Copper-Catalyzed Direct Synthesis of 3-Methylene-2arylisoindolin-1-ones with Calcium Carbide as a Surrogate of Gaseous Acetylene

Jianglong Wu^a, Yingfen Ma^a, Yan Wang^a, Chenyu Wang^a, Hui Luo^a, Dianjun Li^{*a}, Jinhui Yang^{*a}

^aState Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, People's Republe of China. E-mal: yang_jh@nxu.edu.cn; nxlidj@126.com;

Table of Contents

1. Experimental Section	2
2. General procedure	5
3. Analytical Data for Compounds 2a-5c	8
4. X-ray Spectra of 2c, 5c and 5i	
5. References	
6. ¹ H, ¹³ C and ¹⁹ F NMR Spectra for Products 2a-5c	

1. Experimental Section

1.1 General Information

¹H NMR and ¹³C NMR spectra were recorded on a Mercury-600 MB or 400 MB instrument using CDCl₃ as solvent and Me₄Si as internal standard. High-resolution mass spectra (HRMS) (ESI) were obtained with a Bruker Daltonics APEX II 47e and quadrupole Orbitrap Elite (Q-Exactive) mass spectrometer. Melting points were observed in an electrothermal melting point apparatus (X-5, Beijing Tech Instrument Co. Ltd, China). Calcium carbide was purchased from Macklin Chemical Company(China, purity: 98%), and ground into powder (ca. 50-100 mesh) in a ceramic mortarprior to use. Column chromatography was carried out on a flash chromatographic system using silica gel, and petroleum ether (60-90 °C) and ethyl acetate as eluent. For thin layer chromatography (TLC), silica gel plates precoated with GF-254 were used. Various benzimidazoles were synthesized by the reactions of corresponding o-phenylenediamines and o-bromobenzaldehydes according to literature procedure^[1].

1.2 Mechanism inquiry experiment

(a) H-atoms in products come from

To verify where H-atoms in products come from. We did an experiment of deuteration. On the basis of our experimental results of H-NMR. Thanks for the comments. To verify where H-atoms in products come from. We did an experiment of deuteration. On the basis of our experimental results of H-NMR. We realized that most of the H-atoms in products come from the same environment, we speculated that H-atoms in products comes from the solvent in reaction.

Figure S1. ¹H NMR (400 MHz, CDCl₃) of D₂O experiment

Figure S3. ¹H NMR (400 MHz, CDCl₃) of DMSO-d₆ experiment

Figure S4. ¹³C NMR (101 MHz, CDCl₃) of DMSO-d₆ experiment

(b)HRMS for Intermediate E

HRMS (ESI): m/z (M-Cu+H)⁺ calcd for: C₁₅H₁₀BrNO: 300.0018; Found: 300.0015.

Figure S5. HRMS spectra for intermediate E

2. General Procedure

2.1 Synthesis Procedure of Substrates.

Scheme S2. Synthesis procedure of substrate 1

The appropriate amine (5 mmol) was added dropwise to 2-bromobenzoyl chloride (1.10 g, 5.0 mmol) THF (20 mL) and NEt₃ (1.7 mL) at 0 °C. After the addition of amine, the reaction mixture was stirred at room temperature for 1 h. The reaction mixture was then poured into 30 mL of ethyl acetate and washed with saturated aqueous NaHCO₃ solution (30 mL) and brine (20 mL). The organic layer was dried over anhydrous MgSO₄ and concentrated using a rotary evaporator under reduced pressure (20 mmHg). This resulted in the formation of a solid, which was then dried under high-vacuum conditions to afford the desired amide.

Synthesis 3

Under nitrogen atmosphere, add 2 g (10 mmol) o-o-benzoic acid, 25 mL of toluene, 2 mL of alum dichloride, and several drops of DMF to a 50 mL eggplant-shaped flask, and stop heating after refluxing for 2-3 h. The solvent and sassium dichloride were evaporated to obtain a pale yellow oily liquid. Add 20 mL of dichloromethane, and simultaneously add 1.5 mL of benzylamine and 3 mL of triethylamine with a syringe under ice bath conditions. The reaction is basically completed by TLC, washed with 20 mL of hydrochloric acid for 2 times, and washed with saturated saline once. Acetyl acetate was recrystallized to obtain pure product 1.53 g (76%).

