Supplementary Information for

N-Carboxyanhydrides Directly from Amino Acids and Carbon Dioxide and their Tandem Reactions to Therapeutic Alkaloids

Thi V. Tran,^a Yi Shen, ^b Hieu D. Nguyen, ^a Shijie Deng,^b Hootan Roshandel,^b Mason M. Cooper,^b Jose R. Watson,^a Jeffery A. Byers,^c Paula L. Diaconescu,^{b*} Loi H. Do ^{a*}

Email: pld@chem.ucla.edu, loido@uh.edu

TABLE OF CONT	<u>CENTS</u>	Page(s)	
General Considera	ations	S 3	
Synthesis and Cha	racterization	S4-S25	
General Procedu	are for the Synthesis of 2-(<i>N</i> -Benzylamino)benzoic Acids	S4	
Characterization	n Data for 1b-1h	S5-S8	
General Procedu	are for the Synthesis of <i>N</i> -Carboxyanhydrides	S 9	
Characterization	n Data for 2a-2o, 2a', 2i', 4a-4m	S10-S21	
One-Pot Synthe	sis of 2a from 1i	S22	
Gram Scale Syn	thesis of 2i	S22	
Synthesis of 2i U	Using CO ₂ Balloon	S23	
General Procedu	are for the Synthesis of Tryptanthrins and Derivatives	S23	
Characterization	Data for 6a-6d and 7	S24-S26	
Scheme S1	Conventional Non-Tandem Synthesis of Tryptanthrin and	S26	
	Phaitanthrin A	320	
Characterization Data for 11, 13, and 14			
Reaction Studies		S28-S33	
Table S1	Screening Conditions for the Synthesis of <i>N</i> -Benzyl	S28	
	Substituted Six-Membered NCAs		
Table S2	Screening Conditions for the Synthesis of Unsubstituted	S29	
	Six-Membered NCAs		
Table S3	Screening Coupling Reagents Using Two-Step Method	S30	
Table S4	Screening CO ₂ Pressure Using One-Step Method	S31	
Table S5	One-pot Synthesis of N-Benzyl Substituted Six-	S32	
	Membered NCAs in Different Solvents		
Table S6	Synthesis of Tryptanthrin (6a)	S33	
Table S7	Synthesis of Phaitanthrin A (7)	S33	
Mechanistic Studio		S34-S43	
Scheme S2	NCA Synthesis Using ¹³ CO ₂	S34	
Figure S1	¹³ C NMR Spectra of 2a and ¹³ C- 2a	S34	
Table S8	Studying the Effect of Different Reagents and Reactants	S35	
Table S9	Synthesis of 2i Using CO ₂ Balloon	S35	
Figure S2	Calculated NBO Charges for 8-H ₂	S36	

^aDepartment of Chemistry, University of Houston, Houston, Texas, 77204, United States.

^bDepartment of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095, United States.

^cDepartment of Chemistry, Boston College, Chestnut Hill, Massachusetts, 02467, United States.

Scheme S3	Relative Energies for Deprotonation of 8-H ₂	S36
Scheme S4	Control Reaction Studies	S37
Figure S3	Reaction of T3P with DMAP	S38
Figure S4	GC Plot from 2a Synthesis at 300 psi of CO ₂	S39
Figure S5	GC Plot from 2a Synthesis at 20 psi of CO ₂	S39
Figure S6	GC-MS Plot of ¹³ C- 2a	S40
Figure S7	GC-MS Plot of 2a	S40
Figure S8	GC Plot from Synthesis of 6a	S41
Figure S9	GC Plot from Synthesis of 2i	S42
Figure S10	GC Data from Time Study of 6a Synthesis	S43
NMR Spectroscopic St	rudies	S44-S53
Figure S11	¹ H NMR Spectra of Products Obtained at Different CO ₂	S44
-	Pressures	
Figure S12	¹ H NMR Spectrum of 2a and DIPEA	S45
Figure S13	¹ H NMR Spectrum of 2a and DMAP	S46
Figure S14	¹ H NMR Spectrum of 2a and T3P	S47
Figure S15	¹ H NMR Spectrum of 2i and DIPEA	S48
Figure S16	¹ H NMR Spectrum of 2i and DMAP	S49
Figure S17	¹ H NMR Spectrum of 2i and T3P	S50
Figure S18	¹ H NMR Spectrum of 1i and DIPEA	S51
Figure S19	¹ H NMR Spectrum of 1i and DMAP	S52
Figure S20	¹ H NMR Spectrum of 1i and T3P	S53
Methods Comparison		
Scheme S5	Methods to Prepare 5-Membered Ring NCAs	S54
NMR Characterization	n Data	S55-S99
Figures S21-S36	NMR Spectra of 1b-1h	S55-S62
Figures S37-S71	NMR Spectra of 2a-2o, 2a', 2i'	S63-S80
Figures S72-S93	NMR Spectra of 4a-4m	S80-S91
Figures S94-S103	NMR Spectra of 6a-6d, and 7	S92-S96
Figures S104-S105	NMR Spectra of 11	S97
Figures S106-S107	NMR Spectra of 13	S98
Figures S108-S109	NMR Spectra of 14	S99
References		S100-S102

General Considerations

Reagents and Materials: 4-(Dimethylamino)pyridine (DMAP), *n*-propylphosphonic anhydride (T3P), 2-chloro-1-methylpyridinium iodide (CMPI), 1,1'-carbonyldiimidazole (CDI), triethylamine (TEA), and *N*,*N*-di-*iso*-propylethylamine (DIPEA) were purchased from Sigma Aldrich and used as received. Carbon dioxide (USP grade) was purchased from Matheson Tri-Gas Inc. or Airgas Inc. and used as received. ¹³C labeled carbon dioxide (¹³CO₂, 99.0 atom % ¹³C) was purchased from Sigma-Aldrich Chemical Co. and used as received. The other reagents were purchased from Ambeed Inc., Alfa Aesar, AK Scientific Inc., Matrix Scientific, TCI, and Sigma-Aldrich and used as received. Deuterated solvents were purchased from Cambridge Isotope Laboratories Inc., degassed, and stored over activated molecular sieves prior to use. Solvents were purified using a two-column solid-state purification system by the method of Grubbs and transferred to the glovebox without exposure to air. ¹ Acetonitrile was distilled over calcium hydride and stored over sieves prior to use.

Physical Methods: NMR spectra were acquired using JEOL (ECA-300, 400, 500, and 600) or Bruker (AV-300 and AV-500) at ambient temperature and referenced using residual solvent peaks. All ¹³C and ¹⁹F NMR spectra were proton decoupled. Gas chromatography-mass spectrometry (GC-MS) was performed using an Agilent 7890 GC/5977A MSD instrument equipped with an HP-5MS capillary column. DART-MS used a Thermo Exactive Plus MSD (Thermo Scientific) equipped with an ID-CUBE ion source and a Vapur Interface (IonSense). Both the source and MSD were controlled by Excalibur v. 3.0. The analyte was spotted onto OpenSpot sampling cards (IonSense) using chloroform as the solvent. Ionization was accomplished using He plasma with no additional ionization agents. Mass calibration was carried out using Pierce LTQ Velos ESI (+) and (-) Ion calibration solutions (Thermo Fisher Scientific).

General Procedure for the Synthesis of 2-(N-Benzylamino)benzoic Acids

Method A: To a 200 mL round-bottom flask equipped with a magnetic stir bar, the 2-aminobenzoic acid derivative (15 mmol, 1.0 equiv.), and benzaldehyde (1530 μL, 15 mmol, 1.0 equiv.) were dissolved in methanol (100 mL). The mixture was stirred at 40 °C for 4 h. Solid NaBH₄ (850 mg, 22.5 mmol, 1.5 equiv.) was then added portion-wise to the reaction mixture, and the reaction was stirred at RT for an additional 3 h, giving a transparent solution. The reaction mixture was diluted with CH₂Cl₂ (100 mL) after being quenched with water. The aqueous phase was collected, then an aqueous solution of HCl (1 M, 10 mL) was added to the mixture until the pH was ~ 3, affording a cloudy solution. The aqueous suspension was evaporated to dryness. The crude solid was rinsed three times with a mixture of hexanes/ethyl acetate (3/1, *v/v*), dried under reduced pressure, and used in the next step without any further purification.

Method B: To a 200 mL round-bottom flask equipped with a magnetic stir bar, the 2-aminobenzoic acid derivative (15 mmol, 1.0 equiv.) and benzaldehyde (1530 μL, 15 mmol, 1.0 equiv.) were dissolved in CH₂Cl₂ (50 mL). The mixture was stirred at 40 °C for 3 h, which led to the formation of a precipitate. Solid NaBH₄ (850 mg, 22.5 mmol, 1.5 equiv.) was then added portion-wise to the reaction mixture, followed by the addition of MeOH (10 mL), and stirred at RT for an additional 2 h. Upon completion, water was added to quench the reaction and the pH of the solution was adjusted to ~ 3 using HCl (aqueous solution, 1 M, 10 mL). The product was extracted by the addition of ethyl acetate (100 mL). The organic layer was separated, dried over Na₂SO₄, filtered, and evaporated to dryness, giving the product as a solid, which was used in the next step without any further purification.

Method C: Under N₂, the 2-aminobenzoic acid derivative (9 mmol, 1.0 equiv.) and benzaldehyde (955 mg, 9 mmol, 1.0 equiv.) were dissolved in 1,2-dicholoroethane (20 mL) in a 100 mL round-bottom flask was equipped with a magnetic stir bar. The mixture was stirred at ambient temperature for 2 h, which led to the formation of a slurry. Solid NaBH(OAc)₃ (2.67 g, 12.6 mmol, 1.4 equiv.) was added and the slurry was allowed to stir overnight under N₂. Upon completion, a saturated solution containing NaHCO₃ was added to quench the reaction. The mixture was extracted into ethyl acetate (3×100 mL) and the organic layer was separated, dried over MgSO₄, filtered, and evaporated to dryness. The benzylated products were obtained as solids and used in the next step without any further purification.

Characterization Data

2-(N-Benzylamino)-5-fluorobenzoic acid (1b)

Compound **1b** was synthesized by following Method C. It was isolated as a white solid (1.54 g, 42%). This compound has been reported previously.² ¹H NMR (400 MHz, 25 °C, DMSO- d_6): δ (ppm) = δ 7.48 (dd, J = 9.8, 3.2 Hz, 1H, ArH), 7.29 (d, J = 4.4 Hz, 4H, ArH), 7.23 – 7.14 (m, 2H, ArH), 6.62 (dd, J = 9.3, 4.5 Hz, 1H, ArH), 4.41 (s, 2H, NCH2Ar). ¹³C NMR (101 MHz, 25 °C, DMSO- d_6): δ (ppm) = 169.6 (d, J = 2.6 Hz, COOH), 152.8 (d, J = 231.2 Hz, CF), 148.2 (d, J = 0.5 Hz), 139.8, 129.1, 127.6, 127.5, 122.4 (d, J = 22.7 Hz), 117.1 (d, J = 22.7 Hz), 113.7 (d, J = 7.0 Hz), 110.8 (d, J = 6.3 Hz), 46.6 (NCH2Ar). ¹⁹F NMR (376 MHz, 25 °C, DMSO- d_6): δ (ppm) = -130.1 (ddd, J = 9.8, 8.1, 4.5 Hz).

2-(N-Benzylamino)-4-fluorobenzoic acid (1c)

Compound **1c** was synthesized by following Method C. It was isolated as a white solid (1.83 g, 83%). This compound was reported previously.³ H NMR (300 MHz, 25 °C, DMSO- d_6): δ (ppm) = 8.48 (br, 1H, N*H*), 7.86 (dd, J = 8.8, 7.1 Hz, 1H, Ar*H*), 7.36 (s, 4H, Ar*H*), 7.31 – 7.23 (m, 1H, Ar*H*), 6.45 (dd, J = 12.7, 2.5 Hz, 1H, Ar*H*), 6.36 (td, J = 8.5, 2.5 Hz, 1H, Ar*H*), 4.46 (s, 2H, NC*H*₂Ar). ¹³C NMR (125 MHz, 25 °C, DMSO- d_6): δ (ppm) = 169.3 (*C*OOH), 166.3 (d, J = 248.0 Hz, *C*F), 152.9 (d, J = 12.7 Hz), 138.8, 134.6 (d, J = 11.9 Hz), 128.6, 127.1, 127.1, 107.3, 101.9 (d, J = 22.7 Hz), 97.8 (d, J = 25.8 Hz), 45.9 (N*C*H₂Ar). ¹⁹F NMR (282 MHz, 25 °C, DMSO- d_6): δ (ppm) = -104.40 (dt, J = 12.7, 7.7 Hz).

2-(N-Benzylamino)-5-methoxybenzoic acid (1d)

Compound **1d** was synthesized by following Method A. It was isolated as a yellow solid (2.50 g, 65%). This compound was reported previously.³ ¹H NMR (400 MHz, 25 °C, DMSO- d_6): δ (ppm) = 8.33 (br, 1H, N*H*), 7.70 (d, J = 8.8 Hz, 1H, Ar*H*), 7.34 – 7.27 (m, 4H, Ar*H*), 7.22 (ddt, J = 8.6, 6.0, 3.3 Hz, 1H, Ar*H*), 6.13 (dd, J = 8.8, 2.4 Hz, 1H, Ar*H*), 6.07 (d, J = 2.3 Hz, 1H, Ar*H*), 4.40 (s, 2H, NC H_2 Ar), 3.64 (s, 3H, C H_3 O). ¹³C NMR (101 MHz, 25 °C, DMSO- d_6): δ (ppm) = 170.2 (COOH), 164.7, 153.0, 139.8, 134.2, 129.1, 127.7, 127.5, 104.3, 102.3, 96.3, 55.5 (CH₃OAr), 46.5 (NCH₂Ar).

2-(N-Benzylamino)-4-methoxybenzoic acid (1e)

Compound **1e** was synthesized by following Method A. It was isolated as a brown solid (1.58 g, 41%). This compound was reported previously.⁴ H NMR (400 MHz, 25 °C, DMSO- d_6): δ (ppm) = 7.32 – 7.26 (m, 5H, ArH), 7.24 – 7.17 (m, 1H, ArH), 6.96 (dd, J = 9.1, 3.1 Hz, 1H, ArH), 6.59 (d, J = 9.2 Hz, 1H, ArH), 4.38 (s, 2H, NCH2Ar), 3.61 (s, 3H, CH3OAr). ¹³C NMR (101 MHz, 25 °C, DMSO- d_6): δ (ppm) = 170.2 (COOH), 149.3, 146.2, 140.3, 129.0, 127.6, 127.4, 123.1, 115.0, 113.8, 110.8, 55.9 (CH₃OAr), 46.8 (NCH2Ar).

2-(N-Benzylamino)-4,5-dimethoxybenzoic acid (1f)

Compound **1f** was synthesized by following Method A. It was isolated as a white solid (2.80 g, 65%). This compound was reported previously.⁵ H NMR (400 MHz, 25 °C, DMSO- d_6): δ (ppm) = 7.35 – 7.28 (m, 4H, Ar*H*), 7.24 – 7.19 (m, 2H, Ar*H*), 6.21 (s, 1H, Ar*H*), 4.42 (s, 2H, NC H_2 Ar), 3.65 (s, 3H, C H_3 OAr), 3.59 (s, 3H, C H_3 OAr). ¹³C NMR (101 MHz, 25 °C, DMSO- d_6): δ (ppm) = 170.1 (COOH), 155.4, 148.4, 140.1, 139.2, 129.1, 127.9, 127.5, 114.9, 101.5, 96.1, 56.6 (CH $_3$ OAr), 55.8 (CH $_3$ OAr), 46.9 (NC H_2 Ar).

2-(N-Benzylamino)-5-methylbenzoic acid (1g)

Compound **1g** was synthesized by following Method C. It was isolated as a light-yellow solid (1.52 g, 70%). This compound was reported previously.² H NMR (500 MHz, 25 °C, CDCl₃): δ (ppm) = 7.79 (s, 1H, Ar*H*), 7.39 – 7.26 (m, 5H, Ar*H*), 7.16 (d, J = 8.6 Hz, 1H, Ar*H*), 6.57 (d, J = 8.6 Hz, 1H, Ar*H*), 4.48 (s, 2H, NC*H*₂Ar), 2.23 (s, 3H, C*H*₃). ¹³C NMR (125 MHz, 25 °C, DMSO-*d*₆): δ (ppm) = 174.2 (*C*OOH), 149.7, 139.0, 136.9, 132.4, 128.8, 127.2, 127.0, 124.3, 112.2, 109.0, 47.2 (N*C*H₂), 20.2 (Ar*C*H₃).

3-(N-Benzylamino)-2-naphthanoic acid (1h)

Compound **1h** was synthesized by following Method B. It was isolated as a yellow solid (3.01 g, 72%). This compound was reported previously.⁶ ¹H NMR (400 MHz, 25 °C, DMSO- d_6): δ (ppm) = 8.49 (s, 1H, ArH), 7.76 (d, J = 8.0 Hz, 1H, ArH), 7.49 (d, J = 8.2 Hz, 1H, ArH), 7.40 – 7.29 (m, 5H, ArH), 7.22 (t, J = 7.2 Hz, 1H, ArH), 7.10 (ddd, J = 8.0, 6.8, 1.0 Hz, 1H, ArH), 6.85 (s, 1H, ArH), 4.46 (s, 2H, NCH2Ar). ¹³C NMR (101 MHz, 25 °C, DMSO- d_6): δ (ppm) = 170.3 (COOH), 146.9, 139.8, 137.7, 134.2, 129.7, 129.3, 129.1, 127.8, 127.5, 125.8, 125.0, 122.4, 115.2, 105.0, 46.9 (NCH2Ar).

General Procedure for the Synthesis of N-Carboxyanhydrides (NCA) from 2-Aminobenzoic Acids and CO₂

Method D: To a 350 mL stainless steel Parr reaction vessel equipped with a stir bar, the 2-aminobenzoic acid derivative (2.5 mmol, 1 equiv.), 4-(dimethylamino)pyridine (300 mg, 2.5 mmol, 1 equiv.), anhydrous acetonitrile (50 mL), and *N,N*-diisopropylethylamine (1.7 mL, 10 mmol, 4 equiv.) were added. The reaction vessel was sealed and purged with CO₂ three times. The CO₂ pressure was increased to 300 psi and the system was heated to 65 °C and stirred for 2 h. The vessel was then cooled to RT and the CO₂ pressure was reduced to below 5 psi so that propylphosphonic anhydride (4.5 mL - 50% wt in ethyl acetate, 7.5 mmol, 3 equiv.) could be injected into the reactor via syringe. The vessel was pressured with CO₂ to 300 psi and the contents were heated at 65 °C and stirred for another 24 h. To stop the reaction, the vessel was cooled to RT and slowly vented. The resulting mixture was then diluted with 250 mL of ethyl acetate, washed with a saturated solution of NaCl, and then washed again with cold water twice. The organic layer was collected, dried over anhydrous MgSO₄, and the volatiles were removed under reduced pressure to afford the NCA product as a yellow/brown solid.

Method E: To a 350 mL stainless steel Parr reaction vessel equipped with a stir bar, the 2-aminobenzoic acid derivative (2.5 mmol, 1 equiv.), 4-(dimethylamino)pyridine (300 mg, 2.5 mmol, 1 equiv.), anhydrous acetonitrile (50 mL), *N*,*N*-diisopropylethylamine (1.7 mL, 10 mmol, 4 equiv.), and propylphosphonic anhydride (4.5 mL - 50% weight in ethyl acetate, 7.5 mmol, 3 equiv.) were added. The reaction vessel was sealed and purged with CO₂ three times. The CO₂ pressure was increased to 300 psi and the contents were heated to 65 °C and stirred for 24 h. To stop the reaction, the vessel was cooled to RT and vented. The resulting mixture was then diluted with 250 mL of ethyl acetate, washed with a saturated NaCl solution, and then washed again with cold water twice. The organic layer was collected and dried over anhydrous MgSO₄. The volatiles were removed under a reduced pressure to afford the NCA product as a yellow/brown solid.

Method F: To a 350 mL stainless steel Parr reaction vessel equipped with a stir bar, 2-aminobenzoic acid derivative (2.5 mmol, 1 equiv.) and anhydrous acetonitrile (40 mL) were combined. The vessel was sealed, purged with CO₂ (300 psi), and was stirred for 30 min at RT. After releasing the pressure, the temperature went down to below 5 °C. The vessel was then opened so that *N*,*N*-diisopropylethylamine (2 mL, 10 mmol, 4 equiv.) and propylphosphonic anhydride (4.5 mL, 7.5 mmol, 3 equiv.) could be injected into the reactor. The reaction vessel was quickly sealed and purged with CO₂ three times. The CO₂ pressure was increased to 300 psi and the contents were heated to 40 °C and stirred for 15 h. To stop the reaction, the vessel was cooled to RT and vented. The resulting mixture was then diluted with 100 mL of ethyl acetate, washed with cold deionized water, and then washed again with a saturated NaCl solution. The organic layer was collected, dried over anhydrous MgSO₄, and the volatiles were removed under a reduced pressure to afford the NCA product as an off-white solid or brown oil.

Characterization Data

1-Benzyl-3,1-benzoxazine-2,4-dione (2a)

Compound **2a** was synthesized by following Method E. It was obtained as a light-yellow solid (487 mg, 77%) without any further purification needed. This compound was reported previously. ⁷ H NMR (400 MHz, 25 °C, CDCl₃): δ (ppm) = 8.15 (dd, J = 7.9, 1.5 Hz, 1H, ArH), 7.63 (ddd, J = 8.7, 7.4, 1.6 Hz, 1H, ArH), 7.38 – 7.32 (m, 2H, ArH), 7.32 – 7.27 (m, 3H, ArH), 7.27 – 7.23 (m, 1H, ArH), 7.11 (d, J = 8.5 Hz, 1H, ArH), 5.30 (s, 2H, NCH2Ar). ¹³C NMR (101 MHz, 25 °C, CDCl₃): δ (ppm) = 158.5 (ArCOO), 148.6 (ArNCOO), 141.5, 137.3, 134.5, 131.0, 129.3, 128.3, 126.7, 124.3, 114.8, 111.9, 48.6 (NCH2Ar). GC-MS: calc. for C₁₅H₁₀NO₃ [M]⁺ = 253.1, found 253.1.

