catalyzed by CF₃SO₃H with [THF]/[THP]/[CF₃SO₃H] = 100/100/1 at 0 °C. (2) copolymerization of THF and THP catalyzed by BF₃·Et₂O with [THF]/[THP]/[BF₃·Et₂O] = 100/100/10 at 0 °C. (3) THP for reference.

Figure S3. For poly(THF) produced by polymerization of THF: (1) DSC trace; (2) TGA and DTG curves. For poly(THF) produced by copolymerization of THF and THP: (3) DSC trace; (4) TGA and DTG curves.

Technoeconomic analysis:

Table S1. Temperature, pressur	e and mass flow of each s	stream based on the proc	ess flow diagram in Figure
1.			

Stream	Temperature (°C)	Pressure (bar)	Total flow (kg/h)	H ₂ (kg/h)	DHP (kg/h)	THP (kg/h)	1-Pentanol (kg/h)
1	27.92	14.8	2,069.78	-	2,069.78	-	-
2	200	14.8	4,331.30	1,683.77	2,079.50	567.88	0.15
3	200	14	4,331.30	1,634.65	43.02	2,639.90	13.73
4	25	14	2,230.25	1,634.61	10.02	585.47	0.16
5	36.63	14.8	2,163.31	1,585.56	9.72	567.88	0.15
6	498.92	14.8	98.21	98.21	-	-	-
7	200	14.8	2,261.52	1,683.77	9.72	567.88	0.15
H ₂ makeup	25	1.01	98.21	98.21	-	-	-
Purge	36.63	14.8	66.91	49.04	0.3	17.56	0
DHP	25	1	2,069.78	-	2,069.78	-	-
THP	25	14	2,101.05	0.05	33	2,054.43	13.57

Plant operating hours per year (hours/year)	7880
Plant life (year)	30
Internal rate of return (%)	10
Plant depreciation (year)	7
Loan terms	10 years loan at 8% APR
Construction time (year)	3
First 12 months' expenditure	8
Next 12 months' expenditure	60
Last 12 months' expenditure	32
Federal tax rate (%)	21
Financing (% of equity)	40
Start-up time (month)	6
Revenue during start-up (%)	50
Variable operating costs during start-up (%)	75
Fixed operating costs during start-up (%)	100
Variable operating cost	
Electricity purchase (\$/kWh)	0.07
Hydrogen purchase (\$/ton)	1507
30 wt% Ni/SiO ₂ ^a	185.4
Steam purchase (\$/kJ)	$2.50 imes10^{-6}$
Cooling water purchase (\$/kJ)	2.12×10^{-7}
Fixed operating cost	
Labor costs ^b	\$75,000
Annual maintenances	3.0% of ISBL
Property insurances	0.7% of FCI
^a We assumed that catalyst was refurbished af	ter every 3 months at 20%
of the initial catalyst cost. ²	

Table S2. Economic parameters and assumptions.¹

^bWe assumed that the DHP production process can be operated by one full-time operator.

Cost components		Cost (1,000\$)
Inside-battery-limits (ISBL) equipment cost		8,698
Outside-battery-limits (ISBL) equipment cost	40.0% of ISBL	3,479
Warehouse	4.0% of ISBL	348
Site development	9.0% of ISBL	783
Additional piping	4.5% of ISBL	391
Total direct costs (TDC)		13,700
Prorateable expenses	10.0% of TDC	1,370
Field expenses	10.0% of TDC	1,370
Home office and construction fee	20.0% of TDC	2,740
Project contingency	40.0% of TDC	5,480
Other costs (start-up, Permits, etc.)	10.0% of TDC	1,370
Total indirect costs (TIC)		12,330
Fixed capital investment (FCI)	TDC+TIC	26,030
Land and working capital	5.0% of FCI	1,302
Total capital investment (TCI)		27,332

Table S3. Summary of capital costs of the THP production process at a DHP feed rate of 16,300 ton per year.

Table S4. Summary of operating costs of the THP production process at a DHP feed rate of 16,300 ton per year.

Cost components	Cost (\$/year)
Cooling water	19,029
Steam	24,903
Electricity	209,845
DHP feed stock	24,467,400
Hydrogen	1,166,650
Catalyst	6,674
Variable operating costs	25,894,500
Labor costs	75,000
Annual maintenance	260,953
Property insurance	182,211
Fixed operating costs	518,164

Computational modeling

MD simulation setup

Atomistic MD simulations were performed in the isothermal-isobaric ensemble using *Gromacs* 2016.³ The simulation contains 1 LDPE oligomer ($C_{40}H_{82}$) and 216 solvent (THP or water) molecules. All molecules were parameterized using Antechamber and the Generalized AMBER force fields.^{4, 5} The simulation system was initialized with a cubic box containing a single polymer. The system was then solvated, energy minimized, and equilibrated for 20 ns in an *NPT* simulation at 300 K and 1 bar using a velocity-rescale thermostat and Berendsen barostat. A 100 ns *NPT* simulation was then performed at the same temperature and pressure using the Nose-Hoover thermostat and Parrinello-Rahman barostat. All simulations were performed using a leapfrog integrator with a 2-fs timestep. Verlet lists were generated using a 1.2 nm neighbor list cutoff. Van der Waals interactions were modeled with a shifted Lennard-Jones potential and Verlet cutoff-scheme that was smoothly shifted to zero at 1.2 nm. Electrostatic interactions were calculated using the smooth Particle Mesh Ewald method with a short-range cutoff of 1.2 nm, grid spacing of 0.14 nm, and 4th order interpolation. Bonds were constrained using the LINCS algorithm. All thermostats used a 2.0 ps time constant and all barostats used a 2.0 ps time constant with an isothermal compressibility of 3.0×10^{-5} bar⁻¹.

Figure S4. R_g -SASA scatter plot of LDPE oligomer in THP and water. R_g and SASA were calculated from MD simulations.

References:

1. Chang, H.; Bajaj, I.; Huber, G. W.; Maravelias, C. T.; Dumesic, J. A., Catalytic strategy for conversion of fructose to organic dyes, polymers, and liquid fuels. *Green Chemistry* **2020**, *22* (16), 5285-5295.

2. CatCost V1.1.0 : Cost Estimation Tool for Pre-Commercial Catalysts. https://catcost.chemcatbio.org/.

3. Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Lindahl, E., GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. *SoftwareX* **2015**, *1*, 19-25.

4. Wang, J.; Wang, W.; Kollman, P. A.; Case, D. A., Automatic atom type and bond type perception in molecular mechanical calculations. *J. Mol. Graphics Modell.* **2006**, *25* (2), 247-260.

5. Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A., Development and testing of a general amber force field. *J. Comput. Chem.* **2004**, *25* (9), 1157-1174.