2.2 The General Procedure for the Synthesis of 3-methylene-2-arylisoindolin-1-

Scheme S4. Synthesis procedure of substrate 2 and 4

2-Bromo-N-phenylbenzamide (0.2 mmol), calcium carbide $(CaC_2)(0.8 \text{ mmol}, 4.0 \text{ equiv})$, t-BuOK (0.4 mmol, 2 equiv), CuI (10 mol%) and H₂O(6 mmol, 30 equiv.) in 1 mL Dimethyl sulfoxide Were stirred at 110 °C for 8 h under the air atmosphere. After the completion of the reaction, the resulting mixture was filtered to remove the solid, and the liquor was extracted with ethyl acetate (3×10 mL), and washed with saturated brine (3×10 mL). The resulting organic phase was dried with anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was isolated by column chromatography using petroleum ether and ethyl acetate (v/v 20:1 to 6:1) as eluent to give the pure products.

2.3 Gram-Scale Synthesis of 2a and Pd-catalyzed Heck Annulation for Synthsis of

Tetracyclic Isoindolinone Derivative

(a) Gram-Scale Synthesis of 2a

Scheme S5. Gram-scale synthesis of 2a

2-Bromo-N-phenylbenzamide (6.25 mmol), calcium carbide $(CaC_2)(25 \text{ mmol}, 4.0 \text{ equiv})$, t-BuOK (12.5 mmol, 2 equiv), CuI (10 mol%) and H₂O(187 mmol, 30 equiv.) in 30 mL Dimethyl sulfoxide Were stirred at 110 °C for 24 h under the air atmosphere. After the completion of the reaction, the resulting mixture was filtered to remove the solid, and the liquor was extracted with ethyl acetate (3×10 mL), and washed with saturated brine (3×10 mL). The resulting organic phase was dried with anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was isolated by column chromatography using petroleum ether and ethyl acetate (v/v 10:1) as eluent to give **2c** white solid the pure product.

(b) Pd-catalyzed Heck Annulation for Synthsis of Tetracyclic Isoindolinone Derivative

2c (1800 mg, 5.2 mmol), PPh₃(81mg, 0.3 mmol), Pd(OAc)₂(69 mg, 0.3 mmol) and Et₃N(1050 mg, 0.3 mmol) in 25 mL N, N-dimethylformamide were stirred at 100 °C for 10 h. After the completion of the reaction, the resulting mixture was filtered to remove the solid, and the liquor was extracted with ethyl acetate (3×10 mL), and washed with saturated brine (3×10 mL). The resulting organic phase was dried with anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was isolated by column chromatography using petroleum ether and ethyl acetate (v/v 20:1) as eluent to give **5c** white yellow solid the pure product.

(c) Pd-catalyzed for Synthsis of 5i

Scheme S6. Pd-catalyzed for synthsis of 5i

4i (50 mg, 0.15 mmol), PPh₃(3 mg, 0.01 mmol), Pd(OAc)₂(2 mg, 0.01 mmol) and Et₃N(45 mg, 0.4 mmol) in 10 mL N, N-dimethylformamide were stirred at 100 °C for 10 h. After the completion of the reaction, the resulting mixture was filtered to remove the solid, and the liquor was extracted with ethyl acetate (3×10 mL), and washed with saturated brine (3×10 mL). The resulting organic phase was dried with anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was isolated by column chromatography using petroleum ether and ethyl acetate (v/v 20:1) as eluent to give **5i** brownish red solid pure product.

Analytical Data for Compounds 5i

Brownish red crystals (32 mg, 87% yield). m.p.64-67 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.45 (d, J =8.0 Hz, 1H), 7.82 (d, J = 4 Hz, 1H), 7.49-7.40 (m, 3H), 7.32-7.26 (m, 2H), 7.15 (t, J = 8 Hz, 1H), 6.57 (s, 1H); ¹³C NMR (101 MHz, Chloroform-d) δ 188.9, 142.5, 141.9, 135.2, 134.9, 133.1, 132.0, 128.9, 127.7, 125.3, 125.2, 122.6, 120.5, 114.3, 104.1 ppm. HRMS (ESI-TOF) calc. for [C₁₅H₉NS + H]+ : 236.0528; Found: 236.0524.