5,11-Bis(phenylmethyl)dibenzo[b,f][1,5]diazocine-6,12(5H,11H)-dione (2a')

Compound **2a'** was synthesized by following the condition described in Table S2, entry 5. It was isolated as an off-white solid (300 mg, 58%) after purification by silica gel chromatography using ethyl acetate/ hexanes (3/7) as the eluent. This compound was reported previously. HNMR (400 MHz, 25 °C, CDCl₃): δ (ppm) = 7.31 – 7.25 (m, 8H, Ar*H*), 7.21 – 7.17 (m, 4H, Ar*H*), 7.17 – 7.13 (m, 4H, Ar*H*), 6.87 – 6.82 (m, 2H, Ar*H*), 5.06 (d, *J* = 14.3 Hz, 2H, NC*H*₂Ar), 4.88 (d, *J* = 14.3 Hz, 2H, NC*H*₂Ar). CNMR (101 MHz, 25 °C, CDCl₃): δ (ppm) = 167.9 (Ar*C*ON), 139.1, 136.6, 135.3, 130.5, 129.1, 128.7, 128.5, 127.9, 127.9, 126.2, 53.0 (N*C*H₂Ar). GC-MS: calc. for C₂₈H₂₂N₂O₂ [M]⁺ = 418.2, found 418.2.

1-Benzyl-2H-7-fluorobenzo[d][1,3]oxazine-2,4-dione (2b)

Compound **2b** was synthesized by following Method E. It was isolated as a light-yellow solid (404 mg, 55%) after purification by silica gel chromatography using ethyl acetate:hexanes (3:7) as the eluent, followed by recrystallization in CH₂Cl₂. This compound was reported previously. HNMR (300 MHz, 25 °C, CDCl₃): δ (ppm) = 7.84 (dd, J = 7.5, 3.0 Hz, 1H, ArH), 7.39 – 7.28 (m, 6H, ArH), 7.09 (dd, J = 9.2, 3.9 Hz, 1H, ArH), 5.30 (s, 2H, NCH2Ar). NMR (126 MHz, 25 °C, CDCl₃): δ (ppm) = 158.6 (d, J = 247.5 Hz, CF), 157.6 (d, J = 3.0 Hz, ArCOO), 148.2 (ArSCO), 137.9 (d, J = 2.2 Hz), 134.2, 129.4, 128.4, 126.6, 125.0 (d, J = 23.7 Hz), 117.0 (d, J = 7.5 Hz), 116.4 (d, J = 24.3 Hz), 113.3 (d, J = 8.0 Hz), 49.0 (NCH2Ar). GC-MS: calc. for C₁₅H₁₀NO₃F [M]⁺ = 271.1, found 271.1.

1-Benzyl-2H-6-fluorobenzo[d][1,3]oxazine-2,4-dione (2c)

Compound **2c** was synthesized by following Method E. It was obtained as a white-yellowish solid (502 mg, 74%) without any further purification needed. This compound was reported previously. ¹⁰ H NMR (500 MHz, 25 °C, CDCl₃): δ (ppm) = 8.18 (dd, J = 8.8, 6.1 Hz, 1H, ArH), 7.38 (ddd, J = 7.6, 6.2, 1.3 Hz, 2H, ArH), 7.35 – 7.28 (m, 3H, ArH), 6.96 (ddd, J = 8.8, 7.8, 2.2 Hz, 1H, ArH), 6.81 (dd, J = 10.1, 2.2 Hz, 1H, ArH), 5.26 (s, 2H, NCH2Ar). ¹³C NMR (126 MHz, 25 °C, CDCl₃): δ (ppm) = 168.1 (d, J = 259.0 Hz, CF), 157.5 (ArCOO), 148.5 (ArNCOO), 143.8 (d, J = 12.3 Hz), 133.9 (d, J = 11.4 Hz), 133.9, 129.4, 128.5, 126.7, 112.4 (d, J = 22.9 Hz), 108.4 (d, J = 2.3 Hz), 102.6 (d, J = 28.1 Hz), 49.0 (NCH2Ar). GC-MS: calc. for C₁₅H₁₀NO₃F [M]⁺ = 271.1, found 271.1.

1-Benzyl-2*H*-7-dimethoxybenzo[*d*][1,3]oxazine-2,4-dione (2d)

Compound **2d** was synthesized by following Method E. It was isolated as a white-yellowish solid (148 mg, 21%) after purification by silica gel chromatography using ethyl acetate:hexanes (3:7) as the eluent. 1 H NMR (500 MHz, 25 $^{\circ}$ C, CDCl₃): δ (ppm) = 7.57 (d, J = 3.0 Hz, 1H, ArH), 7.39 – 7.27 (m, 5H, ArH), 7.20 (dd, J = 9.1, 3.0 Hz, 1H, ArH), 7.03 (d, J = 9.2 Hz, 1H, ArH), 5.28 (s, 2H, NCH2Ar), 3.84 (s, 3H, CH3OAr). 13 C NMR (126 MHz, 25 $^{\circ}$ C, CDCl₃): δ (ppm) = 158.6 (ArH2COO), 156.2 (ArH3COO), 148.5, 135.5, 134.7, 129.3, 128.2, 126.7, 126.0, 116.4, 112.6, 111.8, 56.1 (H3CH3COAr), 48.7 (NH2Ar). GC-MS: calc. for C₁₆H₁₃NO₄ [M]⁺ = 283.1, found 283.1. ESI-MS (+): calc. for C₁₆H₁₃NO₄ [M+H]⁺ = 284.09173, found 284.09272.

1-Benzyl-2*H*-6-dimethoxybenzo[*d*][1,3]oxazine-2,4-dione (2e)

Compound **2e** was synthesized by following Method E. It was obtained as a yellow solid (587 mg, 83%) without any further purification needed. 1 H NMR (500 MHz, 25 °C, CDCl₃): δ (ppm) = 8.04 (d, J = 8.8 Hz, 1H, ArH), 7.39 – 7.25 (m, 5H, ArH), 6.75 (dd, J = 8.8, 1.8 Hz, 1H, ArH), 6.52 (s, 1H, ArH), 5.25 (s, 2H, NCH₂Ar), 3.78 (s, 3H, CH₃OAr). 13 C NMR (126 MHz, 25 °C, CDCl₃): δ (ppm) = 166.7 (ArCOO), 158.0 (ArNCOO), 149.1, 143.4, 134.6, 133.0, 129.2, 128.2, 126.8, 110.7, 104.5, 100.2, 56.0 (CH₃OAr), 48.7 (NCH₂Ar). ESI-MS (+): calc. for C₁₆H₁₃NO₄ [M+H]⁺ = 284.09173, found 284.09251.

1-Benzyl-2H-6,7-dimethoxybenzo[d][1,3]oxazine-2,4-dione (2f)

Compound **2f** was synthesized by following Method E. It was obtained as an orange solid (715 mg, 91%) without any further purification needed. 1 H NMR (500 MHz, 25 °C, CDCl₃): δ (ppm) = 7.48 (s, 1H, Ar*H*), 7.41 – 7.34 (m, 5H, Ar*H*), 6.51 (s, 1H, Ar*H*), 5.31 (s, 2H, NC*H*₂Ar), 3.91 (s, 3H, C*H*₃OAr), 3.78 (s, 3H, C*H*₃OAr). 13 C NMR (126 MHz, 25 °C, CDCl₃): δ (ppm) = 158.3 (Ar*C*OO), 156.7 (ArN*C*OO), 149.2, 146.2, 137.6, 134.9, 129.3, 128.3, 126.7, 110.1, 103.5, 98.0 (*C*H₃OAr), 56.5 (*C*H₃OAr), 48.9 (N*C*H₂Ar). ESI-MS (+): calc. for C₁₇H₁₅NO₅ [M+H]⁺ = 314.10229, found 314.10234.

1-Benzyl-2H-7-methylbenzo[d][1,3]oxazine-2,4-dione (2g)

Compound **2g** was synthesized by following Method E. It was isolated as a light-yellow solid (281 mg, 42%) after purification by silica gel chromatography using ethyl acetate/hexanes (3/7) as the eluent. This compound was reported previously. HNMR (500 MHz, 25 °C, CDCl₃): δ (ppm) = 7.95 (d, J = 2.0 Hz, 1H, ArH), 7.46 – 7.40 (m, 1H, ArH), 7.39 – 7.27 (m, 5H, ArH), 7.00 (d, J = 8.6 Hz, 1H, ArH), 5.29 (s, 2H, NCH₂Ar), 2.37 (s, 3H, CH₃Ar). CNMR (126 MHz, 25 °C, CDCl₃) δ (ppm) = 158.6 (ArCOO), 148.6 (ArCOO), 139.3, 138.3, 134.6, 134.3, 130.5, 129.2, 128.2, 126.7, 114.8, 111.7, 48.5 (NCH₂Ar), 20.5 (CH₃Ar). GC-MS: calc. for C₁₆H₁₃NO₃ [M]⁺ = 267.1, found 267.1.

1-Benzyl-2*H*-naphtho[2,3-*d*][1,3]oxazine-2,4-dione (2h)

Compound **2h** was synthesized by following Method E. It was isolated as a pale-yellow solid (330 mg, 44%) after purification by silica gel chromatography using ethyl acetate/hexanes/toluene (5/20/1) as the eluent. 1 H NMR (400 MHz, 25 $^{\circ}$ C, CDCl₃): δ (ppm) = 8.80 (s, 1H, Ar*H*), 7.94 (d, J = 8.2 Hz, 1H, Ar*H*), 7.75 – 7.70 (m, 1H, Ar*H*), 7.60 (ddd, J = 8.3, 6.9, 1.2 Hz, 1H, Ar*H*), 7.49 (ddd, J = 8.1, 6.9, 1.1 Hz, 1H, Ar*H*), 7.41 – 7.33 (m, 5H, Ar*H*), 7.29 (ddd, J = 8.6, 5.9, 2.8 Hz, 1H, Ar*H*), 5.40 (s, 2H, NC*H*₂Ar). 13 C NMR (101 MHz, 25 $^{\circ}$ C, CDCl₃): $\delta = 158.7$ (Ar*C*OO), 148.4 (ArN*C*OO), 137.5, 136.0, 134.6, 133.9, 130.8, 129.6, 129.3, 129.2, 128.2, 127.7, 126.7, 126.7, 111.6, 111.5, 48.9 (N*C*H₂Ar). ESI-MS (+): calc. for C₁₉H₁₃NO₃ [M+H]⁺ = 304.09682, found 304.09683.

3,1-Benzoxazine-2,4(1*H*)-dione (Isatoic anhydride, 2i)

Compound **2i** was synthesized by following Method F. It was obtained as an off-white solid (400 mg, 99%) without any further purification needed. This compound was reported previously. ¹¹ H NMR (500 MHz, 25 °C, DMSO- d_6): δ (ppm) = 11.71 (s, 1H, N*H*), 7.88 (dd, J = 7.9, 1.1 Hz, 1H, Ar*H*), 7.76 – 7.66 (m, 1H, Ar*H*), 7.22 (t, J = 7.4 Hz, 1H, Ar*H*), 7.11 (d, J = 8.2 Hz, 1H, Ar*H*). ¹³C NMR (101 MHz, 25 °C, DMSO- d_6): δ (ppm) = 160.4 (Ar*C*OO), 147.7 (ArN*C*OO), 141.9, 137.5, 129.5, 124.1, 115.9, 110.8. GC-MS: calc. for C₈H₅NO₃ [M]⁺ = 163.0, found 163.0.

Dibenzo[b,f][1,5]diazocine-6,12(5H,11H)-dione (2i')

Compound **2i'** was synthesized by following the condition described in Table S8, entry 2. It was isolated as a yellow solid (190 mg, 64%) after purification by silica gel chromatography using hexanes/ethyl acetate/diethyl ether (9/3/1) as the eluent. This compound was reported previously. ¹² ¹H NMR (400 MHz, 25 °C, CDCl₃): δ (ppm) = 8.23 (dd, J = 7.9, 1.3 Hz, 1H, ArH), 8.10 (dd, J = 8.4, 1.5 Hz, 1H, ArH), 7.78 (m, 1H, ArH), 7.60 (d, J = 7.9 Hz, 1H, ArH), 7.58 (m, 1H, ArH), 7.26 (m, 1H, ArH), 6.73 (dt, J = 7.1, 3.4 Hz, 2H, ArH), 6.48 (br, 2H, NH). ¹³C NMR (101 MHz, 25 °C, CDCl₃): δ (ppm) = 159.4 (ArHCON), 158.0, 149.8, 146.7, 136.6, 133.8, 129.7, 128.7, 127.8, 126.5, 116.9, 116.8, 116.6, 110.1. GC-MS: calc. for C₁₄H₁₀N₂O₂ [M]⁺ = 238.1, found 238.1.

7-Fluoro-2*H*-3,1-benzoxazine-2,4(1*H*)-dione (2j)

Compound **2j** was synthesized by following Method F. It was obtained as a tawny-colored solid (445 mg, 95%) without any further purification needed. This compound was reported previously.¹³ ¹H NMR (400 MHz, DMSO- d_6): δ (ppm) = 11.85 (br, 1H, N*H*), 7.96 (dd, J = 8.8, 6.0 Hz, 1H, Ar*H*), 7.07 (td, J = 8.8, 2.4 Hz, 1H, Ar*H*), 6.84 (dd, J = 9.7, 2.4 Hz, 1H, Ar*H*). ¹³C NMR (101 MHz, 25 °C, DMSO- d_6): δ (ppm) = 167.3 (d, J = 254.2 Hz, CF), 159.5 (ArCOO), 147.5 (ArSCOO), 144.2 (d, J = 13.5 Hz), 132.9 (d, J = 11.6 Hz), 112.1 (d, J = 23.4 Hz), 107.9, 102.3 (d, J = 26.5 Hz). ¹⁹F NMR (376 MHz, 25 °C, DMSO- d_6): δ (ppm) = -99.79 – -99.87 (m). GC-MS: calc. for C₈H₄FNO₃ [M]⁺ = 180.0, found 180.1.

7-Methoxy-2H-3,1-benzoxazine-2,4(1H)-dione (2k)

Compound **2k** was synthesized by following Method F. It was obtained as an off-white solid (390 mg, 81%) without any further purification needed. This compound was reported previously. ¹⁴ H NMR (400 MHz, 25 °C, DMSO- d_6): δ (ppm) = 11.59 (br, 1H, N*H*), 7.71 (d, J = 8.7 Hz, 1H, Ar*H*), 6.72 (dd, J = 8.9, 2.3 Hz, 1H, Ar*H*), 6.48 (d, J = 2.3 Hz, 1H, Ar*H*), 3.78 (s, 3H, C*H*₃OAr). ¹³C NMR (101 MHz, 25 °C, DMSO- d_6): δ (ppm) = 166.3 (Ar*C*OO), 159.7 (ArN*C*OO), 147.9, 144.1, 131.4, 112.1, 103.2, 98.9, 56.4 (*C*H₃OAr). GC-MS: calc. for C₉H₇NO₄ [M]⁺ = 193.0, found 193.1.

6,7-Dimethoxy-2*H***-3,1-benzoxazine-2,4**(1*H*)-dione (2l)

Compound **21** was synthesized by following Method F. It was obtained as an off-white solid (435 mg, 78%) without any further purification needed. This compound was reported previously. ¹⁵ H NMR (400 MHz, 25 °C, DMSO- d_6): δ (ppm) = 11.51 (br, 1H, N*H*), 7.14 (s, 1H, Ar*H*), 6.54 (s, 1H, Ar*H*), 3.80 (s, 3H, C*H*₃OAr), 3.74 (s, 3H, C*H*₃OAr). ¹³C NMR (101 MHz, 25 °C, DMSO- d_6): δ (ppm) = 159.9 (ArCOO), 157.0 (ArNCOO), 147.9, 146.1, 138.1, 108.9, 101.6, 98.1, 56.6 (*CH*₃OAr), 56.3 (*CH*₃OAr). GC-MS: calc. for C₁₀H₉NO₅ [M]⁺ = 223.1, found 223.1.

6-Methyl-2*H*-3,1-benzoxazine-2,4(1*H*)-dione (2m)

Compound **2m** was synthesized by following Method F. It was obtained as an off-white solid (341 mg, 77%) without any further purification needed. This compound was reported previously. ¹⁶ H NMR (500 MHz, 25 °C, DMSO- d_6): δ (ppm) = 11.65 (br, 1H, NH), 7.71 (s, 1H, ArH), 7.56 (dd, J = 8.3, 1.6 Hz, 1H, ArH), 7.06 (d, J = 8.3 Hz, 1H, ArH), 2.32 (s, 3H, CH₃Ar). ¹³C NMR (126 MHz, 25 °C, DMSO- d_6): δ (ppm) = 160.0 (ArCOO), 147.2 (ArNCOO), 139.3, 138.0, 133.0, 115.3, 110.0, 20.1 (*C*H₃Ar).

1-Methyl-2H-3,1-benzoxazine-2,4(1H)-dione (2n)

Compound **2n** was synthesized by following Method F. It was obtained as an off-white solid (335 mg, 76%) without any further purification needed. This compound was reported previously. ¹⁷ H NMR (400 MHz, 25 °C, DMSO- d_6): δ (ppm) = 7.97 (d, J = 7.8 Hz, 1H, ArH), 7.82 (t, J = 7.9 Hz, 1H, ArH), 7.41 (d, J = 8.4 Hz, 1H, ArH), 7.30 (t, J = 7.6 Hz, 1H, ArH), 3.42 (s, 3H, CH3N). ¹³C NMR (101 MHz, 25 °C, DMSO- d_6): δ (ppm) = 159.6 (ArH2COO), 148.3 (ArH3COO), 142.8, 137.7, 129.9, 124.1, 115.4, 112.1, 32.2 (H3N). GC-MS: calc. for C₉H₇NO₃ [M]⁺ = 177.0, found 177.1.

3-Methyl-1,3-oxazinane-2,6-dione (20)

Compound **20** was synthesized by following Method F. It was obtained as a yellowish-white solid (175 mg, 54%) without any further purification needed. This compound was reported previously. ¹⁸ ¹H NMR (400 MHz, 25 °C, CDCl₃): δ (ppm) = 3.43 (t, J = 6.6 Hz, 2H, CH₂N), 3.07 (s, 3H, CH₃N), 2.84 (t, J = 6.8 Hz, 2H, CH₂CO). ¹³C NMR (101 MHz, 25 °C, CDCl₃): δ (ppm) = 165.0 (CH₂COO), 149.5 (NCOO), 42.8 (CH₂N), 36.6 (CH₃N), 29.4 (CH₂CO).

3-Methyl-1,3-oxazolidine-2,5-dione (4a)

Compound **4a** was synthesized from *N*-methylglycine by following Method F. It was isolated as an off-white solid (145 mg, 51%) after trituration in cold THF/hexanes (1/10). This compound was reported previously. ¹⁹ H NMR (400 MHz, 25 °C, CDCl₃): δ (ppm) = 4.12 (s, 2H, COC*H*₂N), 3.03 (s, 3H, C*H*₃N). ¹³C NMR (101 MHz, 25 °C, CDCl₃): δ (ppm) = 165.4 (CH₂COO), 152.4 (N*C*OO), 51.0 (N*C*H₂COO), 30.4 (*C*H₃N).

3,4-Dimethyl-1,3-oxazolidine-2,5-dione (4b)

Compound **4b** was synthesized from *N*-methyl-*DL*-alanine by following Method F. It was obtained as a tawny-colored amorphous solid (180 mg, 56%) without any further purification needed. ¹H NMR (500 MHz, 25 °C, CDCl₃): δ (ppm) = 4.17 (q, J = 7.0 Hz, 1H, CH₃CHCO), 2.93 (s, 3H, CH₃N), 1.48 (d, J = 7.2 Hz, 3H, CH₃CHCO). ¹³C NMR (126 MHz, 25 °C, CDCl₃): δ (ppm) = 169.6 (CHCOO), 151.7 (NCOO), 57.0 (CHCOO), 28.3 (CH₃N), 15.1 (CH₃CH). Due to the heat and moisture sensitivity of **4b**, dimerization occurred during mass spectrometric analysis.

3-Methyl-4-(1-methylethyl)-2,5-oxazolidinedione (4c)

Compound **4c** was synthesized from *N*-methyl-*L*-valine by following Method F. It was obtained as a tawny-colored amorphous solid (310 mg, 49%) without any further purification needed. This compound was reported previously.¹⁸ ¹H NMR (400 MHz, 25 °C, CDCl₃): δ (ppm) = 4.01 (d, J = 3.4 Hz, 1H, NCHCOO), 2.96 (s, 3H, CH₃N), 2.26 (heptd, J = 7.1, 3.4 Hz, 1H, (CH₃)₂CHCHCOO), 1.15 (d, J = 7.1 Hz, 3H, (CH₃)₂CHCHCOO), 0.94 (d, J = 6.9 Hz, 3H, (CH₃)₂CHCHCOO). ¹³C NMR (101 MHz, 25 °C, CDCl₃): δ (ppm) = 167.7 (CHCOO), 152.4 (NCOO), 66.2 (CHCOO), 28.9 ((CH₃)₂CHCHCOO), 28.7 ((CH₃)₂CHCHCOO), 17.3 ((CH₃)₂CHCHCOO), 16.2 ((CH₃)₂CHCHCOO)).

4-Benzyl-3-methyloxazolidine-2,5-dione (4d)

Compound **4d** was synthesized from *N*-methyl-*L*-phenylalanine hydrochloride by following Method F, using additional 2 equiv. of DIPEA. It was isolated as an off-white solid (230 mg, 45%) after trituration in cold THF/hexanes (1/10). This compound was reported previously. ¹⁸ ¹H NMR (400 MHz, 25 °C, CDCl₃): δ (ppm) = 7.31 – 7.27 (m, 3H), 7.11 (dd, J = 7.8, 1.8 Hz, 2H), 4.41 (t, J = 4.8 Hz, 2H, CH₂CH(CO)N), 3.19 (d, J = 5.0 Hz, 2H, PhCH₂), 2.92 (s, 3H, CH₃). ¹³C NMR (101

MHz, 25 °C, CDCl₃): δ (ppm) = 168.29 (CHCOO), 151.95 (NCOO), 133.30, 129.32, 129.19, 128.09, 62.55 (CHCOO), 35.24 (CH₃N), 29.31 (CH₂).

(S)-Proline N-carboxyanhydride (4e)

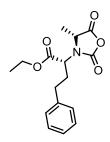
Compound **4e** was synthesized from *L*-proline by following Method F. It was obtained as an off-white colored amorphous solid (145 mg, 41%) without any further purification needed. Compound **4e** is heat-sensitive, as it will readily polymerize with gentle heating. This compound was reported previously.²⁰ ¹H NMR (400 MHz, 25 °C, CDCl₃): δ (ppm) = 4.31 (dd, J = 9.3, 7.5 Hz, 1H, NC*H*COO), 3.73 (dt, J = 11.2, 7.6 Hz, 1H, NC*H*2CH₂), 3.29 (ddd, J = 11.2, 8.5, 4.6 Hz, 1H, NC*H*2CH₂), 2.28 (dtd, J = 11.2, 7.3, 3.7 Hz, 1H), 2.17 (ddt, J = 12.6, 8.3, 4.0 Hz, 1H), 2.13 – 2.04 (m, 1H), 1.91 (dq, J = 12.4, 8.9 Hz, 2H). ¹³C NMR (101 MHz, 25 °C, CDCl₃): δ (ppm) = 168.9 (CHCOO), 155.0 (NCOO), 63.2 (N*C*HCOO), 46.6 (N*C*H₂CH₂), 27.7 (CH*C*H₂CH₂), 27.0 (CHCH₂CH₂N).

Tetrahydro-3*H*-oxazolo[3,4-*a*]pyridine-1,3(5*H*)-dione (4f)

Compound **4f** was synthesized from *DL*-pipecolic acid by following Method F. It was obtained as an off-white solid (235 mg, 60%) without any further purification needed. ¹H NMR (400 MHz, 25 °C, CDCl₃): δ (ppm) = 3.98 (ddd, J = 17.2, 12.5, 4.5 Hz, 2H, NC*H*COO & N*C*H₂CH₂), 2.89 (td, J = 12.5, 3.7 Hz, 1H, N*C*H₂CH₂), 2.13 (dt, J = 8.5, 4.6 Hz, 1H), 1.97 (dt, J = 9.9, 5.0 Hz, 1H), 1.78 – 1.67 (m, 1H), 1.49 – 1.33 (m, 3H). ¹³C NMR (101 MHz, 25 °C, CDCl₃): δ (ppm) = 169.1 (NCHCOO), 150.2 (NCOO), 57.0 (N*C*HCOO), 40.5 (N*C*H₂CH₂), 27.1, 24.1, 22.3. Due to the heat and moisture sensitivity of **4f**, dimerization and oligomerization occurred during mass spectrometric analysis.

10,10*a*-Dihydro-3*H*-oxazolo[3,4-*b*]isoquinoline-1,3(5*H*)-dione (4g)

Compound **4g** was synthesized from 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid by following Method F. It was obtained as an off-white solid (430 mg, 85%) without any further purification needed. This compound was reported previously. ^{21 1}H NMR (400 MHz, 25 °C, CDCl₃): δ (ppm) = 7.25 (ddq, J = 20.6, 13.3, 7.3 Hz, 4H, ArH), 4.96 (d, J = 16.7 Hz, 1H, ArCH2N), 4.50 (d, J = 16.5 Hz, 1H, ArCH2N), 4.35 (dd, J = 11.8, 4.9 Hz, 1H, NCHCOO), 3.29 (dd, J = 15.6, 5.0 Hz, 1H, ArCH2CH), 3.04 (t, J = 13.8 Hz, 1H, ArCH2CH). ¹³C NMR (101 MHz, 25 °C, CDCl₃): δ (ppm) = 168.5 (CHCOO), 150.9 (NCOO), 129.8 (d, J = 1.9 Hz) (C_{aro}), 129.7 (C_{aro}), 128.0 (C_{aro}), 127.8 (C_{aro}), 126.8 (C_{aro}), 54.7 (CHCOO), 42.5 (ArCH2N), 30.6 (ArCH2O).


3-(Phenylmethyl)-2,5-oxazolidinedione (4h)

Compound **4h** was synthesized from *N*-benzylglycine by following Method F. It was obtained as an off-white solid (420 mg, 87%) without any further purification needed. This compound was reported previously.^{22 1}H NMR (400 MHz, 25 °C, CDCl₃): δ (ppm) = 7.39 – 7.31 (m, 3H, Ar*H*), 7.28 – 7.24 (m, 2H, Ar*H*), 4.51 (s, 2H, C*H*₂COO), 3.92 (s, 2H, C*H*₂COO). ¹³C NMR (101 MHz, 25 °C, CDCl₃): δ (ppm) = 165.6 (CH₂COO), 152.4 (NCOO), 134.0, 129.4, 128.8, 128.5, 48.5 (*CH*₂COO), 47.6 (N*C*H₂Ar).

3-Phenyloxazolidine-2,5-dione (4k)

Compound **4k** was synthesized from *N*-phenylglycine by following Method F. It was obtained as an off-white solid (225 mg, 51%) after recrystallization in CHCl₃. This compound was reported previously.²³ H NMR (300 MHz, 25 °C, CDCl₃): δ (ppm) = 7.51 (d, J = 7.9 Hz, 2H, ArH), 7.44 (t, J = 8.0 Hz, 2H, ArH), 7.25 (t, J = 7.2 Hz, 1H, ArH), 4.56 (s, 2H, NCH2COO). ¹³C NMR (126 MHz, 25 °C, CDCl₃): δ (ppm) = 164.04 (CH₂COO), 149.09 (ArNCOO), 135.80, 129.76, 125.99, 118.93, 49.59 (NCH2COO).

Ethyl (αS ,4S)-4-methyl-2,5-dioxo- α -(2-phenylethyl)-3-oxazolidineacetate (4l)

Compound **4l** was synthesized from N-[(S)-(+)-1-(ethoxycarbonyl)-3-phenylpropyl]-L-alanine by following Method F. It was obtained as a yellow-colored sticky wax (570 mg, 75%) without any further purification needed. This compound is heat-sensitive, as it will readily polymerize with gentle heating. 1 H NMR (400 MHz, 25 $^{\circ}$ C, CDCl₃): δ (ppm) = 7.31 – 7.17 (m, 5H, ArH), 4.44 – 4.28 (m, 1H, NCH(CH₃)COO), 4.18 – 4.13 (m, 2H, CH₃CH₂O), 4.08 – 3.83 (m, 1H, COCH(CH₂)N), 2.79 – 2.68 (m, 2H, CH₂), 2.49 – 2.22 (m, 2H, CH₂), 1.50 (d, J = 7.1 Hz, 3H, CH₃CH), 1.26 (t, J = 7.2 Hz, 3H, CH₃CH₂). 13 C NMR (101 MHz, 25 $^{\circ}$ C, CDCl₃): δ (ppm) = 169.51 (CH₂COO), 152.00 (NCOO), 139.90 (OCOCH), 128.87 (C_{aro}), 128.66 (C_{aro}), 128.54 (C_{aro}), 126.71 (C_{aro}), 126.35 (C_{aro}), 62.36 (COCH(CH₂)N), 56.41 (CH₃(N)CHCO), 56.15 (CH₃CH₂COO), 32.52 (ArCH₂), 31.54 (CH₂), 16.78 (CH₃), 14.19 (CH₃). Due to the heat and moisture sensitivity of **4l**, dimerization and oligomerization occurred during mass spectrometric analysis.

2,5-Dioxo-3-oxazolidinepropanenitrile (4m)

Compound **4m** was synthesized from N-(2-cyanoethyl)glycine by following Method F. It was obtained as a reddish oil (210 mg, 54%) without any further purification needed. This compound is heat-sensitive, as it will readily polymerize with gentle heating. ¹H NMR (400 MHz, 25 °C, DMSO- d_6): δ (ppm) = 4.27 (s, 2H, NC H_2 CO), 3.54 (t, J = 6.6 Hz, 2H, C H_2 N), 2.77 (t, J = 6.5 Hz, 2H, NCC H_2). ¹³C NMR (101 MHz, 25 °C, DMSO- d_6): δ (ppm) = 167.51 (CH₂COO), 152.89 (NCOO), 119.33 (CN), 49.89 (NCH₂CO), 39.69 (CH₂N), 16.32 (NCCH₂). Due to the heat and moisture sensitivity of **4m**, dimerization occurred during mass spectrometric analysis.

One-pot Synthesis of 2a from 1i

To a 350 mL stainless steel Parr reaction vessel equipped with a stir bar, 1i (2.06 g, 15 mmol, 1 equiv.) and anhydrous acetonitrile (150 mL) were combined. The vessel was sealed, purged with CO₂ (300 psi), and was stirred for 15 min at RT. After releasing the pressure, the temperature dropped to below 5 °C. The vessel was then opened so that N,N-diisopropylethylamine (12 mL, 4 equiv.) and propylphosphonic anhydride (25 mL, 3 equiv.) could be injected into the reactor through a side arm. The reaction vessel was quickly sealed and purged with CO₂ three times. The CO₂ pressure was increased to 300 psi and the contents were heated to 45 °C and stirred for 15 h. After this time, CO₂ was released and benzyl bromide (4.5 mL, 37.5 mmol, 2.5 equiv.) and N,Ndiisopropylethylamine (6 mL, 2 equiv.) were injected into the reactor. The reaction vessel was stirred for additional 36 h at 60 °C. To stop the reaction, the vessel was cooled to RT and vented. The resulting mixture was then diluted with 100 mL of ethyl acetate, washed with cold deionized water, and then washed again with a saturated NaCl solution. The organic layer was collected, dried over anhydrous MgSO₄, and the volatiles were removed under a reduced pressure to afford the crude product as a brown oil. A mixture of toluene/hexanes (1:20, 100 mL), was added to the flask, which resulted in the precipitation of a beige/orange solid. The resulting mixture was cooled in an ice bath and the solid was collected by filtration. The solvent residue was dried under vacuum to obtain the desired product **2a** as beige/orange colored solid (2.65 g, 70%).

Gram Scale Synthesis of 2i

Method F above was used in this synthesis. The reaction was performed on a 15 mmol scale. **1i** (2.06 g, 15 mmol, 1 equiv.), DIPEA (12 mL), propylphosphonic anhydride in ethyl acetate (25 mL), and anhydrous acetonitrile (150 mL, 0.1 M) were used. The reaction was stirred for 36 h at 45 °C. After work-up, the crude mixture was rinsed with a mixture of hexanes/dichloromethane (20:1, 10 mL). The solvent was then removed under vacuum, giving a white/beige colored solid as the desired product (1.89 g, 77%).

Synthesis of 2i Using CO₂ Balloon

In a 25 mL round-bottom flask equipped with a magnetic stir bar, 1i (68 mg, 0.5 mmol, 1 equiv.), and 1,8-diazabicycloundec-7-ene (310 μ L, 2 mmol, 4 equiv.) were dissolved in a mixture of acetonitrile: DMSO (1:1, 8 mL). The flask was sealed with a rubber septum, and the CO₂ balloon was injected into the flask through the septum. The reaction mixture was stirred at RT for 2 h. After 2 h, propylphosphonic anhydride solution (\geq 50 wt. % in ethyl acetate, 500 μ L, 3.0 equiv.) was injected into the mixture through the septum. The reaction was stirred continuously at RT for 22 h. Additional CO₂ balloons were required to maintain the CO₂ pressure in the reaction flask when purging and in between each injection. The work-up and purification procedures were used as described in Method F above when the reaction was complete.

General Procedure for the Tandem Synthesis of Tryptanthrin and its Derivatives from 2-Aminobenzoic Acids and CO₂

To a 350 mL Parr stainless steel reaction vessel equipped with a magnetic stir bar, compound 1 (2.5 mmol, 1.0 equiv.), compound 5 (2.25 mmol, 0.9 equiv.), DMAP (300 mg, 2.5 mmol, 1.0 equiv.), dry CH₃CN (0.05 M, 50 mL), DIPEA (10 mmol, 4.0 equiv., 2 mL), and propylphosphonic anhydride solution (≥50 wt. % in ethyl acetate, 3.0 equiv., 4.5 mL) were combined in sequence at RT. (A 0.9:1.0 mole ratio of 5:1 was found to be optimal because excess 5 in the reaction product was difficult to remove). The reaction vessel was sealed and purged with CO₂ three times. The CO₂ pressure was increased to 300 psi and the contents were heated to 65 °C and stirred for 15 h. After completion, the reaction vessel was cooled to RT and the CO₂ gas was gradually vented. The red/brown colored crude product was diluted in 50 mL of ethyl acetate, washed 3 times with brine until the aqueous layer became colorless. The combined organic layer was separated, dried over anhydrous Na₂SO₄, filtered, and evaporated to dryness to obtain a brown oil, which was purified by silica gel chromatography, using a gradient containing hexanes/ethyl acetate/diethyl ether as eluent.

Characterization Data

Indolo[2,1-b]quinazoline-6,12-dione (Tryptanthrin, 6a)

Compound **6a** was isolated by silica gel column chromatography using hexanes/ethyl acetate/diethyl ether (9/3/1) as the eluent. The product was isolated as a yellow solid (325 mg, 58%). This compound was reported previously.^{24 1}H NMR (500 MHz, 25 °C, CDCl₃): δ (ppm) = 8.61 (d, J = 8.1 Hz, 1H, ArH), 8.44 – 8.40 (m, 1H, ArH), 8.02 (d, J = 8.6 Hz, 1H, ArH), 7.93 – 7.88 (m, 1H, ArH), 7.87 – 7.82 (m, 1H, ArH), 7.78 (td, J = 8.1, 1.3 Hz, 1H, ArH), 7.69 – 7.64 (m, 1H, ArH), 7.42 (td, J = 7.5, 0.7 Hz, 1H, ArH). ¹³C NMR (126 MHz, 25 °C, CDCl₃): δ (ppm) = 182.7 (ArCOAr), 158.2 (NCOAr), 146.7, 146.4, 146.4, 138.4, 135.3, 130.8, 130.4, 127.7, 127.3, 125.5, 123.8, 122.0, 118.1. GC-MS: calc. for C₁₅H₈N₂O₂ [M]⁺ = 248.1, found 248.1.

3-Chloro-8-nitroindolo[2,1-*b*] quinazoline-6,12-dione (3-Chloro-8-nitrotryptanthrin, 6b)

Compound **6b** was isolated by silica gel column chromatography using hexanes/toluene/ethyl acetate (4/1/1 to 2/0.1/1, v/v/v) as the eluent. The product was isolated as an orange solid (320 mg, 44%). This compound was reported previously.^{25 1}H NMR (400 MHz, 25 °C, DMSO- d_6): δ (ppm) = 8.70 (dd, J = 8.8, 2.4 Hz, 1H, ArH), 8.62 (d, J = 8.7 Hz, 1H, ArH), 8.53 (d, J = 2.5 Hz, 1H, ArH), 8.31 (d, J = 8.5 Hz, 1H, ArH), 8.10 (d, J = 2.1 Hz, 1H, ArH), 7.79 (dd, J = 8.5, 2.1 Hz, 1H, ArH). ¹³C NMR (101 MHz, 25 °C, DMSO- d_6): δ (ppm) = 181.11 (ArCOAr), 157.92 (NCOAr), 149.51, 147.91, 146.90, 146.30, 140.88, 133.24, 130.93, 129.79, 129.61, 123.61, 122.21, 120.15, 118.23. GC-MS: calc. for C₁₅H₆ClN₃O₄ [M]⁺ = 327.0, found 327.1.

8-Bromoindolo[2,1-*b*]quinazoline-6,12-dione (8-Bromotryptanthrin, 6c)

Compound **6c** was isolated by silica gel column chromatography using hexanes/ethyl acetate (3/1) as the eluent The product was isolated as a dark green solid (270 mg, 37%). This compound was reported previously.²⁵ ¹H NMR (500 MHz, 25 °C, CDCl₃): δ (ppm) = 8.51 (d, J = 8.5 Hz, 1H, ArH), 8.43 – 8.39 (m, 1H, ArH), 8.04 – 7.99 (m, 2H, ArH), 7.90 – 7.82 (m, 2H, ArH), 7.71 – 7.65 (m, 1H, ArH). ¹³C NMR (126 MHz, 25 °C, CDCl₃): δ (ppm) = 181.4 (ArCOAr), 158.0 (NCOAr), 146.6, 145.0, 143.9, 140.7, 135.5, 131.0, 130.7, 128.3, 127.7, 123.7, 123.5, 120.8, 119.6. GC-MS: calc. for C₁₅H₇BrN₂O₂ [M]⁺ = 325.9, found 326.0.

Pyrido[2',3':4,5]pyrimido[1,2-a]indole-5,11-dione (4-Azatryptanthrin, 6d)

Compound **6d** was isolated by silica gel column chromatography using a gradient containing hexanes/ethyl acetate (1/3, v/v) to ethyl acetate/methanol (15/1, v/v) as the eluent. The product was isolated as a yellow solid (225 mg, 40%). This compound was reported previously.^{26 1}H NMR (400 MHz, 25 °C, CDCl₃): δ (ppm) = 9.09 (dd, J = 4.6, 2.1 Hz, 1H), 8.75 (dd, J = 7.9, 1.9 Hz, 1H), 8.58 (dt, J = 8.3, 0.9 Hz, 1H), 7.95 – 7.90 (m, 1H), 7.80 (td, J = 7.8, 1.4 Hz, 1H), 7.61 (dd, J = 8.0, 4.6 Hz, 1H), 7.46 (td, J = 7.6, 0.9 Hz, 1H). ¹³C NMR (101 MHz, 25 °C, CDCl₃): δ (ppm) = 181.73, 158.30, 157.57, 156.63, 146.93, 145.92, 138.54, 136.77, 127.87, 125.80, 124.84, 121.92, 119.76, 117.97. GC-MS: calc. for C₁₄H₇N₃O₂ [M]⁺ = 249.0, found 249.1.

6-Hydroxy-6-(2-oxopropyl)indolo[2,1-b]quinazolin-12(6H)-one (Phaitanthrin A, 7)

Compound 7 was synthesized using the condition described above except with the following modifications: dry acetonitrile/acetone (3/1, 40 mL) was used and the reaction was conducted at 65 °C for 48 h. The product was purified by silica gel column chromatography using hexanes/ethyl

acetate (3/1 to 1/3, v/v) as the eluent and isolated as a light pink solid (210 mg, 31%). This compound was reported previously.²⁷ ¹H NMR (500 MHz, 25 °C, CDCl₃): δ (ppm) = 8.34 (d, J = 8.0 Hz, 1H, ArH), 8.23 (d, J = 8.0 Hz, 1H, ArH), 7.73 (q, J = 3.8, 2.4 Hz, 2H, ArH), 7.51 – 7.45 (m, 2H, ArH), 7.25 (d, J = 2.7 Hz, 2H, ArH), 7.15 (t, J = 7.4 Hz, 1H, ArH), 4.91 (s, 1H, CHOH), 3.54 (d, J = 17.6 Hz, 1H, COCH₂), 3.40 (d, J = 17.6 Hz, 1H, COCH₂), 2.13 (s, 3H, CH₃CO). ¹³C NMR (126 MHz, 25 °C, DMSO-d₆): δ (ppm) = 206.35, 161.81, 159.47, 147.58, 139.79, 135.36, 134.41, 130.23, 127.97 (d, J = 5.1 Hz), 127.10, 126.98, 124.27, 121.84, 116.48, 75.02, 52.29, 30.58. GC-MS: calc. for C₁₈H₁₄N₂O₃ [M]⁺ = 306.1, found 306.1.

Scheme S1. Conventional (non-tandem) synthesis of **6a** and **7**.

N-Phenylbenzamide (11)

Compound **11** was reported previously.²⁸ ¹H NMR (400 MHz, 25 °C, CDCl₃): δ (ppm) = 7.90 – 7.80 (m, 3H, Ar*H* & N*H*), 7.64 (d, J = 7.7 Hz, 2H, Ar*H*), 7.57 – 7.52 (m, 1H, Ar*H*), 7.51 – 7.45 (m, 2H, Ar*H*), 7.37 (t, J = 8.0 Hz, 2H, Ar*H*), 7.15 (t, J = 7.4 Hz, 1H, Ar*H*). ¹³C NMR (101 MHz, 25 °C, CDCl₃): δ (ppm) = 165.9 (*C*O), 138.0 (N*C*_{aro}), 135.1 (*C*_{aro}CO), 132.0, 129.2, 128.9, 127.1, 124.7, 120.3.

N,N'-Diphenylurea (13)

Compound **13** was reported previously.²⁹ ¹H NMR (400 MHz, 25 °C, CDCl₃): δ (ppm) = 8.62 (s, 2H, N*H*), 7.42 (dd, J = 8.6, 1.0 Hz, 4H, Ar*H*), 7.27 – 7.21 (m, 4H, Ar*H*), 6.95 – 6.90 (m, 2H, Ar*H*). ¹³C NMR (101 MHz, 25 °C, CDCl₃): δ (ppm) = 153.1 (*C*O), 140.2 (N*C*_{aro}), 129.3, 122.3, 118.7.

3-Phenyl-1-(phenylmethyl)-2,4(1*H*,3*H*)-quinazolinedione (14)

Compound **14** was reported previously.^{30 1}H NMR (400 MHz, 25 °C, CDCl₃): δ (ppm) = 8.27 (dd, J = 7.9, 1.5 Hz, 1H), 7.59 (ddd, J = 8.8, 7.4, 1.6 Hz, 1H), 7.56 – 7.51 (m, 2H), 7.48 – 7.43 (m, 1H), 7.38 – 7.25 (m, 8H), 7.21 (d, J = 8.5 Hz, 1H), 5.40 (s, 2H). ¹³C NMR (101 MHz, 25 °C, CDCl₃): δ (ppm) = 157.27, 146.91, 135.59, 130.98, 130.87, 130.78, 124.80, 124.73, 124.35, 124.16, 123.75, 123.12, 122.07, 118.61, 111.46, 109.96, 42.87.