3. Analytical Data for Compounds 2a-5i

2-(2-bromophenyl)-3-methyleneisoindolin-1-one(2a)^[2]

Yellow oil liquid (51 mg, 86% yield); ¹H NMR (400 MHz, Chloroform-d) δ 8.00-7.93 (m, 1H), 7.81-7.74 (m, 2H), 7.67 (td, *J*=7.5, 1.2 Hz, 1H), 7.58 (td, *J* =7.5, 1.1 Hz, 1H), 7.47 (td, *J*=7.6, 1.4 Hz, 1H), 7.40-7.34 (m, 2H), 5.22 (d, *J*=2.3 Hz, 1H), 4.47 (d, *J*=2.3 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-d) δ166.25, 142.23, 136.34, 134.52, 134.07, 133.79, 133.58, 132.51, 131.88, 131.27, 130.95, 130.84, 130.56, 129.79, 128.91, 128.55, 128.45, 123.99, 123.96, 123.80, 120.30, 90.55 ppm; HRMS (ESI-TOF) calc. for [C₁₅H₁₁BrNO + H]⁺ : 300.00162; Found: 300.00165.

2-(2-chlorophenyl)-3-methyleneisoindolin-1-one(2b)

Yellow solid (39 mg, 76% yield). m.p. 104-107 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.94 (dd, *J* = 7.6, 0.8 Hz, 1H), 7.77 (dd, *J* = 7.7, 0.8 Hz, 1H), 7.66 (td, *J* = 7.4, 1.1 Hz, 1H), 7.61-7.54 (m, 2H), 7.45-7.36 (m, 3H), 5.21 (d, *J* = 2.3 Hz, 1H), 4.48 (d, *J* = 2.3 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ166.3, 142.3, 136.4, 133.9, 132.5, 132.4, 131.2, 130.6, 130.3, 129.7, 128.9, 127.8, 123.7, 120.2, 90.3 ppm; HRMS (ESI-TOF) calc. for [C₁₅H₁₀CINO + H]⁺ : 256.0524; Found: 256.0527.

2-(2-iodophenyl)-3-methyleneisoindolin-1-one (2c)^[3]

White solid (60 mg, 89% yield). m.p. 100-102 °C; ¹H NMR (400 MHz, Chloroform-d) δ 8.00-7.97 (m, 1H), 7.96(d, *J*=8.0 Hz, 1H), 7.77 (d, *J*=8.0 Hz, 1H), 7.68-7.63 (m, 1H), 7.58-7.54 (m, 1H), 7.51-7.47 (m, 1H), 7.35-7.32 (m, 1H), 7.19-7.15(m, 1H), 5.22 (d, *J*=4.0 Hz, 1H), 5.42 (d, *J*=4.0 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-d) δ166.1, 142.1, 140.1, 137.7, 136.3, 132.6, 130.7, 130.6, 129.8, 129.5, 129.0, 123.8, 120.4 ppm.

3-methylene-2-phenylisoindolin-1-one(2d)^[4]

White solid (35 mg, 78%); m.p. 94-95 °C; ¹H NMR (400 MHz, Chloroform-d) δ 7.92 (d, J = 8.0 Hz, 1H), 7.76 (d, J=8.0 Hz, 1H), 7.65(t, J=8.0 Hz, 1H), 7.58-7.49 (m, 3H), 7.43-7.37 (m, 3H), 5.23 (d, J=4.0 Hz, 1H), 4.80(d, J= 4.0 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-d) δ166.7, 143.2, 136.2, 134.6, 132.3, 131.8, 129.7, 129.1, 128.9, 128.1, 126.6, 123.7, 123.6, 120.0, 90.5 ppm.

3-methylene-2-(o-tolyl)isoindolin-1-one(2e)

Colorless liquid (34 mg, 72% yield); ¹H NMR (400 MHz, Chloroform-d) δ 7.83-7.81 (d, J = 8.0 Hz, 1H), 7.66 (d, J = 8.0 Hz, 1H), 7.53 (t, J = 4.0, Hz, 1H), 7.45 (t, J = 4.0 Hz, 1H), 7.25-7.20 (m, 3H), 5.15-5.11 (m, 1H), 5.07(d, J = 4.0 Hz, 1H), 4.37(d, J = 4.0 Hz, 1H), 2.0 (s, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 167.4, 166.5, 165.7, 142.9, 137.2, 136.5, 134.4, 133.4, 132.3, 132.0, 131.2, 129.7, 129.4, 129.3, 129.2,129.1, 128.7, 127.0, 126.9, 123.7, 123.5, 120.52, 90.4, 77.36, 17.8, 17.7(d, J = 4.0 Hz) ppm; HRMS (ESI-TOF) calc. for [C₁₆H₁₃NO + H]⁺: 236.1069; Found: 236.1067.