Reaction Studies

Table S1. Two-Step Screening Conditions for the Synthesis of *N*-Benzyl Substituted Six-Membered NCAs

Entry ^a	Temp.	Time (h)	T3P (equiv.)	DIPEA (equiv.)	Conversion $(\%)^b$	Yield (%) ^b	2a: 2a' ^b
1	70	20	1.5	2.2	100	30	100:80
2	70	20	1.5	2.2	64	5	100:60
3	70	20	1.5	0	78	0	N/A
4	70	20	1.5	4	95	24	100:66
5^c	70	20	1.5	4	100	11	100:169
$6^{d, e}$	65	20	1.5	4	90	6	100:30
7^e	65	20	1.5	4	100	34	100:21
8^e	65	20	3	4	100	77	100:2
9 ^f	65	20	3	4	100	71	100:5

a. Reaction conditions: 2-(N-benzylamino)benzoic acid (2.5 mmol), DMAP (varied), DIPEA (varied), CO₂ (300 psi), MeCN (50 mL). For step 1: preheat at 70 °C for 2 h before adding T3P (1.5 equiv.) as the activating reagent. The reactions were set up using Method D described in the experimental section.

b. Determined by ¹H NMR spectroscopy using ferrocene or 1,3,5-trimethoxybenzene as an internal standard.

c. No CO₂ after adding T3P.

d. No CO₂ before adding T3P.

e. The reaction was preheated at 60 °C for 2 h.

f. The reaction was set up using Method E described in the experimental section (all reagents were combined in one-pot at the beginning of the reaction).

Table S2. Two-Step Screening Conditions for the Synthesis of Unsubstituted Six-Membered NCAs

Entry ^a	Temp.	Time (h)	DMAP (equiv.)	Base	Conversion (%) ^b	Yield $(\%)^b$	2i: 2i' ^c
1	50	20	1.4	DIPEA	91	40	N/A
2	50	20	1.05	DIPEA	81	27	1:1
3	50	40	1.4	DIPEA	80	18	100:80
4	50	20	1.4	Et_3N	98	28	100:75
5	50	12	1.4	Et_3N	94	41	100:102
6^d	70	20	1.4	Et_3N	98	24	100:56
7^e	50	20	1.8	DIPEA	98	25	100:56
8^e	70	20	1.8	DIPEA	99	34^c	100:35
9^e	70	20	1.8	Et_3N	>99	21^c	100:32
$10^{d,f}$	70	20	1.5	DIPEA	>99	$40^{c}(11)^{g}$	100:9

- a. Reaction conditions: 2-aminobenzoic acid (2.5 mmol), DMAP (varied), base (2.2 equiv.), CO₂ (300 psi), MeCN (50 mL). The reaction mixture was preheated at 50 °C for 2 h before adding CMPI (1.5 equiv.) as the activating reagent. The reactions were set up using Method D, except for the use of CMPI instead of T3P, as described in the experimental section.
- b. Determined by GC-MS using a biphenyl internal standard.
- c. Calculated from ¹H NMR spectroscopy.
- d. The reaction mixture was preheated at 70 °C for 2 h before adding CMPI.
- *e*. Isolated solid from mixing CMPI with DMAP is used as the activating reagent without preheating in step 1. All reagents were combined at the beginning instead of adding stepwise.
- f. Using T3P (50% solution in ethyl acetate, 1.5 equiv.) as activating reagent instead of CMPI with 4 equiv. of base.
- g. Isolated yield.

Table S3. Screening Coupling Reagents Using Two-Step Method

Entry ^a	Coupling Reagent (equiv.)	Conversion ^b (%)	Isolated Yield (%)	2a:2a' Ratio ^b
1	T3P (1.5)	100	80	100:8
2	T3P (3.0)	100	82	100:1
3	CMPI (1.5)	100	54	100:20
4	CDI (1.5)	100	0	-
5	diphenylphosphinic chloride (1.5)	100	0	-
6	diphenylphosphinic acid (1.5)	100	0	-

a. Reaction conditions: 2-(*N*-benzylamino)benzoic acid (2.5 mmol), DMAP (1 equiv.), DIPEA (4 equiv.), CO₂ (300 psi), MeCN (50 mL). The reactions were set up using Method D described in the experimental section.

b. Determined by ¹H NMR spectroscopy using 1,3,5-trimethoxybenzene as an internal standard.

Table S4. Screening CO₂ Pressure Using One-Step Method^a

Entry	T3P (equiv.)	CO ₂ (psi)	Conversion ^b (%)	Isolated Yield (%)	2a:2a' Ratio ^b
1	1.5	300	95	56	100:1
2	3.0	300	100	85	100:0
3	3.0	150	100	84	100:0
4	3.0	100	100	88	100:1
5	3.0	50	99	68	100:7
6	3.0	20	96	53	100:20
7	9.0	50	71	62	100:0

a. Reaction conditions: 2-(N-benzylamino)benzoic acid (2.5 mmol), DMAP (1 equiv), DIPEA (4 equiv.), T3P (3 equiv.), CO₂ (varied pressure), MeCN (50 mL). The reactions were set up using Method F described in the experimental section.

b. Determined by ¹H NMR spectroscopy using 1,3,5-trimethoxybenzene as an internal standard.

Table S5. One-pot Synthesis of *N*-Benzyl Substituted Six-Membered NCAs in Different Solvents

Entry	Solvent	Conversion ^b (%)	Yield ^b (%)	2a: 2a' ^b
1	THF	100	-	100:40
2	MeCN	100	85	100:0
3	Ethylene carbonate	100	-	100:0
4	Propylene carbonate	100	27	100:0
5	Propylene carbonate: THF (3:7)	100	73	100:0
6	Propylene oxide	100	-	-

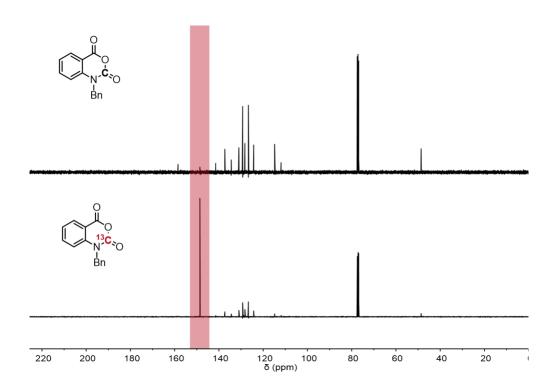
a. Reaction conditions: 2-(*N*-benzylamino)benzoic acid (2.5 mmol), DMAP (1 equiv), DIPEA (4 equiv.), T3P (3 equiv.), CO₂ (300 psi), solvent (50 mL). The reactions were set up using Method F described in the experimental section.

b. Determined by ¹H NMR spectroscopy using 1,3,5-trimethoxybenzene as an internal standard.

Table S6. Synthesis of Tryptanthrin (6a)

T 1 a		Yield	$(\%)^b$
Entry ^a	Experiment	6a	2i′
1	Standard condition	44	0
2	Using N ₂ (15 psi) instead of CO ₂	13	64
3	No T3P	0	0
4	Using 1.2 equiv. of isatin	51	0
5	Using 0.9 equiv. of isatin	58	trace

- a. Reaction conditions: 2-aminobenzoic acid (2.5 mmol), DMAP (1 equiv.), DIPEA (4 equiv.), T3P (3 equiv.), CO₂ (300 psi), CH₃CN (50 mL), 65 °C, 24 h.
- b. Isolated yield.


Table S7. Synthesis of Phaitanthrin A (7)

.		Yield $(\%)^b$		
Entry ^a	Experiment	6a	7	
1	Acetone (anhydrous, 5 mL) was added + stirred for additional 12 h at 40 °C	61	0	
2	Using CH ₃ CN/acetone (3/1), 100 °C, 15 h	27	18	
3	Using CH ₃ CN/acetone (3/1), 65 °C, 48 h	trace	31	

- a. Reaction conditions: 2-aminobenzoic acid (2.5 mmol), DMAP (1 equiv.), DIPEA (4 equiv.), T3P (3 equiv.), CO₂ (300 psi), CH₃CN (50 mL), 65 °C, 24 h.
- b. Isolated yield.

Mechanistic Studies

Scheme S2. Synthesis of ¹³C-**2a** using ¹³CO₂ under low pressure (15 psi).

Figure S1. ¹³C NMR spectra (101 MHz, RT, CDCl₃) of **2a** synthesized using CO₂ (top) and ¹³CO₂ (bottom). The increase in intensity of the C=O signal at 148.6 ppm strongly suggest that the source of carbon was CO₂.

Table S8. Studying the Effect of Different Reagents and Reactants

Entry ^a	Experiment	Conversion ^b (%)	Yield of 2a ^b (%)	Yield of 2a'b (%)	2a: 2a' ^b
1	Omitting CO ₂	100	0	68	0:100
2	Omitting DIPEA	90	2.5	-	1: 16
3	Omitting DMAP	63	10	-	100: 37.5
4	Omitting T3P	42.5	0	0	0:0
5	Using 1.5 equiv. of T3P	95	56	-	100: 11
6	Using 3.0 equiv. of T3P	100	85	-	100:0

- a. Reaction conditions: 2-(N-benzylamino)benzoic acid (2.5 mmol), DMAP (1 equiv), DIPEA (4 equiv.), T3P (3 equiv.), CO₂ (300 psi), CH₃CN (50 mL). The reactions were set up using Method E described in the experimental section.
- b. Determined by ¹H NMR spectroscopy using 1,3,5-trimethoxybenzene as internal standard.

Table S9. Synthesis of 2i Using CO₂ Balloon

Entry ^a	Experiment	Conversion $(\%)^b$	Yield $(\%)^b$
1	Standard condition	100	58
2	Performed in DMSO (0.06 M)	55	27^c
3	Performed in DMF (0.06 M)	100	$trace^c$

- a. Reaction conditions: 1i (0.5 mmol), T3P (3 equiv), DBU (4 equiv.), CO₂ balloon (15 psi), MeCN: DMSO (1:1, 8 mL). The reactions were set up as described in the experimental section.
- b. Determined by GC-MS.
- c. Dimer 2i' was observed as the major product.

Computational Studies

Density functional theory (DFT) calculations were performed using the Gaussian 16 package.³¹ Geometry optimization and natural bond order (NBO) calculations were performed at the B3LYP/6-311G(d,p) level of theory in acetonitrile (ε = 37.5) using the solvation model based on density (SMD).³²⁻³⁴ Thermochemistry corrections and geometry verifications were performed *via* frequency calculations using the same conditions as the geometry optimizations. Energies obtained from ground state geometries were used to calculate the pk_a of the carboxylic acid moieties using reported methods.³⁵

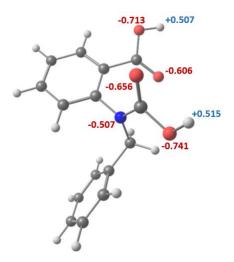
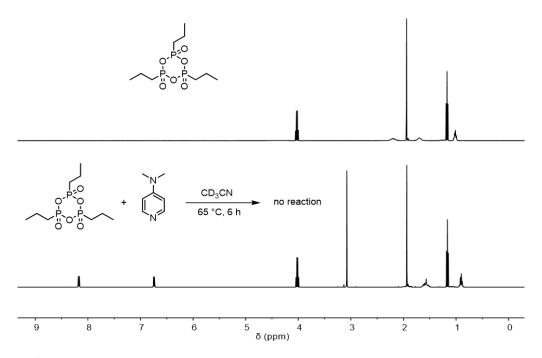


Figure S2. NBO charges of relevant atoms of 8-H₂.

Scheme S3. Relative energies for deprotonation of the benzoic acid (to **8**-H) vs. carbamic acid (to **8**-H') moieties.

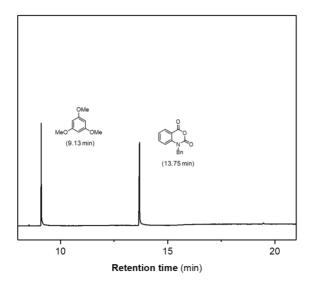
A) Activation of Carboxylic Acid

OH
$$CO_2$$
, T3P, DIPEA, DMAP CH_3 CN CH_3 CN


B) Activation of Carbamate (with DMAP)

C) Activation of Carbamate (no DMAP)

D) Activation of Carboxylic Acid and Carbamate


E) Role of DMAP in Ring Closing

Scheme S4. Studying the activation of carboxylates and carbamates. Reaction conditions: 2-(*N*-benzylamino)benzoic acid (**1a**) (or benzoic acid/aniline) (2.5 mmol), DMAP (1 equiv.), DIPEA (4 equiv.), T3P (3 equiv.), CO₂ (300 psi), CH₃CN (50 mL). The reactions were set up using Method D described in the experimental section.

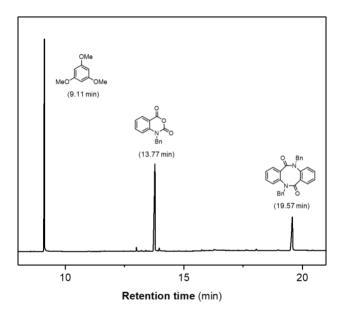


Figure S3. ¹H NMR spectrum (400 MHz, 25 °C, CD₃CN) of the reaction mixture obtained from combining T3P with DMAP (bottom). The top trace is the ¹H NMR spectrum of T3P alone. Our results indicate that T3P does not react with DMAP under these reaction conditions.

GC and GC-MS Data

Figure S4. GC plot of product obtained from reaction of **1a**, T3P, DIPEA, and DMAP in CH₃CN at 65 °C for 24 h under 300 psi CO₂ (Table S4, entry 2). 1,3,5-trimethoxybenzene was added as an internal standard.

Figure S5. GC plots of product obtained from reaction of **1a**, T3P, DIPEA, and DMAP in CH₃CN at 65 °C for 24 h under 20 psi CO₂ (Table S4, entry 6). 1,3,5-trimethoxybenzene was added as an internal standard.

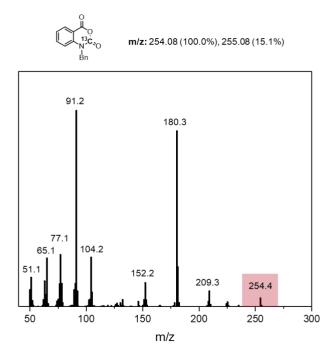


Figure S6. Mass spectrum of compound ¹³C-2a synthesized using ¹³CO₂.

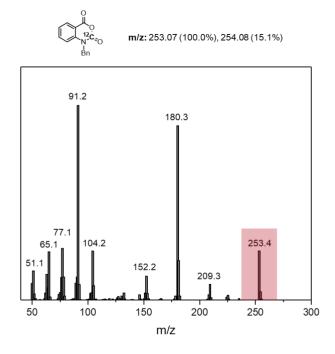


Figure S7. Mass spectrum of compound 2a synthesized using unlabeled CO₂.

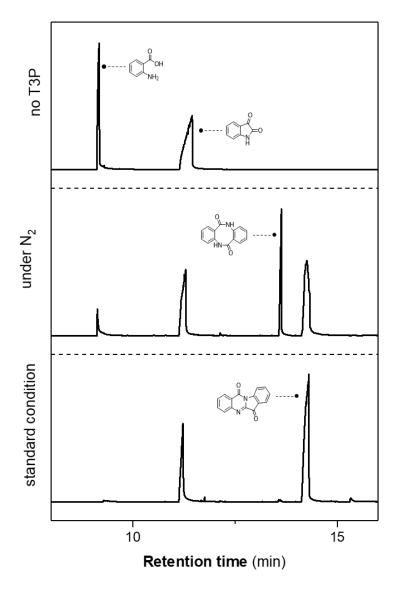
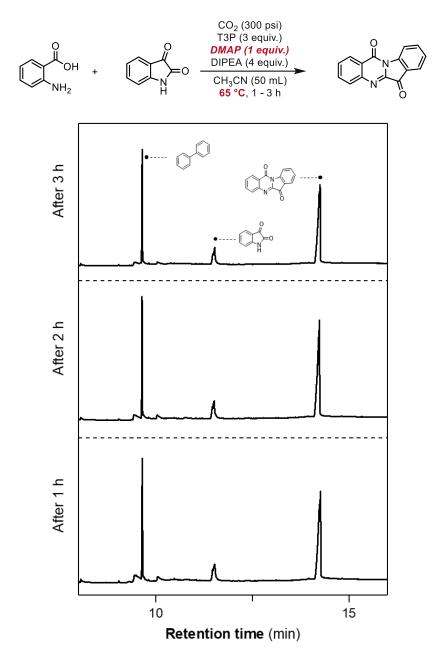
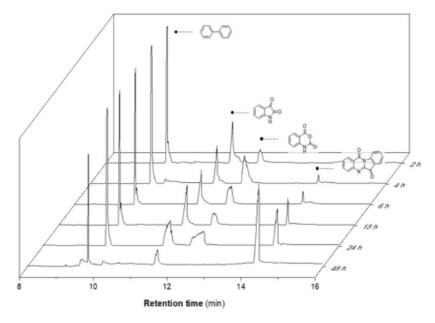




Figure S8. Representative GC plots of products obtained from the reactions shown in Table S6.

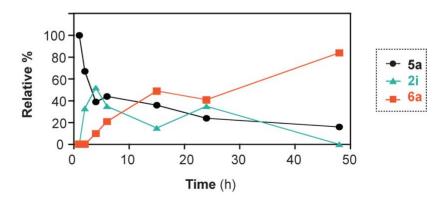
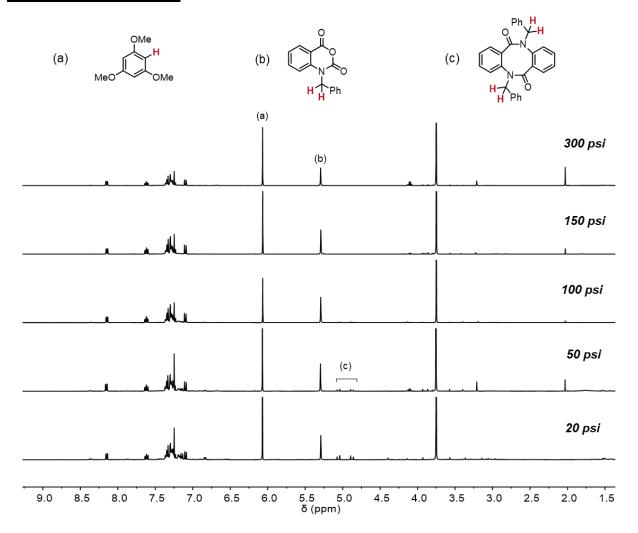


Figure S9. Representative GC plots for the synthesis of tryptanthrin in the presence of DMAP at 65 °C. Under this condition, the reaction was too fast to observe the formation of **2i**.

A) GC Traces from Time Study



B) Plot of Relative Percentage of Various Species Over Time

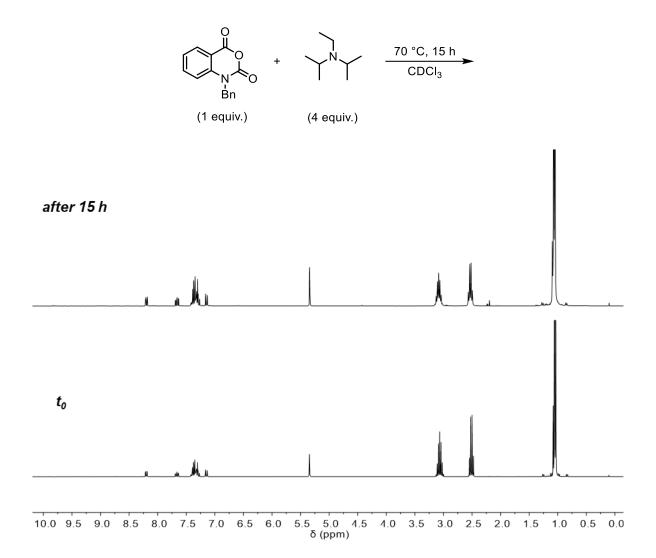
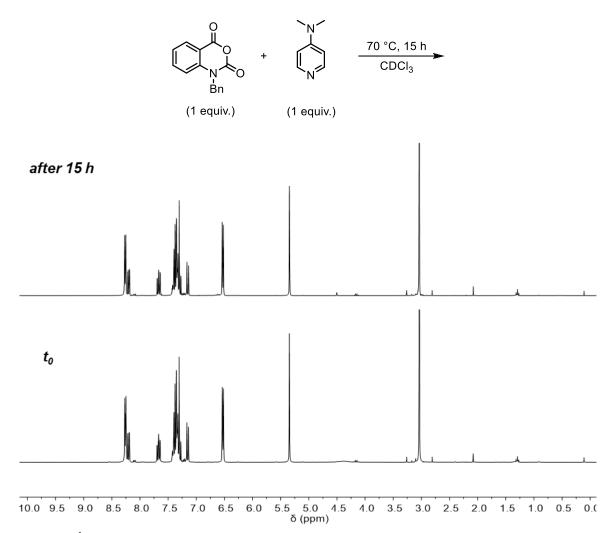
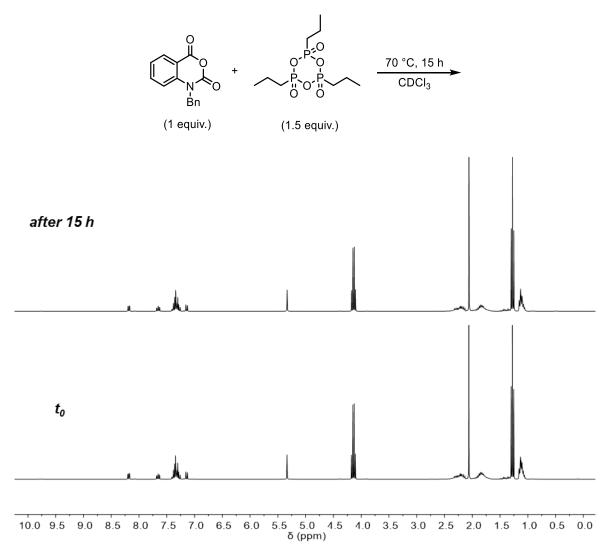
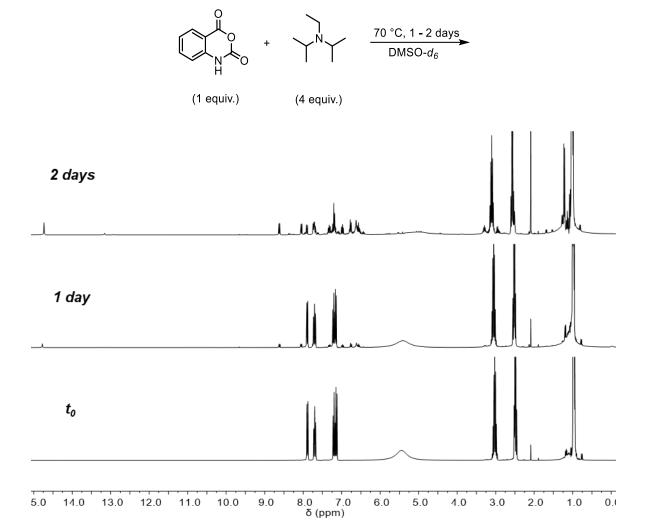
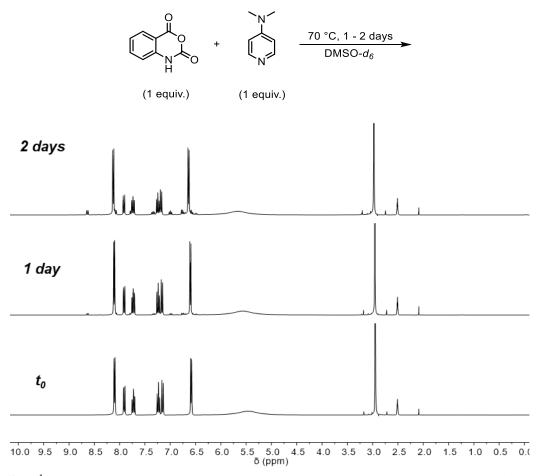


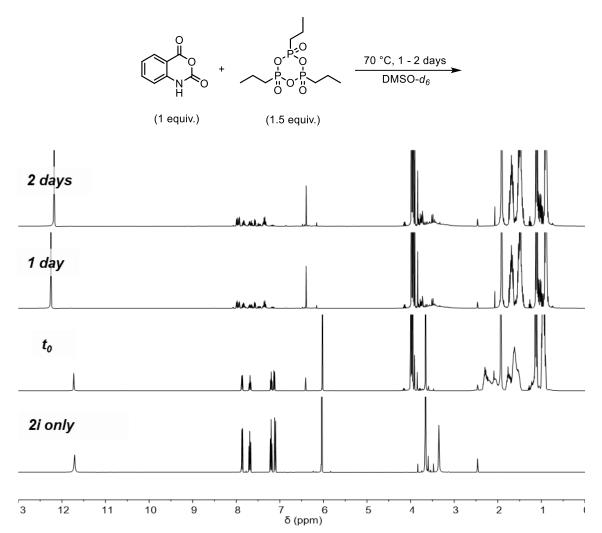
Figure S10. GC traces (A) and plot (B) showing changes in the relative ratios of **5a**, **2i** (NCA intermediate), and **6a** over the course of 48 h. These data show the growth and disappearance of **2i** as the reaction progressed, which suggests that the NCA is an intermediate in the tandem reaction.