2-(2-methoxyphenyl)-3-methyleneisoindolin-1-one(2f)

White solid (43 mg, 86% yield). m.p. 111-114 °C; ¹**H NMR** (400 MHz, Chloroform-d) δ 7.91 (d, J = 8.0 Hz, 1H), 7.74 (d, J = 8.0 Hz, 1H), 7.62 (t, J = 8.0 Hz, 1H), 7.54(t, J = 8.0 Hz, 1H), 7.44-7.39 (m, 1H), 7.27(d, J = 8.0 Hz, 1H), 7.09-7.05 (m, 2H), 5.15(d, J = 4.0 Hz, 1H), 4.53(d, J = 4.0 Hz, 1H), 3.76(s, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 166.1, 141.9, 138.1, 136.4, 134.8, 133.2, 132.8, 131.7, 131.4, 130.6, 130.3, 130.0, 128.5, 128.4, 127.1, 124.5, 124.2, 123.9, 121.8, 120.4, 90.6, 55.9, 55.8 ppm; **HRMS** (ESI-TOF) calc. for [C₁₆H₁₃NO₂ + H]⁺: 252.1019; Found: 252.1015.

3-methylene-2-(2-(trifluoromethoxy)phenyl)isoindolin-1-one(2g)

White solid (45 mg, 75% yield). m.p. 121-124 °C; ¹H NMR (400 MHz, Chloroform-d) δ 7.93(d, J = 8.0 Hz, 1H), 7.76 (d, J = 8.0 Hz, 1H), 7.65 (t, J=4.0, Hz, 1H), 7.55 (t, J=4.0 Hz, 1H), 7.51-7.45 (m, 2H), 7.44-7.41 (m, 2H), 5.22 (d, J = 4.0 Hz, 1H), 4.57 (d, J = 4.0 Hz, 1H); ¹⁹F NMR (376 MHz,

Chloroform-d) δ -57.32; ¹³C **NMR** (101 MHz, Chloroform-d) δ 166.2, 145.9(q, ³J_{CF3}=1 Hz),142.2, 136.4, 132.4, 131.1, 130.1, 119.7, 128.6, 127.4, 127.0, 123.6, 121.5, 120.2(q, ¹J_{CF3}=257 Hz), 120.1, 90.2 ppm; HRMS (ESI): **HRMS** (ESI-TOF) calc. for [C₁₆H₁₀ F₃NO₂+ H]⁺: 306.07363; Found: 306.07336.

2-(2-(tert-butyl)phenyl)-3-methyleneisoindolin-1-one(2h)

White solid (33 mg, 60% yield). m.p. 101-103 °C; ¹H NMR (400 MHz, Chloroform-d) δ 7.92 (d, *J* = 8.0 Hz, 1H), 7.76 (d, *J* = 8.0 Hz, 1H), 7.66-7.61 (m, 2H), 7.58-7.54 (m, 1H), 7.46-7.35 (m, 2H), 7.34-7.23 (m, 2H), 7.02-7.00 (m, 1H), 5.23 (d, *J* = 4.0 Hz, 1H), 4.8 (d, *J* = 4.0 Hz, 1H), 1.31(s, 9H); ¹³C NMR (101 MHz, Chloroform-d) δ 168.0 , 149.6, 145.3 , 137.7 , 136.6, 133.0, 132.6 , 132.3 , 131.9, 131.3, 130.8, 129.7, 129.5 , 129.4 , 129.3 , 128.9, 128.8, 127.9,m 127.8, 127.6, 127.3, 123.6, 120.1, 91.9, 35.8, 31.8, 31.6, ppm; HRMS (ESI-TOF) calc. for [C₁₉H₁₉NO + H]⁺: 278.15395; Found: 278.15366.

3-methylene-2-(2-(trifluoromethyl)phenyl)isoindolin-1-one(2i)

White solid (39 mg, 69% yield). m.p. 110-112 °C; ¹H NMR (400 MHz, Chloroform-d) δ 7.94 (d, *J*=8.0 Hz, 1H), 7.9 (d, *J*=8.0 Hz, 1H), 7.74-7.67 (m, 5H), 7.60 (t, *J*=8.0 Hz, 1H), 5.25 (d, *J*=4.0 Hz, 1H), 5.48 (d, *J*=4.0 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-d) δ 166.1, 141.8, 138.0, 136.3, 134.7, 133.1, 132.8, 131.3, 130.41(q, *J*=33 Hz),130.0, 128.46, 128.39, 128.36, 127.1(q, *J*=4 Hz), 123.9, 123.1 (q, *J*=271 Hz),120.3, 90.5 ppm. HRMS (ESI-TOF)calc. for [C₁₆H₁₀F₃NO+H]⁺: 290.0787; Found: 290.0782.