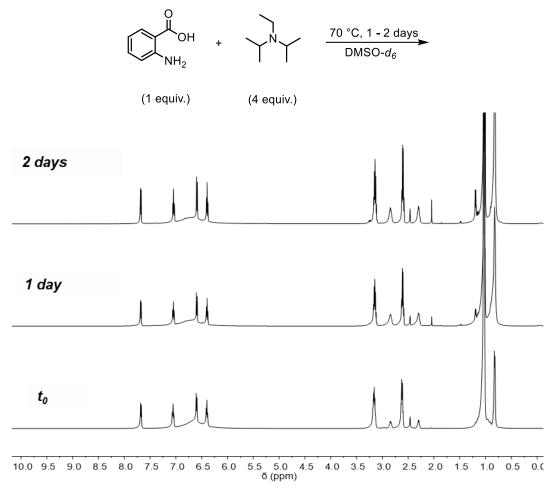

NMR Spectroscopic Data

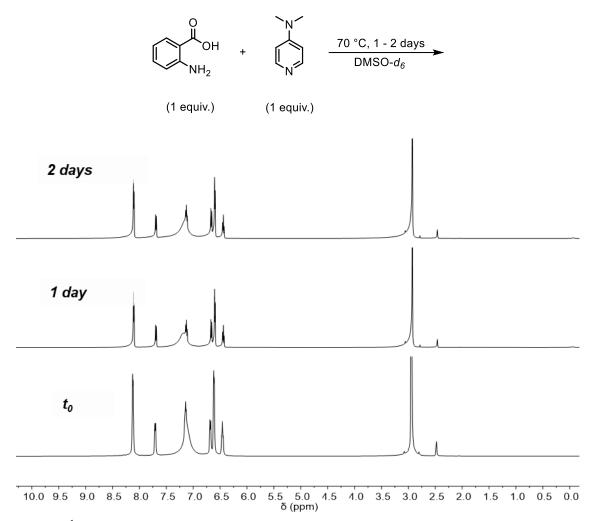

Figure S11. ¹H NMR spectra (400 MHz, 25 °C, CDCl₃) of the products obtained (after work-up) from reactions at different CO₂ pressures. The presence of **2a'** was observed only when the CO₂ pressure was at 20 or 50 psi.


Figure S12. ¹H NMR spectrum (400 MHz, 25 °C, CDCl₃) of a solution containing compound **2a** and DIPEA. After 15 h (top trace), no reaction had occurred.


Figure S13. ¹H NMR spectrum (400 MHz, 25 °C, CDCl₃) of a solution containing **2a** and DMAP. After 15 h (top trace), no reaction had occurred.


Figure S14. ¹H NMR spectrum (400 MHz, 25 °C, CDCl₃) of a solution containing **2i** and T3P. After 15 h (top trace), no reaction had occurred.


Figure S15. ¹H NMR spectrum (400 MHz, 25 °C, DMSO-*d*₆,) of a solution containing **2i** and DIPEA. After 2 d, compound **2i** had converted to dimer **2i'**.


Figure S16. ¹H NMR spectrum (400 MHz, 25 °C, DMSO-*d*₆,) of solution containing **2i** and DMAP. After 2 d, a small amount of dimer **2i'** had appeared.

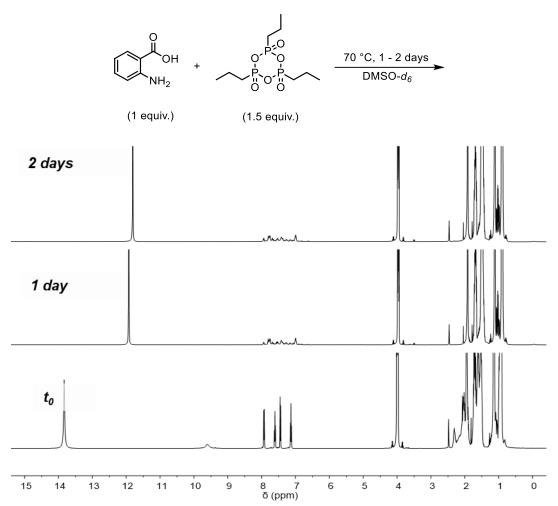

Figure S17. ¹H NMR spectrum (400 MHz, 25 °C, DMSO-*d*₆,) of a solution containing **2i** and T3P. Peaks at 11.73 ppm and 12.18 ppm belong to N*H* of **2i** and **2i'**, respectively. After 1 d, compound **2i** had converted to dimer **2i'**.

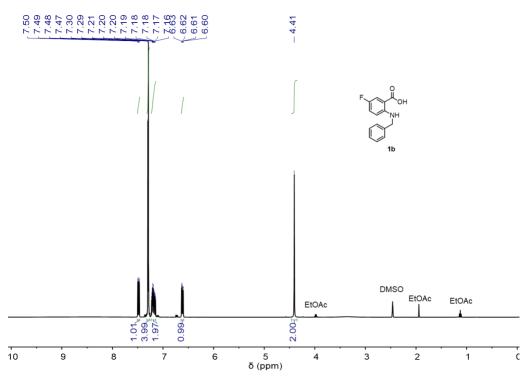
Figure S18. ¹H NMR spectrum (400 MHz, 25 °C, DMSO-*d*₆,) of a solution containing anthranilic acid and DIPEA. After 2 d, no reactions had occurred.

Figure S19. ¹H NMR spectrum (400 MHz, 25 °C, DMSO-*d*₆,) of solution containing anthranilic acid and DMAP. After 2 d, no reactions had occurred.

Figure S20. ¹H NMR spectrum (400 MHz, DMSO- d_6) of a solution containing anthranilic acid and T3P. After 1 d, the formation of a new product was observed. The ³¹P NMR spectra of the reaction after 1 and 2 d contained numerous peaks that could not be assigned. The T3P-activated species are too unstable to be isolated and purified for further analysis.

A) Method I (Endo and coworkers, J. Polym. Sci. A: Poly. Chem., 2007, 45, 5365)

B Method II (Laconde, Martinez, and coworker, Org. Lett., 2021, 23, 6412)


C) Method III (Lu and coworkers, Nat. Commun., 2021, 12, 8510)

derived from Boc₂O, which is made from phosgene

D) Method IV (this work)

$$\begin{array}{c} \text{CO}_2 \text{ (300 psi)} \\ \text{T3P (7.5 mmol)} \\ \text{DIPEA (10 mmol)} \\ \text{CH}_3\text{CN (40 mL)} \\ \end{array} \quad \begin{array}{c} \text{extraction} \\ \text{simple workup} \\ \text{Ph} \end{array} \quad \begin{array}{c} \text{420 mg} \\ \text{(99\% yield)} \\ \text{low toxicity reagents} \\ \end{array}$$

Scheme S5. Comparison of different methods reported for preparing five membered ring NCAs. Methods I, II, and III all require starting materials or reagents that are derived from the highly poisonous gas phosgene. Our approach (Method IV) uses earth abundant CO₂ and low toxicity reagents and provides NCAs with high purity after simple workup.

Figure S21. 1 H NMR (400 MHz, 25 $^{\circ}$ C, DMSO- d_{6}) spectrum of compound **1b**.

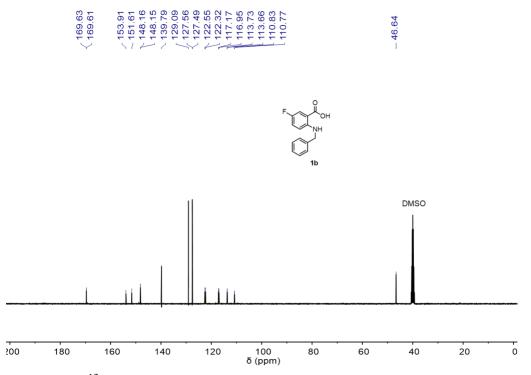


Figure S22. ¹³C NMR (101 MHz, 25 °C, DMSO-*d*₆) spectrum of compound 1b.

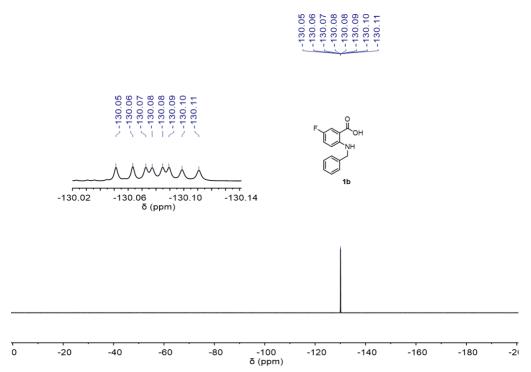
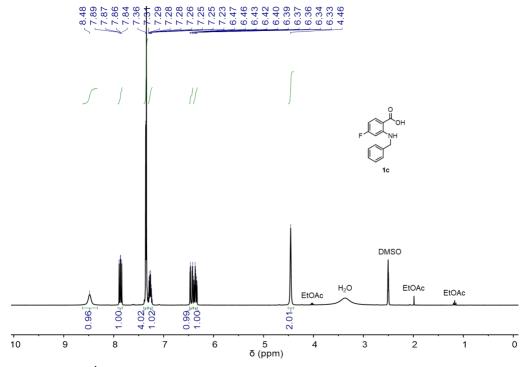



Figure S23. ¹⁹F NMR (376 MHz, 25 °C, DMSO-*d*₆) spectrum of compound **1b**.

Figure S24. ¹H NMR (300 MHz, 25 °C, DMSO-*d*₆) spectrum of compound **1c**.

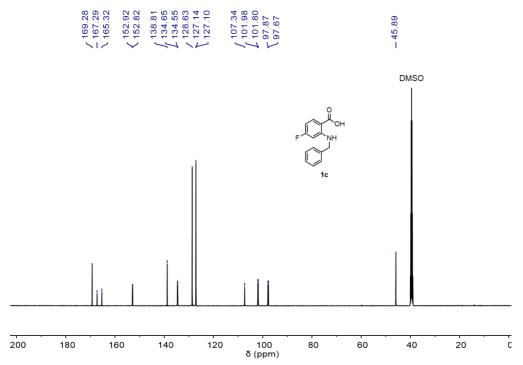


Figure S25. ¹³C NMR (125 MHz, 25 °C, DMSO-*d*₆) spectrum of compound 1c.

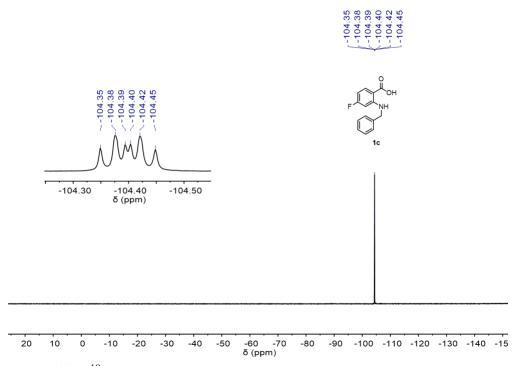


Figure S26. ¹⁹F NMR (282 MHz, 25 °C, DMSO-*d*₆) spectrum of compound 1c.

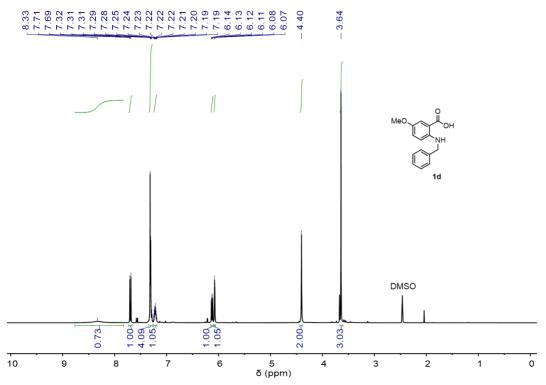


Figure S27. ¹H NMR (400 MHz, 25 °C, DMSO-*d*₆) spectrum of compound 1d.

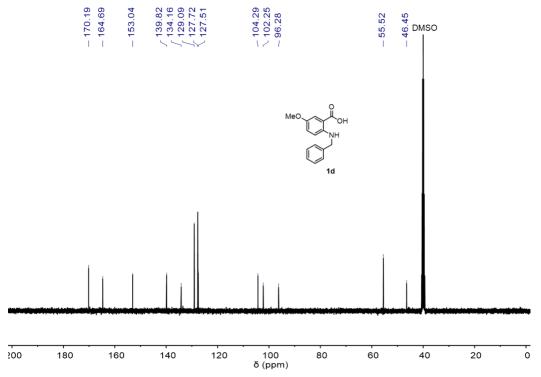


Figure S28. ¹³C NMR (101 MHz, 25 °C, DMSO-*d*₆) spectrum of compound 1d.

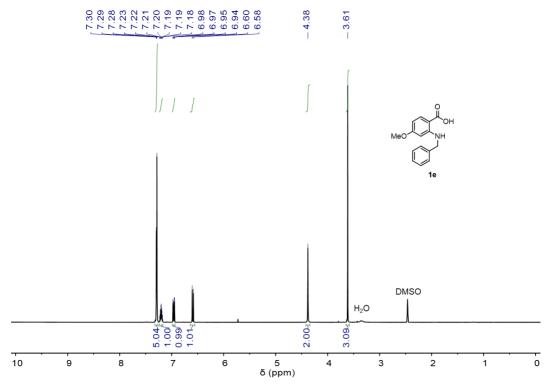
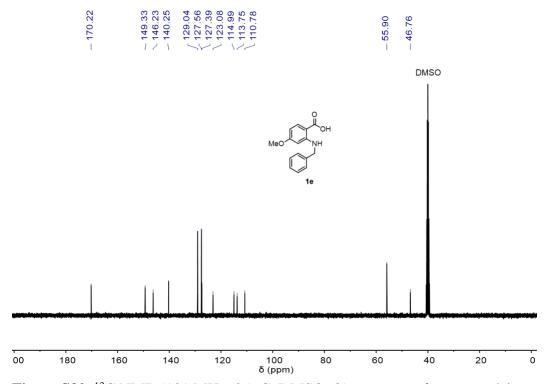



Figure S29. ¹H NMR (400 MHz, 25 °C, DMSO-*d*₆) spectrum of compound 1e.

Figure S30. 13 C NMR (101 MHz, 25 $^{\circ}$ C, DMSO- d_6) spectrum of compound **1e**.

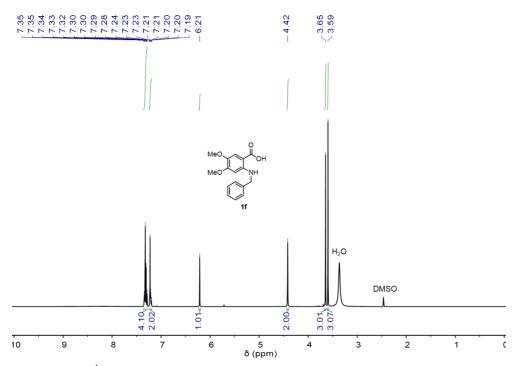


Figure S31. ¹H NMR (400 MHz, 25 °C, DMSO-*d*₆) spectrum of compound 1f.

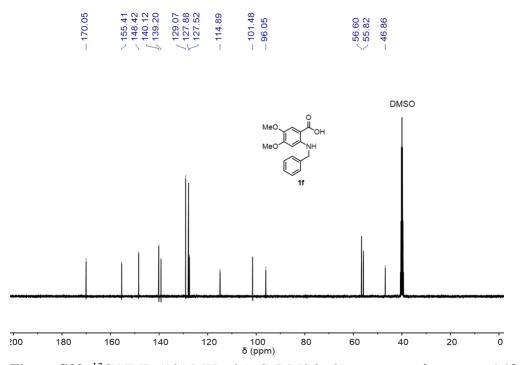


Figure S32. ¹³C NMR (101 MHz, 25 °C, DMSO-*d*₆) spectrum of compound 1f.

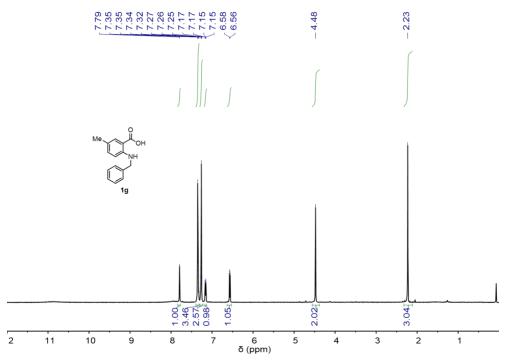


Figure S33. ¹H NMR (500 MHz, 25 °C, CDCl₃) spectrum of compound 1g.

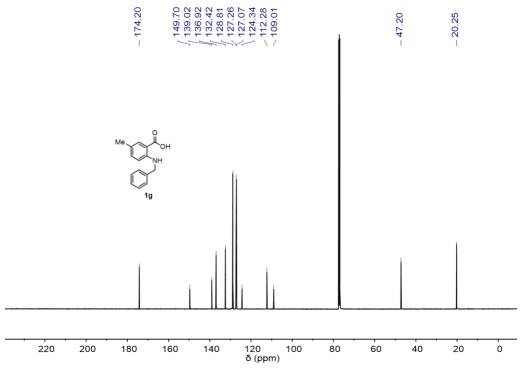


Figure S34. ¹³C NMR (126 MHz, 25 °C, CDCl₃) spectrum of compound 1g.

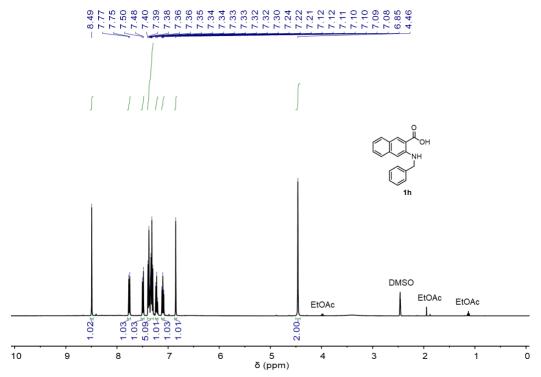


Figure S35. ¹H NMR (500 MHz, 25 °C, DMSO-*d*₆) spectrum of compound **1h**.

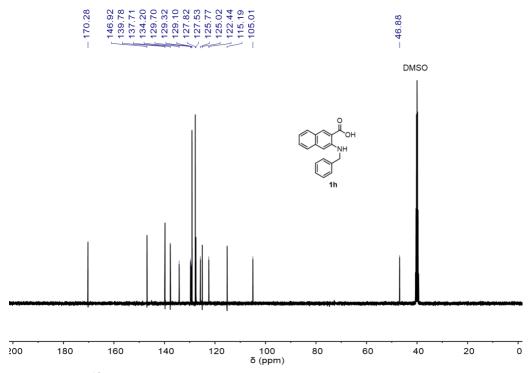


Figure S36. ¹³C NMR (126 MHz, 25 °C, DMSO-*d*₆) spectrum of compound 1h.