2-(3-fluorophenyl)-3-methyleneisoindolin-1-one(2j)

Colorless liquid (36 mg, 74% yield); ¹**H NMR** (400 MHz, Chloroform-d) δ 7.92 (d, J = 8.0 Hz, 1H), 7.77 (d, J = 8.0 Hz, 1H), 7.67 (t, J = 8.0 Hz, 1H), 7.58 (t, J = 8.0 Hz, 1H), 7.51-7.45 (m, 1H), 7.19 (d, J = 8.0 Hz, 1H), 7.15-7.14 (m, 2H), 5.27 (d, J = 4.0 Hz, 1H), 4.48 (d, J = 4.0 Hz, 1H); ¹⁹**F NMR** (376 MHz, Chloroform-d) δ -111.14; ¹³**C NMR** (101 MHz, Chloroform-d) δ 166.4, 162.9(d, J=246Hz), 142.6, 136.2, 136.01(d, J=10 Hz), 132.5 (d, J=9 Hz) 129.9, 128.6, 123.8(d, J=3 Hz), 123.6, 120.1, 115.5(d, J=23 Hz), 115.0 (d, J=21 Hz), 90.6 ppm. **HRMS** (ESI-TOF) calc. for [C₁₅H₁₀FNO+H]⁺: 240.0819; Found: 240.0813.

3-methylene-2-(p-tolyl)isoindolin-1-one(2k)^[3]

White solid (42 mg, 88%); m.p. 130-133 °C; ¹**H NMR** (400 MHz, Chloroform-d) δ 7.90 (d, *J* = 8.0 Hz, 1H), 7.73 (d, *J* = 4.0 Hz, 1H), 7.63-7.59 (m, 1H), 7.55-7.51 (m, 1H), 7.31-7.29 (m, 2H), 7.25-7.23 (m, 2H), 5.24 (d, *J* = 4.0 Hz, 1H), 4.47 (d, *J* = 4.0 Hz, 1H), 2.40 (s, 3H); ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 166.8, 143.2, 138.0, 136.2, 132.2, 131.9, 130.0, 129.7, 129.0, 127.9, 123.5, 120.0, 90.4, 21.3, 21.2 ppm; **HRMS** (ESI-TOF) calc. for [C₁₆H₁₃NO +H]⁺: 236.10699; Found: 236.10674.

2-(4-methoxyphenyl)-3-methyleneisoindolin-1-one (21)^[5]

White solid (41 mg, 80%); m.p. 124-125 °C; ¹H NMR (400 MHz, Chloroform-d) δ 7.94 (d, *J* = 8.0 Hz, 1H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.68-7.64 (m, 1H), 7.60-7.56 (m, 1H), 7.32-7.28 (m, 2H), 7.06-7.04 (m, 2H), 5.52 (d, *J* = 4.0 Hz, 1H), 4.77 (d, *J* = 4.0 Hz, 1H), 3.88 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.9, 159.2, 143.6, 136.1, 132.2, 129.7, 129.3, 129.0, 127.1, 123.5, 120.0, 114.7, 90.4, 55.6 ppm; HRMS (ESI-TOF) calc. for [C₁₆H₁₃NO₂ +H]⁺: 252.1019; Found:252.1013.

3-methylene-2-(4-(trifluoromethoxy)phenyl)isoindolin-1-one(2m)

White solid (57 mg, 93%), m.p. 112-113 °C; ¹H NMR (400 MHz, Chloroform-d) δ 7.92 (d, J = 8.0 Hz, 1H), 7.77 (d, J = 8.0 Hz, 1H), 7.68-7.64 (m, 1H), 7.59-7.55(m, 1H), 7.44-7.42 (m, 2H), 7.36 (d, J=8.0 Hz, 2H); ¹⁹F NMR (376 MHz, Chloroform-d) δ -57.82; ¹³C NMR (101 MHz, Chloroform-d) δ 166.6, 148.4, 142.8, 136.2, 133.1, 132.5, 129.9, 129.5, 128.6, 123.7, 121.8, 120.41(q, J=256 Hz), 120.1, 90.4 ppm.; HRMS (ESI-TOF) calc. for [C₁₆H₁₀F₃NO₂ +H]⁺: 306.0736, Found:306.0732.