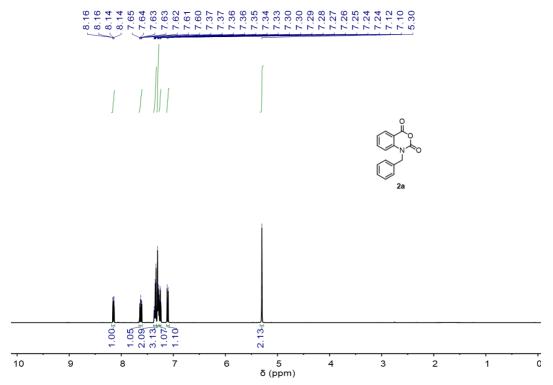


Figure S37. ¹H NMR (400 MHz, 25 °C, CDCl₃) spectrum of compound 2a.

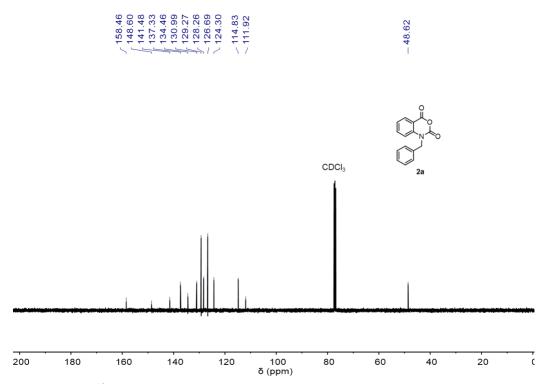


Figure S38. 13 C NMR (101 MHz, 25 $^{\circ}$ C, CDCl₃) spectrum of compound 2a.

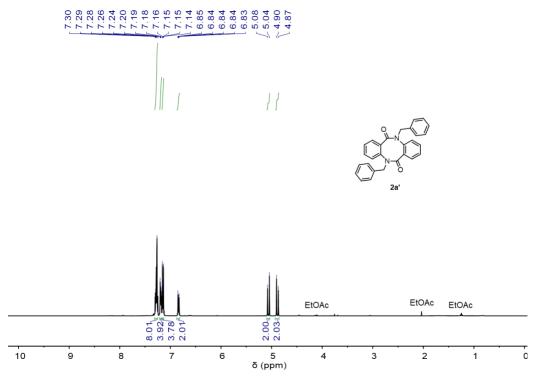


Figure S39. ¹H NMR (400 MHz, 25 °C, CDCl₃) spectrum of compound 2a'.

Figure S40. ¹³C NMR (101 MHz, 25 °C, CDCl₃) spectrum of compound 2a'.

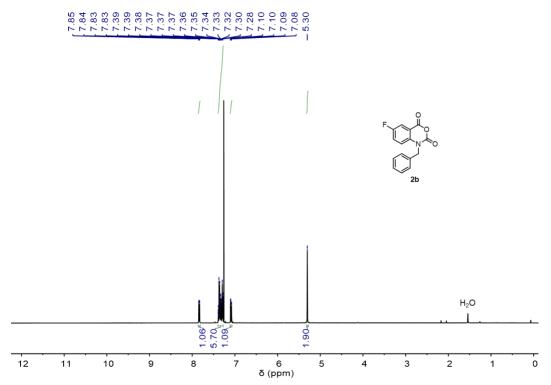


Figure S41. ¹H NMR (300 MHz, 25 °C, CDCl₃) spectrum of compound 2b.

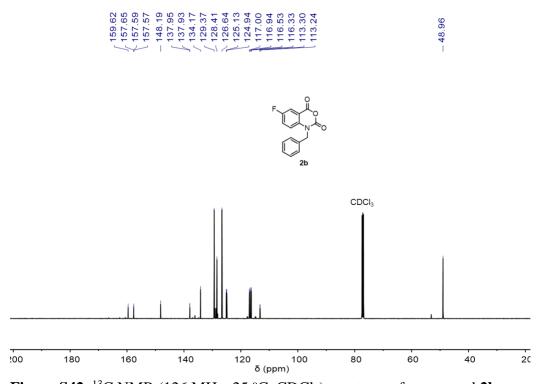


Figure S42. ¹³C NMR (126 MHz, 25 °C, CDCl₃) spectrum of compound 2b.

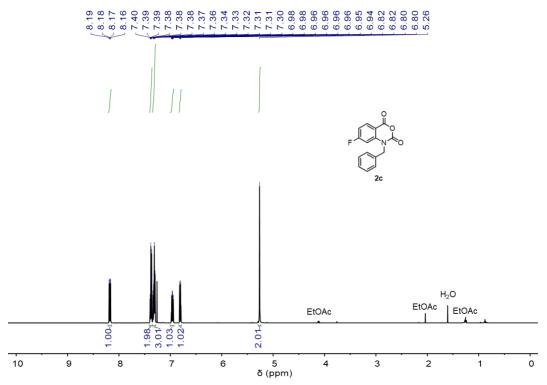


Figure S43. ¹H NMR (500 MHz, 25 °C, CDCl₃) spectrum of compound 2c.

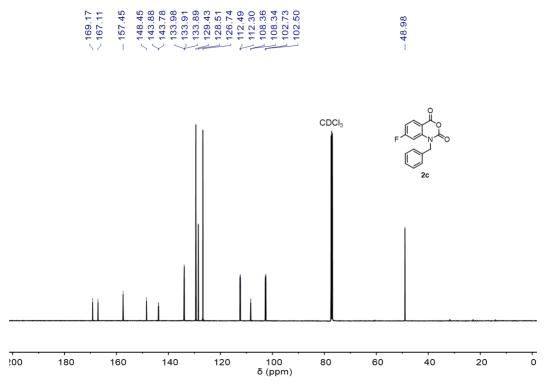


Figure S44. ¹³C NMR (126 MHz, 25 °C, CDCl₃) spectrum of compound 2c.

Figure S45. ¹H NMR (500 MHz, 25 °C, CDCl₃) spectrum of compound 2d.

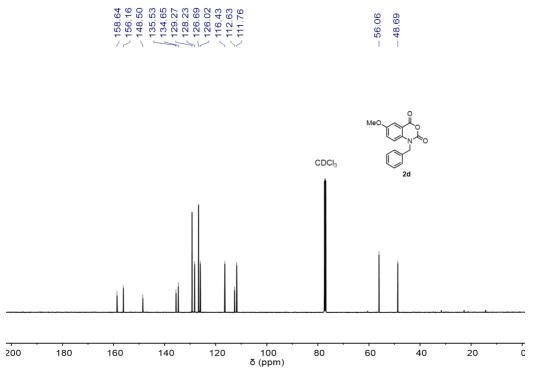


Figure S46. ¹³C NMR (126 MHz, 25 °C, CDCl₃) spectrum of compound 2d.



Figure S47. ¹H NMR (500 MHz, 25 °C, CDCl₃) spectrum of compound 2e.

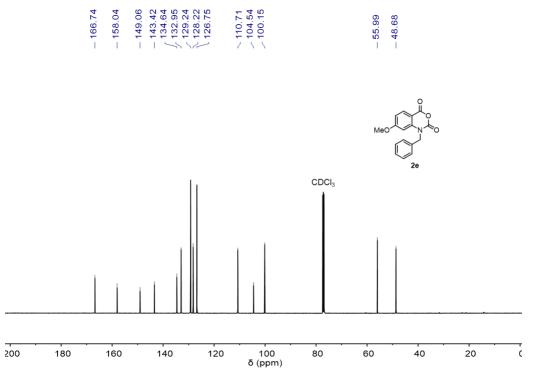


Figure S48. ¹³C NMR (126 MHz, 25 °C, CDCl₃) spectrum of compound 2e.

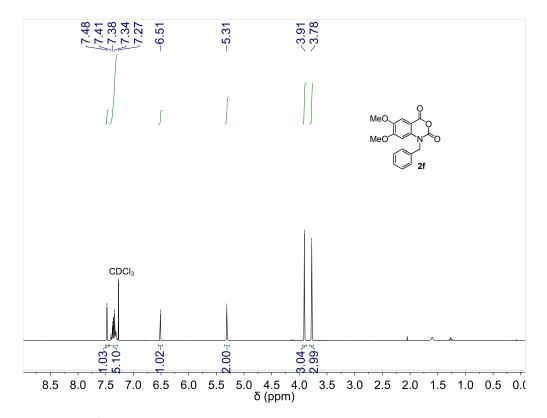


Figure S49. ¹H NMR (500 MHz, 25 °C, CDCl₃) spectrum of compound 2f.

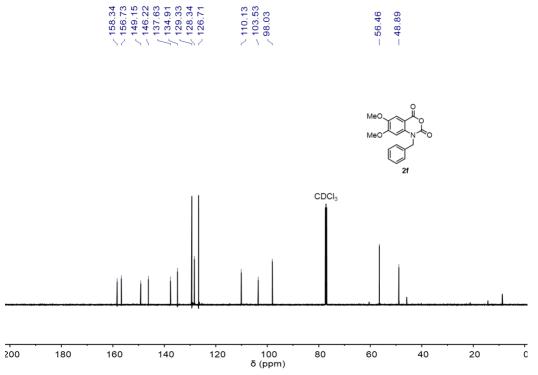


Figure S50. ¹³C NMR (126 MHz, 25 °C, CDCl₃) spectrum of compound 2f.

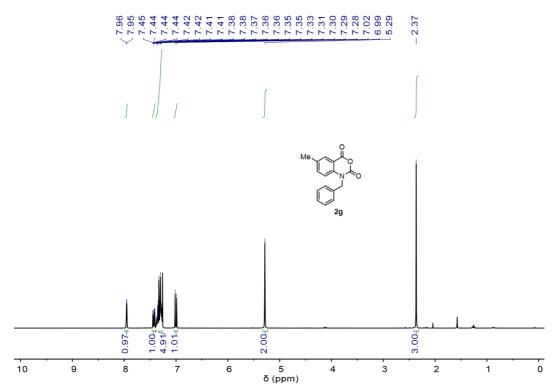


Figure S51. ¹H NMR (500 MHz, 25 °C, CDCl₃) spectrum of compound 2g.

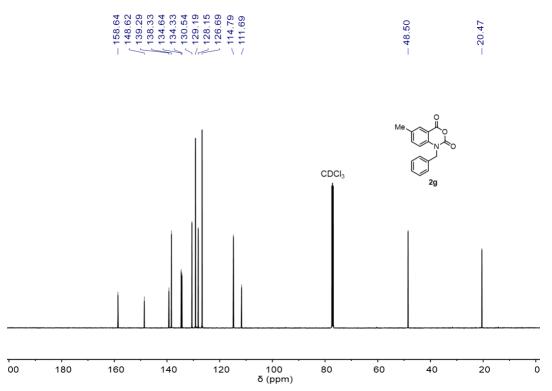


Figure S52. ¹³C NMR (126 MHz, 25 °C, CDCl₃) spectrum of compound 2g.

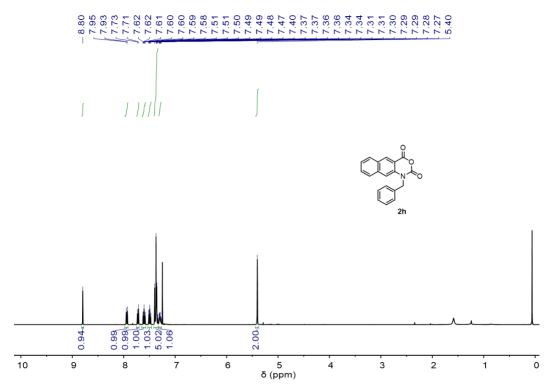


Figure S53. ¹H NMR (400 MHz, 25 °C, CDCl₃) spectrum of compound 2h.

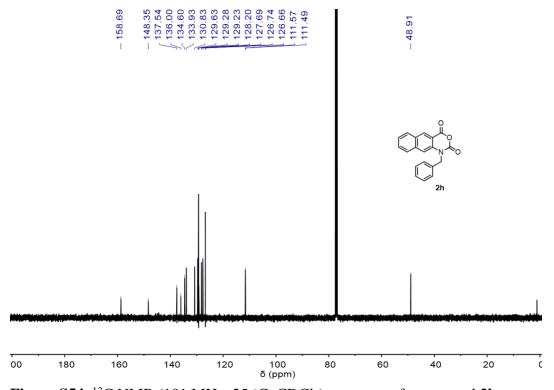


Figure S54. ¹³C NMR (101 MHz, 25 °C, CDCl₃) spectrum of compound **2h**.

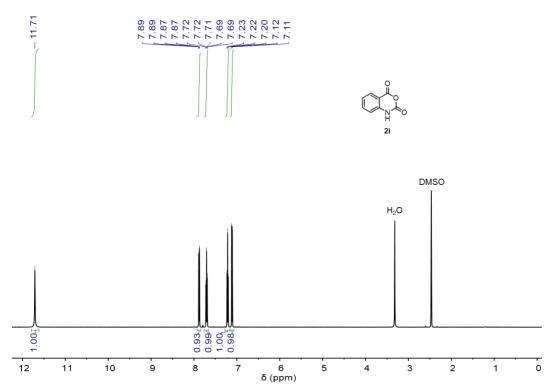


Figure S55. ¹H NMR (500 MHz, 25 °C, DMSO-*d*₆) spectrum of compound 2i.

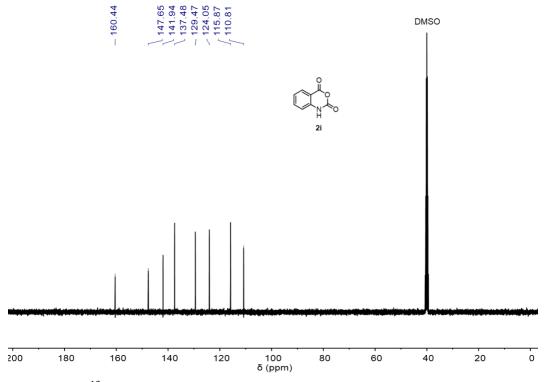


Figure S56. ¹³C NMR (101 MHz, 25 °C, DMSO-*d*₆) spectrum of compound 2i.

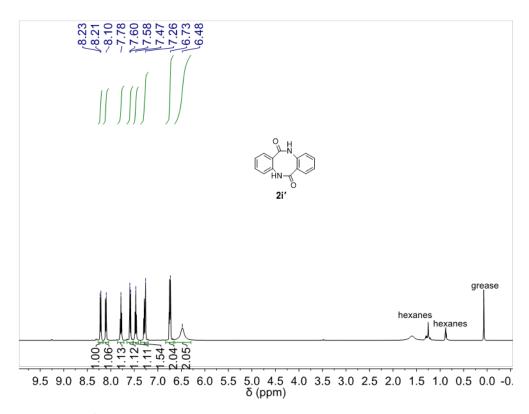


Figure S57. ¹H NMR (400 MHz, 25 °C, CDCl₃) spectrum of compound 2i'.

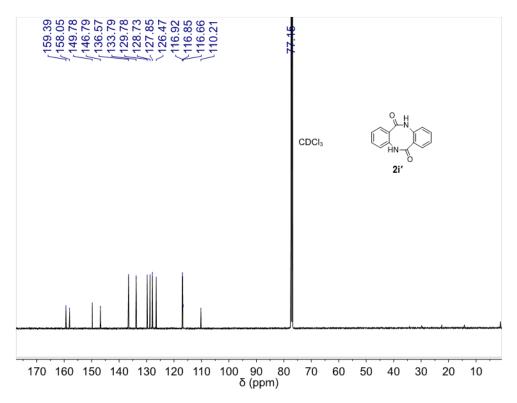


Figure S58. ¹³C NMR (101 MHz, 25 °C, CDCl₃) spectrum of compound 2i'.

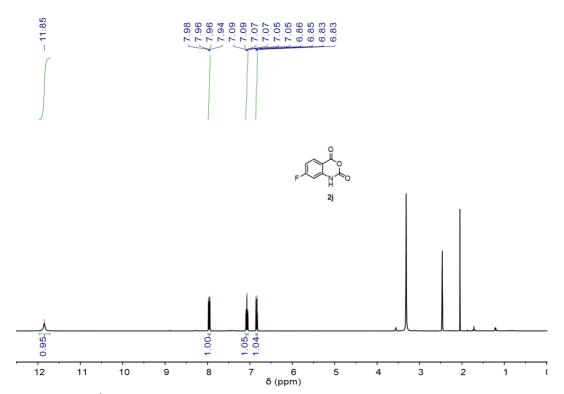


Figure S59. ¹H NMR (400 MHz, 25 °C, DMSO-*d*₆) spectrum of compound 2j.

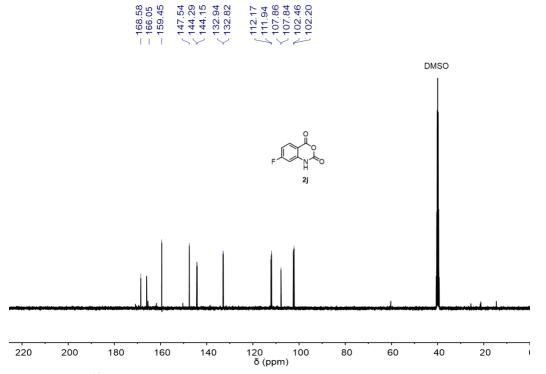


Figure S60. ¹³C NMR (101 MHz, 25 °C, DMSO-*d*₆) spectrum of compound 2j.

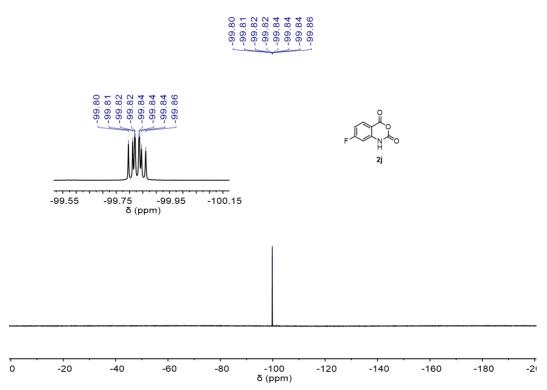


Figure S61. ¹⁹F NMR (376 MHz, 25 °C, DMSO-*d*₆) spectrum of compound 2j.

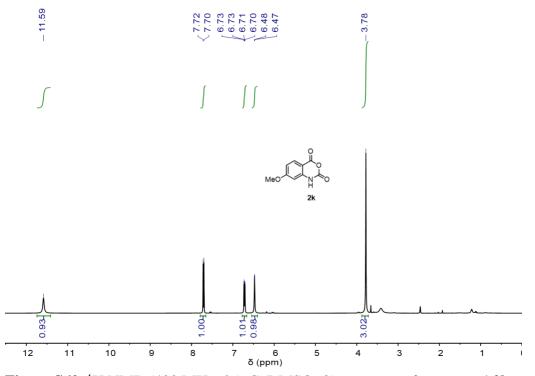
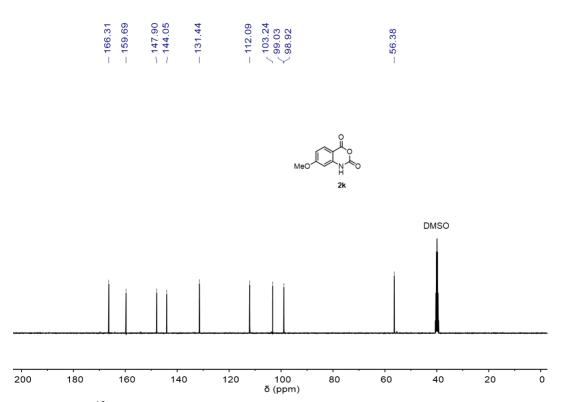



Figure S62. ¹H NMR (400 MHz, 25 °C, DMSO-*d*₆) spectrum of compound 2k.

Figure S63. ¹³C NMR (101 MHz, 25 °C, DMSO-*d*₆) spectrum of compound **2k**.

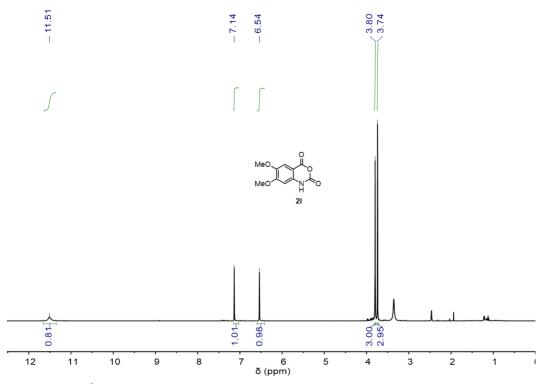


Figure S64. ¹H NMR (400 MHz, 25 °C, DMSO-*d*₆) spectrum of compound 21.

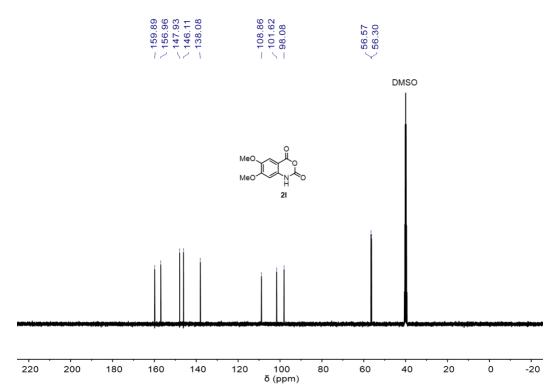
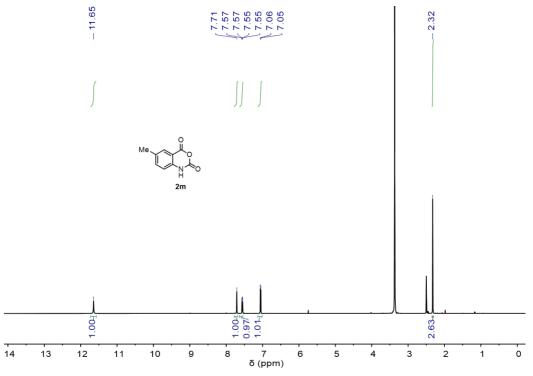



Figure S65. 13 C NMR (101 MHz, 25 ${}^{\circ}$ C, DMSO- d_6) spectrum of compound 21.

Figure S66. ¹H NMR (500 MHz, 25 °C, DMSO- d_6) spectrum of compound **2m**. The peak at ~3.4 ppm is water.

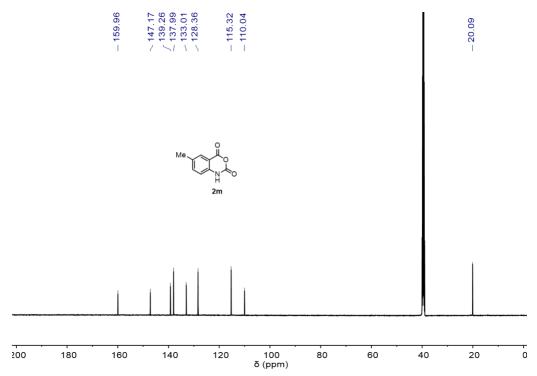


Figure S67. ¹³C NMR (126 MHz, 25 °C, DMSO-*d*₆) spectrum of compound 2m.

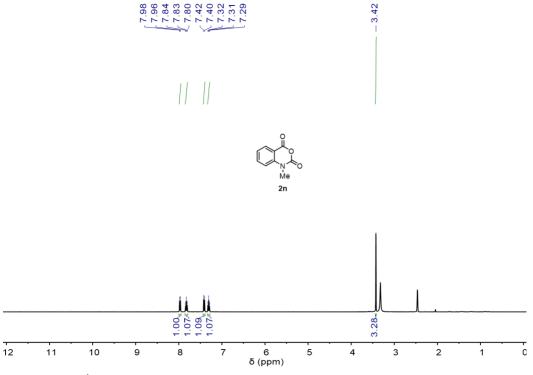


Figure S68. ¹H NMR (400 MHz, 25 °C, DMSO-*d*₆) spectrum of compound 2n.

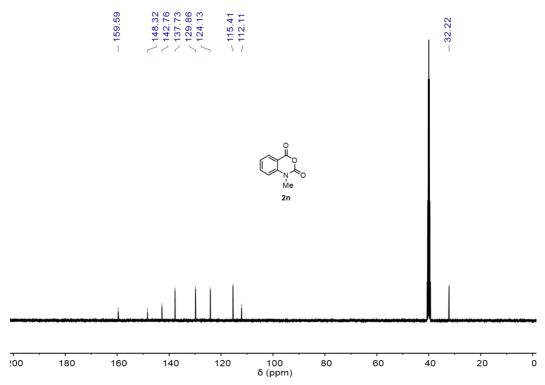


Figure S69. ¹³C NMR (101 MHz, 25 °C, DMSO-*d*₆) spectrum of compound 2n.

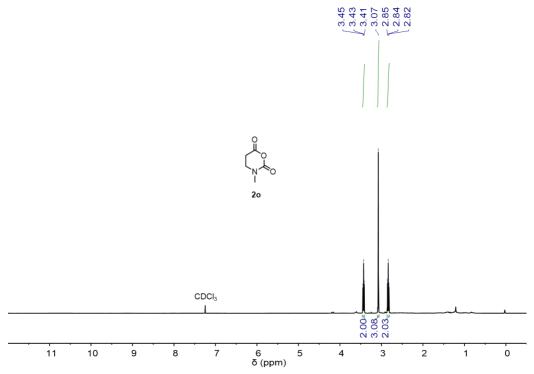


Figure S70. ¹H NMR (400 MHz, 25 °C, CDCl₃) spectrum of compound 2o.

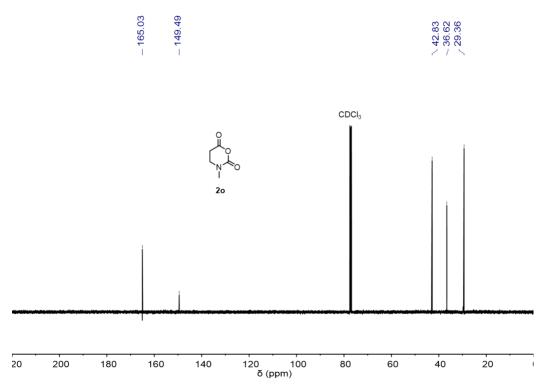


Figure S71. 13 C NMR (101 MHz, 25 $^{\circ}$ C, DMSO- d_6) spectrum of compound 20.

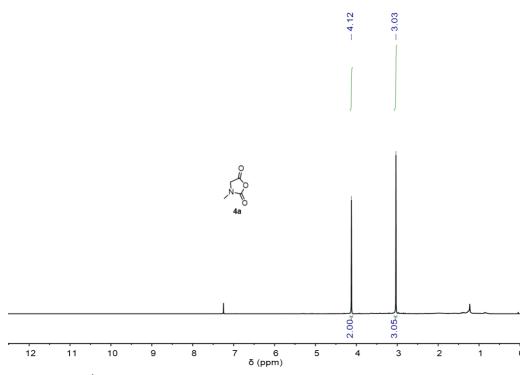


Figure S72. ¹H NMR (400 MHz, 25 °C, CDCl₃) spectrum of compound 4a.

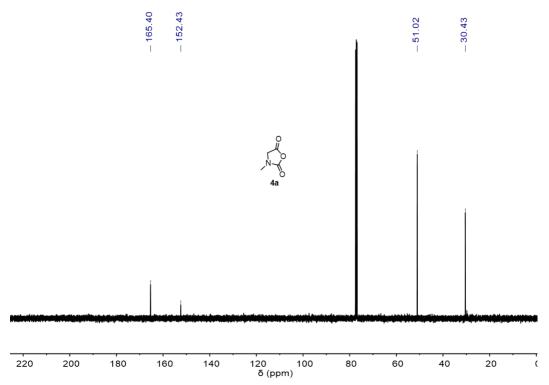
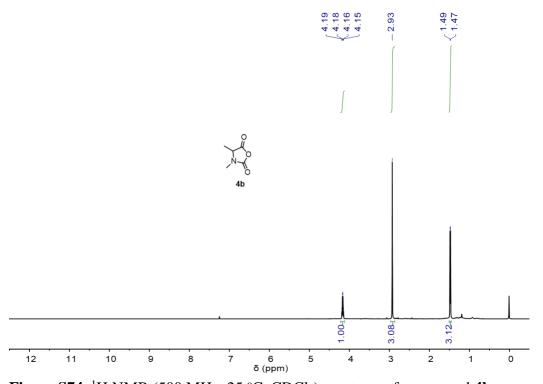



Figure S73. ¹³C NMR (101 MHz, 25 °C, CDCl₃) spectrum of compound 4a.

Figure S74. ¹H NMR (500 MHz, 25 °C, CDCl₃) spectrum of compound **4b**.

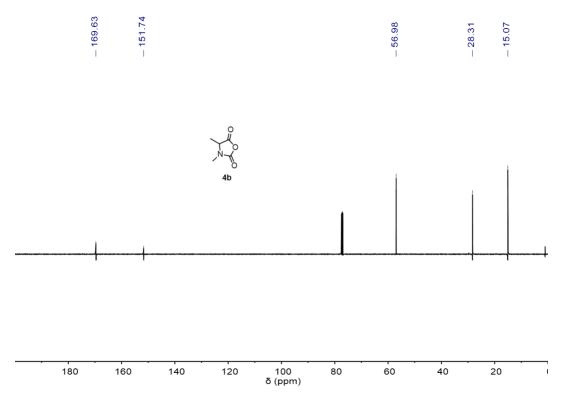
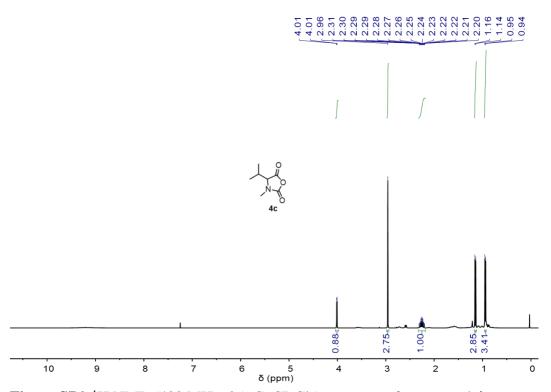
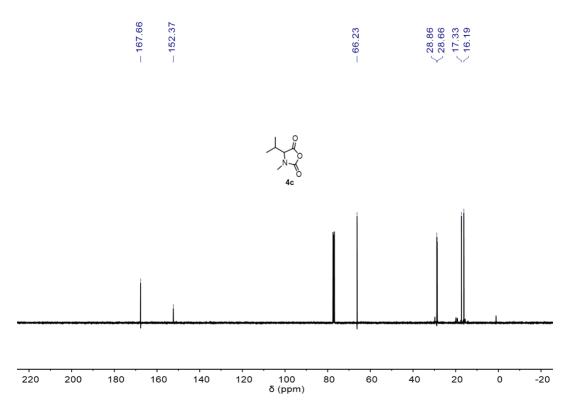
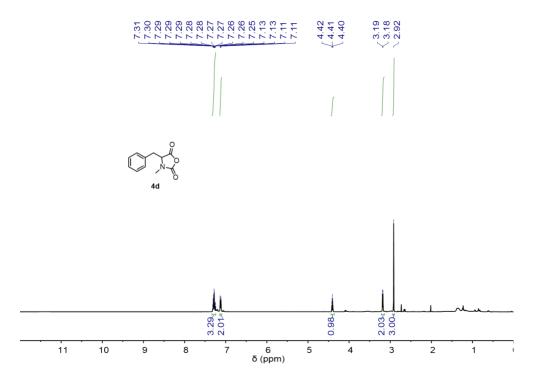


Figure S75. ¹³C NMR (126 MHz, 25 °C, CDCl₃) spectrum of compound 4b.

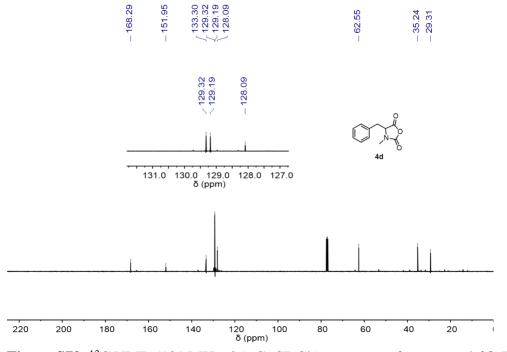

Figure S76. ¹H NMR (400 MHz, 25 °C, CDCl₃) spectrum of compound 4c.

Figure S77. ¹³C NMR (101 MHz, 25 °C, CDCl₃) spectrum of compound **4c**.

Figure S78. ¹H NMR (400 MHz, 25 °C, CDCl₃) spectrum of compound **4d.** This compound is prone to polymerization.

Figure S79. ¹³C NMR (101 MHz, 25 °C, CDCl₃) spectrum of compound **4d**. This compound is prone to polymerization.

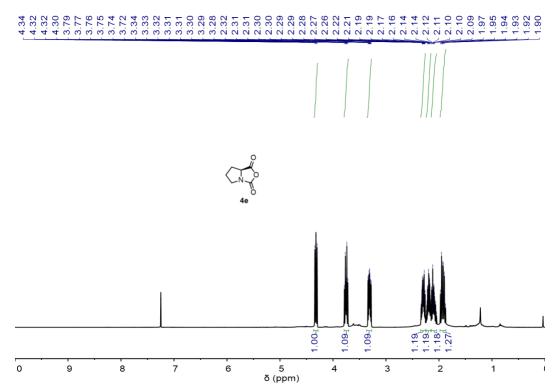


Figure S80. ¹H NMR (400 MHz, 25 °C, CDCl₃) spectrum of compound 4e.

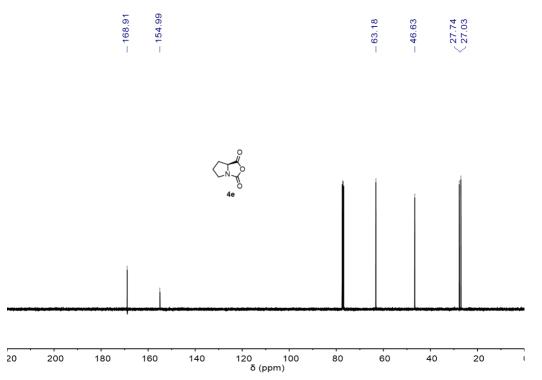


Figure S81. ¹³C NMR (101 MHz, 25 °C, CDCl₃) spectrum of compound 4e.

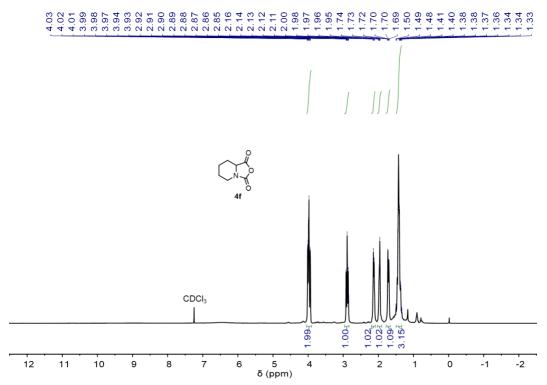


Figure S82. ¹H NMR (400 MHz, 25 °C, CDCl₃) spectrum of compound 4f.

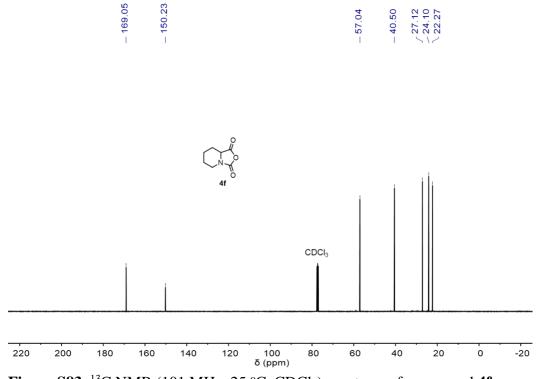


Figure S83. ¹³C NMR (101 MHz, 25 °C, CDCl₃) spectrum of compound 4f.

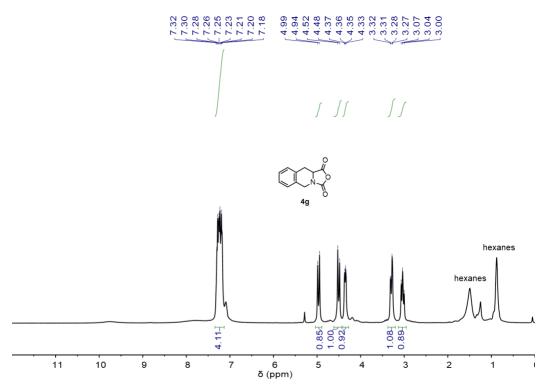


Figure S84. ¹H NMR (400 MHz, 25 °C, CDCl₃) spectrum of compound 4g.

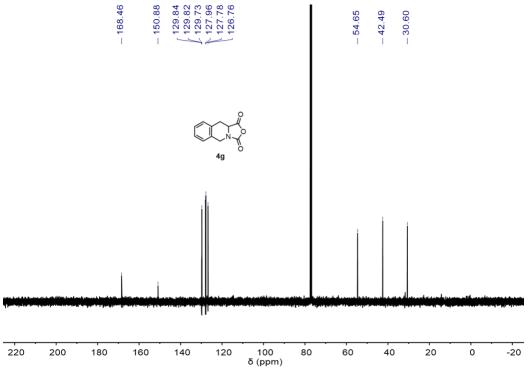


Figure S85. ¹³C NMR (101 MHz, 25 °C, CDCl₃) spectrum of compound 4g.

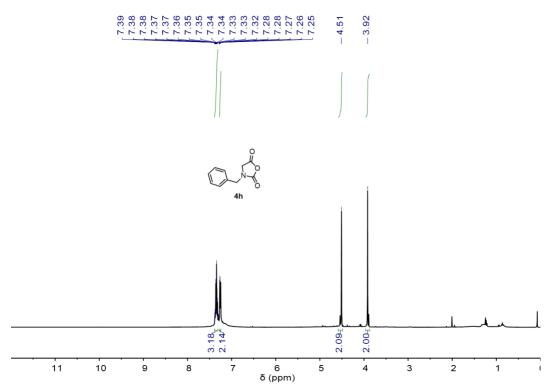


Figure S86. ¹H NMR (400 MHz, 25 °C, CDCl₃) spectrum of compound 4h.

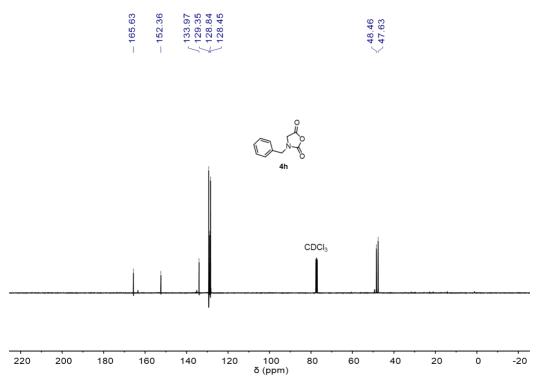
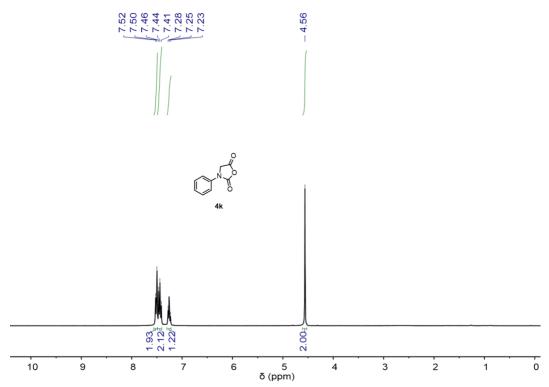



Figure S87. ¹³C NMR (101 MHz, 25 °C, CDCl₃) spectrum of compound 4h.

Figure S88. 1 H NMR (300 MHz, 25 $^{\circ}$ C, CDCl₃) spectrum of compound **4k**. Fg

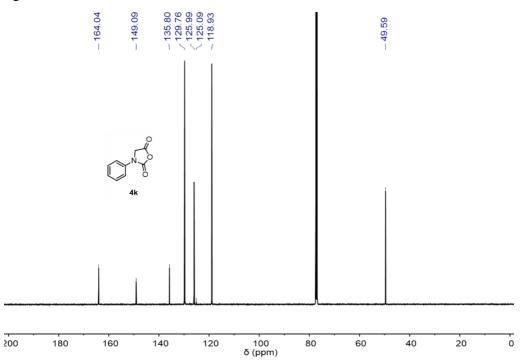
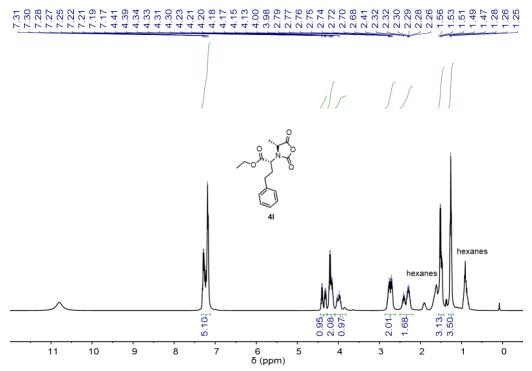
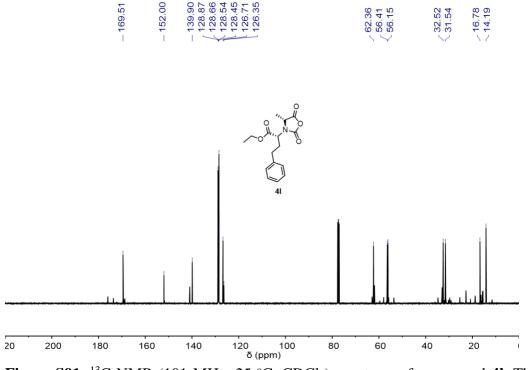




Figure S89. ¹³C NMR (126 MHz, 25 °C, CDCl₃) spectrum of compound 4k.

Figure S90. ¹H NMR (400 MHz, 25 °C, CDCl₃) spectrum of compound **4l**. This product may contain a small amount of the epimerized diastereomer.

Figure S91. ¹³C NMR (101 MHz, 25 °C, CDCl₃) spectrum of compound **4l**. This product may contain a small amount of the epimerized diastereomer.

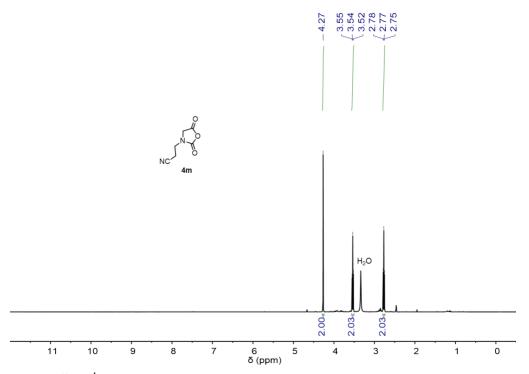


Figure S92. ¹H NMR (400 MHz, 25 °C, DMSO-*d*₆) spectrum of compound **4m**.

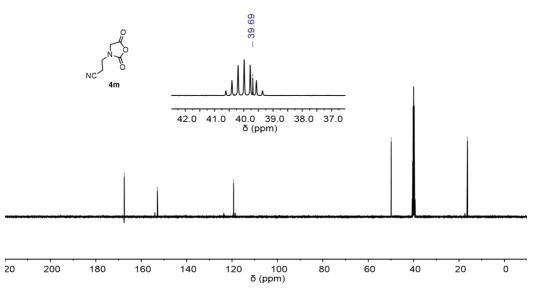


Figure S93. ¹³C NMR (101 MHz, 25 °C, DMSO-*d*₆) spectrum of compound 4m.

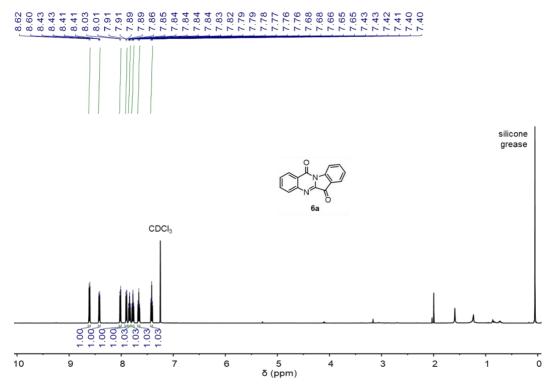


Figure S94. ¹H NMR (500 MHz, 25 °C, CDCl₃) spectrum of compound 6a.

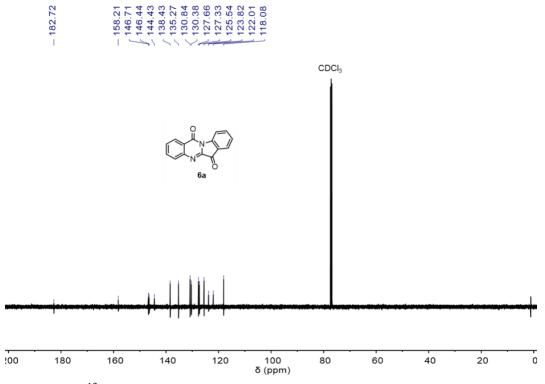


Figure S95. ¹³C NMR (126 MHz, 25 °C, CDCl₃) spectrum of compound 6a.

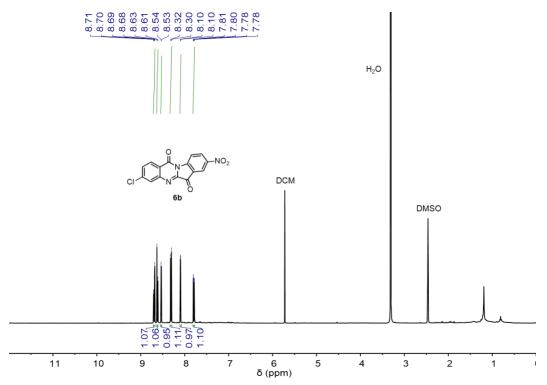


Figure S96. ¹H NMR (500 MHz, 25 °C, CDCl₃) spectrum of compound 6b.

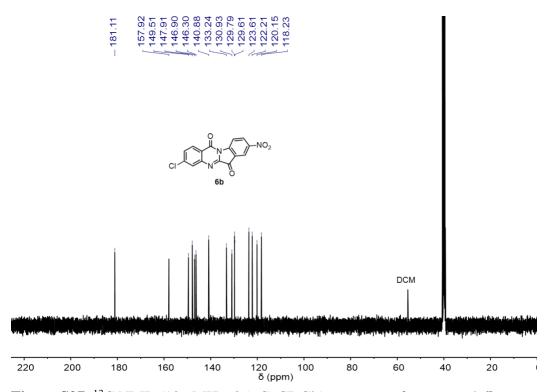
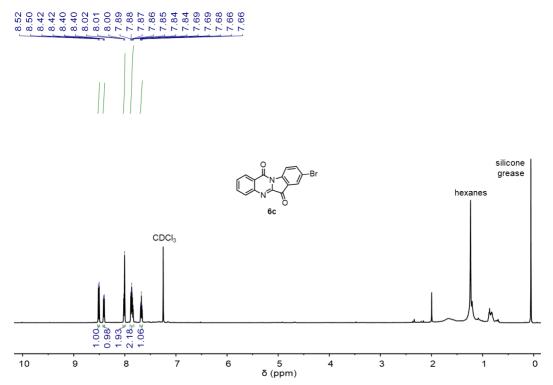
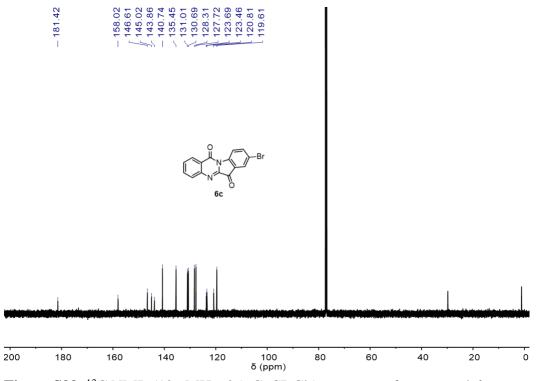




Figure S97. ¹³C NMR (126 MHz, 25 °C, CDCl₃) spectrum of compound **6b**.

Figure S98. ¹H NMR (500 MHz, 25 °C, CDCl₃) spectrum of compound **6c**.

Figure S99. ¹³C NMR (126 MHz, 25 °C, CDCl₃) spectrum of compound **6c**.

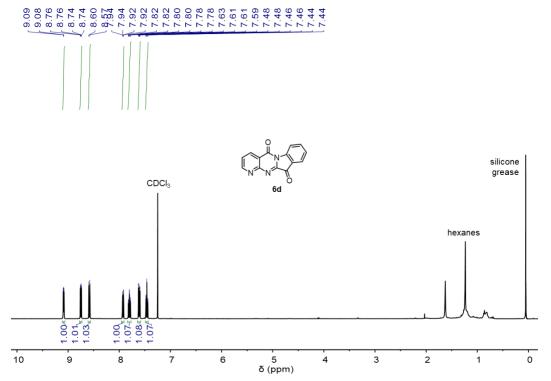


Figure S100. ¹H NMR (400 MHz, 25 °C, CDCl₃) spectrum of compound 6d.

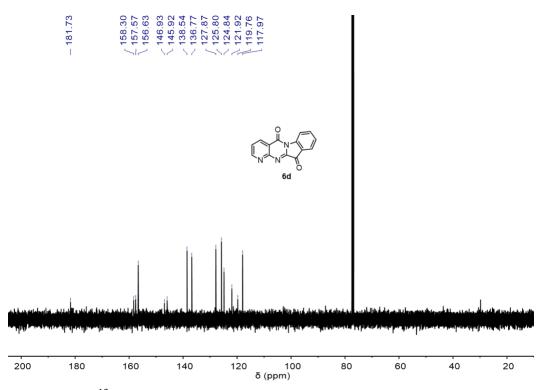


Figure S101. ¹³C NMR (126 MHz, 25 °C, CDCl₃) spectrum of compound 6d.

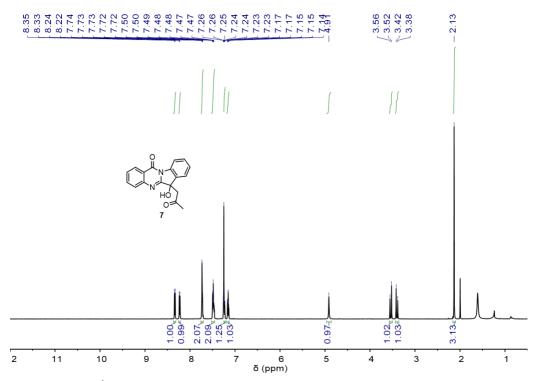


Figure S102. ¹H NMR (500 MHz, 25 °C, CDCl₃) spectrum of compound 7.

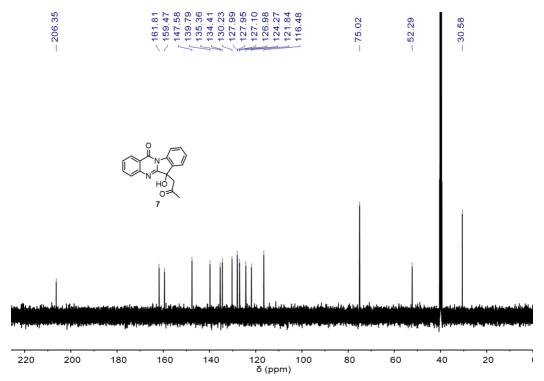
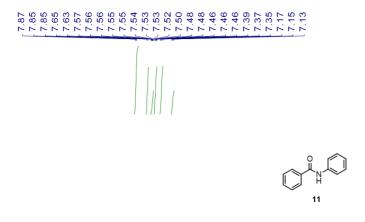



Figure S103. ¹³C NMR (126 MHz, 25 °C, CDCl₃) spectrum of compound 7.

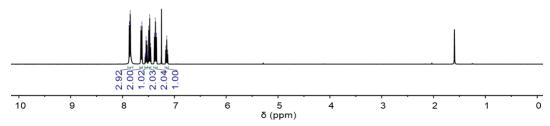


Figure S104. ¹H NMR (400 MHz, 25 °C, CDCl₃) spectrum of compound 11.

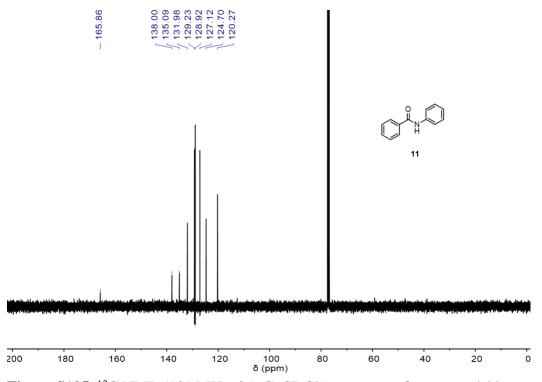


Figure S105. ¹³C NMR (101 MHz, 25 °C, CDCl₃) spectrum of compound 11.

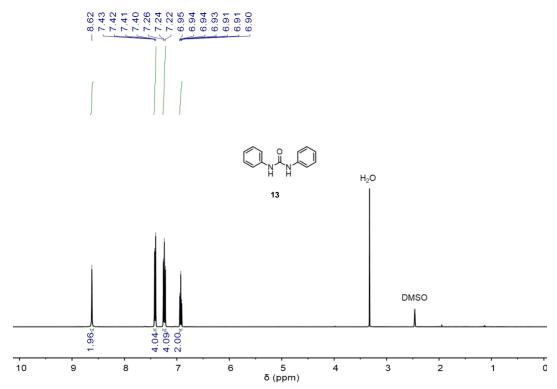


Figure S106. ¹H NMR (400 MHz, 25 °C, CDCl₃) spectrum of compound 13.

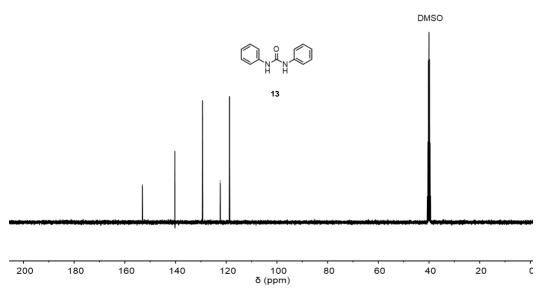


Figure S107. ¹³C NMR (101 MHz, 25 °C, CDCl₃) spectrum of compound 13.

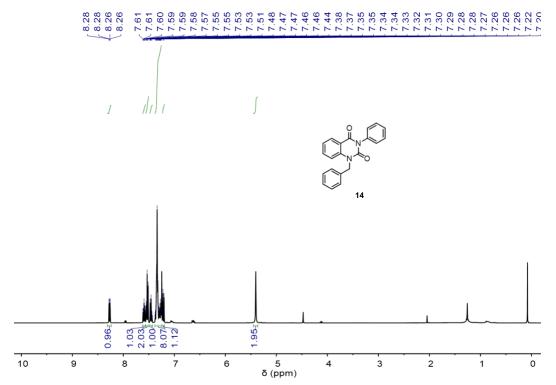


Figure S108. ¹H NMR (400 MHz, 25 °C, CDCl₃) spectrum of compound 14.

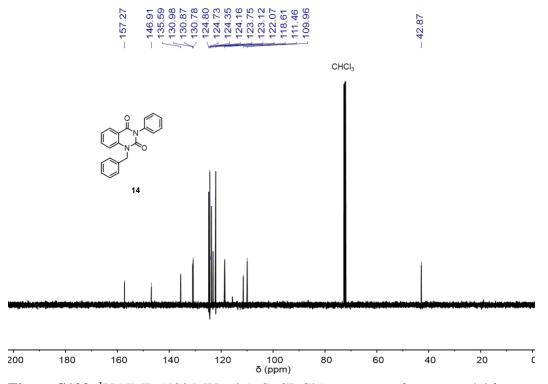


Figure S109. 1 H NMR (400 MHz, 25 $^{\circ}$ C, CDCl₃) spectrum of compound 14.

References

- 1. Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J., Safe and Convenient Procedure for Solvent Purification. *Organometallics* **1996**, *15* (5), 1518-1520.
- 2. Wang, Y.; Zhang, M.; Cao, S.; Lin, H.; Gao, M.; Li, Z., Synthesis of 1-Substituted 4(1*H*)-Quinazolinones Under Solvent-Free Conditions. *Synth. Commun.* **2012**, *42* (18), 2715-2727.
- 3. Liu, S.; Pestano, J. P. C.; Wolf, C., Regioselective Copper-catalyzed C-N and C-S Bond Formation using Amines, Thiols and Halobenzoic Acids. *Synthesis* **2007**, (22), 3519-3527.
- 4. Weaver, D. F.; Wang, Z.; Doyle, L.; Villar, L.; Vilekar, P. S., Patent WO2020257940A1. **2020**.
- 5. Laha, J. K.; Tummalapalli, K. S. S.; Nair, A.; Patel, N., Sulfate Radical Anion (SO₄⁻) Mediated C(sp3)–H Nitrogenation/Oxygenation in N-Aryl Benzylic Amines Expanded the Scope for the Synthesis of Benzamidine/Oxazine Heterocycles. *J. Org. Chem.* **2015**, *80* (22), 11351-11359.
- 6. Levesque, P.; Fournier, P.-A., Synthesis of Substituted Indole from 2-Aminobenzaldehyde through [1,2]-Aryl Shift. *J. Org. Chem.* **2010**, *75* (20), 7033-7036.
- 7. Zhang, W.-Z.; Zhang, N.; Sun, Y.-Q.; Ding, Y.-W.; Lu, X.-B., Palladium-Catalyzed Cyclization Reaction of *o*-Iodoanilines, CO₂, and CO: Access to Isatoic Anhydrides. *ACS Catal.* **2017**, *7* (12), 8072-8076.
- 8. Hoorfar, A.; Ollis, W. D.; Price, J. A.; Stephanatou, J. S.; Stoddart, J. F., Conformational behaviour of medium-sized rings. Part 11. Dianthranilides and trianthranilides. *J. Chem. Soc.*, *Perkin Trans. I* **1982**, (0), 1649-1699.
- 9. Yu, L.; Ye, J.; Zhang, X.; Ding, Y.; Xu, Q., Recyclable (PhSe)₂-catalyzed selective oxidation of isatin by H2O2: a practical and waste-free access to isatoic anhydride under mild and neutral conditions. *Catal. Sci. Technol.* **2015**, *5* (10), 4830-4838.
- 10. Matsumura, H.; Hashizume, H.; Matsushita, A.; Eigyo, M., US4923984A. 1989.
- 11. Laconde, G.; Amblard, M.; Martinez, J., Synthesis of α-Amino Acid *N*-Carboxyanhydrides. *Org. Lett.* **2021,** *23* (16), 6412-6416.
- 12. Zhou, X.; Ding, Y.; Huang, H., Palladium-Catalyzed Carbonylative Difunctionalization of C=N Bond of Azaarenes or Imines to Quinazolinones. *Chem. Asian. J.* **2020,** *15* (11), 1678-1682.
- 13. Sarmiento-Sánchez, J. I.; Ochoa-Terán, A.; Picos-Corrales, L. A.; Osuna-Martínez, L. U.; Montes-Ávila, J.; Bastidas-Bastidas, P., Microwave-assisted synthesis of benzoxazinediones under solvent-free conditions. *Green Chem. Lett. Rev.* **2016**, *9* (4), 196-202.
- 14. Jamroskovic, J.; Doimo, M.; Chand, K.; Obi, I.; Kumar, R.; Brännström, K.; Hedenström, M.; Nath Das, R.; Akhunzianov, A.; Deiana, M.; Kasho, K.; Sulis Sato, S.; Pourbozorgi, P. L.; Mason, J. E.; Medini, P.; Öhlund, D.; Wanrooij, S.; Chorell, E.; Sabouri, N., Quinazoline Ligands Induce Cancer Cell Death through Selective STAT3 Inhibition and G-Quadruplex Stabilization. *J. Am. Chem. Soc.* **2020**, *142* (6), 2876-2888.
- 15. Khong, S.; Kwon, O., Phosphine-Initiated General-Base-Catalyzed Quinolone Synthesis. *Asian J. Org. Chem.* **2014**, *3* (4), 453-457.
- 16. Li, Y.; Zhang, S.; Wang, R.; Cui, M.; Liu, W.; Yang, Q.; Kuang, C., Synthesis of novel tryptanthrin derivatives as dual inhibitors of indoleamine 2,3-dioxygenase 1 and tryptophan 2,3-dioxygenase. *Bioorg. Med. Chem. Lett.* **2020**, *30* (11), 127159.

- 17. Wang, S.; Li, X.; Zang, J.; Liu, M.; Zhang, S.; Jiang, G.; Ji, F., Palladium-Catalyzed Multistep Tandem Carbonylation/N-Dealkylation/Carbonylation Reaction: Access to Isatoic Anhydrides. *J. Org. Chem.* **2020**, *85* (4), 2672-2679.
- 18. Coste, J.; Frerot, E.; Jouin, P., Coupling *N*-Methylated Amino Acids Using PyBroP and PyCloP Halogenophosphonium Salts: Mechanism and Fields of Application. *J. Org. Chem* **1994**, *59* (9), 2437-2446.
- 19. Xuan, S.; Lee, C.-U.; Chen, C.; Doyle, A. B.; Zhang, Y.; Guo, L.; John, V. T.; Hayes, D.; Zhang, D., Thermoreversible and Injectable ABC Polypeptoid Hydrogels: Controlling the Hydrogel Properties through Molecular Design. *Chem. Mater.* **2016**, *28* (3), 727-737.
- 20. Detwiler, R. E.; Schlirf, A. E.; Kramer, J. R., Rethinking Transition Metal Catalyzed N-Carboxyanhydride Polymerization: Polymerization of Pro and AcOPro *N*-Carboxyanhydrides. *J. Am. Chem. Soc.* **2021**, *143* (30), 11482-11489.
- 21. Jansa, P.; Machácek, V.; Bertolasi, V., Derivatives of 1,2,3,4-Tetrahydroisoquinoline-3-carboxylic Acid. *Heterocycles* **2005**, *68* (1), 11.
- 22. Salas-Ambrosio, P.; Tronnet, A.; Since, M.; Bourgeade-Delmas, S.; Stigliani, J.-L.; Vax, A.; Lecommandoux, S.; Dupuy, B.; Verhaeghe, P.; Bonduelle, C., Cyclic Poly(α-peptoid)s by Lithium bis(trimethylsilyl)amide (LiHMDS)-Mediated Ring-Expansion Polymerization: Simple Access to Bioactive Backbones. *J. Am. Chem. Soc.* **2021**, *143* (10), 3697-3702.
- 23. Liu, K.; Wu, Y.; Xi, Y.; Li, Z., Cotton fiber modified via *N*-phenyl anhydride in situ ring-opening polymerization with controllable surface morphology and its wettability. *Prog. Org. Coat.* **2022**, *162*, 106565.
- 24. Garcellano, R. C.; Moinuddin, S. G.; Young, R. P.; Zhou, M.; Bowden, M. E.; Renslow, R. S.; Yesiltepe, Y.; Thomas, D. G.; Colby, S. M.; Chouinard, C. D., Isolation of tryptanthrin and reassessment of evidence for its isobaric isostere wrightiadione in plants of the Wrightia Genus. *J. Nat. Prod.* **2018**, 82 (3), 440-448.
- 25. Kaishap, P. P.; Duarah, G.; Pal, M., Microwave-assisted, catalyst and solvent free synthesis of tryptanthrin derivatives and their in-vitro cytotoxic activity on prostate DU145 cancer cell lines. *Synth. Commun.* **2021**, *51* (24), 3740-3747.
- 26. Hwang, J.-M.; Oh, T.; Kaneko, T.; Upton, A. M.; Franzblau, S. G.; Ma, Z.; Cho, S.-N.; Kim, P., Design, Synthesis, and Structure–Activity Relationship Studies of Tryptanthrins As Antitubercular Agents. *J. Nat. Prod.* **2013**, *76* (3), 354-367.
- 27. Kang, G.; Luo, Z.; Liu, C.; Gao, H.; Wu, Q.; Wu, H.; Jiang, J., Amino Acid Salts Catalyzed Asymmetric Aldol Reaction of Tryptanthrin: A Straightforward Synthesis of Phaitanthrin A and Its Derivatives. *Org. Lett.* **2013**, *15* (18), 4738-4741.
- 28. Zheng, D.-Z.; Xiong, H.-G.; Song, A. X.; Yao, H.-G.; Xu, C., Buchwald–Hartwig amination of aryl esters and chlorides catalyzed by the dianisole-decorated Pd–NHC complex. *Org. Biomol. Chem.* **2022**, *20* (10), 2096-2101.
- 29. Muranaka, R.; Liu, Y.; Okada, I.; Okazoe, T.; Tsuda, A., Photo-on-Demand Phosgenation Reactions with Chloroform for Selective Syntheses of *N*-Substituted Ureas and Isocyanates. *ACS Omega* **2022**, *7* (6), 5584-5594.
- 30. Nakagawa, A.; Uno, S.; Makishima, M.; Miyachi, H.; Hashimoto, Y., Progesterone receptor antagonists with a 3-phenylquinazoline-2,4-dione/2-phenylisoquinoline-1,3-dione skeleton. *Bioorg. Med. Chem. Lett.* **2008**, *16* (14), 7046-7054.
- 31. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato,

- M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. *Gaussian 16 Rev. A.03*, Gaussian Inc.: Wallingford, CT, 2016.
- 32. Becke, A. D., Density-functional thermochemistry. III. The role of exact exchange. *J. Chem. Phys.* **1993**, *98* (7), 5648-5652.
- 33. Lee, C.; Yang, W.; Parr, R. G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. *Phys. Rev. B* **1988**, *37* (2), 785-789.
- 34. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G., Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. *J. Phys. Chem. B* **2009**, *113* (18), 6378-6396.
- 35. Lian, P.; Johnston, R. C.; Parks, J. M.; Smith, J. C., Quantum Chemical Calculation of pKas of Environmentally Relevant Functional Groups: Carboxylic Acids, Amines, and Thiols in Aqueous Solution. *J. Phys. Chem. A* **2018**, *122* (17), 4366-4374.