2-(4-(tert-butyl)phenyl)-3-methyleneisoindolin-1-one (2n)^[6]

White solid (39 mg, 72%); m.p. 155-157 °C; ¹**H NM**R (400 MHz, Chloroform-d) δ 7.91 (d, *J* = 8.0 Hz, 1H), 7.75 (d, *J*=8.0 Hz, 1H), 7.65-7.61(m, 1H), 7.56-7.53 (m, 3H), 7.51-7.29 (m, 2H), 5.22 (d, *J*=4.0 Hz, 1H), 4.83 (d, *J*= 4.0 Hz, 1H), 1.36 (s, 39H); ¹³C NMR (101 MHz, Chloroform-*d*) δ166.8, 150.9, 143.2, 136.3, 132.3, 131.8, 129.7, 129.0, 127.5, 126.4, 125.7, 123.5, 121.4, 120.2, 90.7, 34.8, 31.4 ppm; **HRMS** (ESI-TOF) calc. for [C₁₉H₁₉NO +H]⁺: 278.1539, Found: 278.1532.

2-(4-fluorophenyl)-3-methyleneisoindolin-1-one (20)^[4]

White solid(40 mg, 85%), m.p. 107-108 °C; ¹H NMR (400 MHz, Chloroform-d) δ 7.90 (d, *J*=8.0 Hz, 1H), 7.76 (d, *J*=8.0 Hz, 1H), 7.66-7.63 (m, 1H), 7.57-7.54 (m, 1H), 7.36-7.32 (m, 2H), 5.19 (d, *J*=4.0 Hz, 2H), 5.23 (d, *J*=4.0 Hz, 1H), 4.75 (d, *J*= 4.0 Hz, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ - 113.19; ¹³C NMR (101 MHz, Chloroform-d) δ 166.7, 162.0 (d, *J*=246 Hz), 143.1, 136.1, 132.4, 130.4(d, *J*=3 Hz), 129.9, 129.84, 129.82, 128.7, 123.6, 120.1, 116.3(d, *J*=33 Hz), 90.3 ppm. HRMS (ESI-TOF) calc. for [C₁₅H₁₀FNO +H]⁺: 240.0819, Found: 240.0812.

2-(4-chlorophenyl)-3-methyleneisoindolin-1-one (2p)^[7]

White solid(40 mg, 80%); m.p. 118.2-119.4 °C; ¹H NMR (400 MHz, Chloroform-d) δ 7.84 (d, *J*=8.0 Hz, 1H), 7.69 (d, *J*=8.0, 1.0 Hz, 1H), 7.60-7.56 (m, 1H), 7.51-7.47 (m, 1H), 7.43-7.39(m, 2H), 7.27-7.24 (m, 2H), 5.17 (d, *J* = 4.0 Hz, 1H), 4.72 (d, *J* = 4.0 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-d) δ 166.5 , 142.8 , 136.2 , 133.8 , 133.1 , 132.5 , 129.9 , 129.6 , 129.39, 128.7, 123.7, 120.1, 90.1 ppm; HRMS (ESI-TOF) calc. for [C₁₅H₁₀ClNO +H]⁺: 256.05236; Found: 256.05232.

2-(4-bromophenyl)-3-methyleneisoindolin-1-one (2q)^[5]

White solid (49 mg, 82%); m.p. 138-139°C;¹H NMR (400 MHz, Chloroform-d) δ 7.92 (d, *J* = 8.0 Hz, 1H), 7.76 (d, *J* = 8.0 Hz, 1H), 7.67-7.65 (m, 3H), 7.58 (t, *J* = 8.0 Hz, 1H), 7.28-7.26 (m, 2H), 5.23 (d, *J* = 4.0 Hz, 1H), 4.80 (d, *J* = 4.0 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-d) δ 166.5, 142.7, 136.2, 133.6, 132.6, 132.5 (d, J = 4.0 Hz), 129.9, 129.7, 128.7, 123.6, 121.9, 120.1, 90.5 ppm.

3-methylene-2-(4-(trifluoromethyl)phenyl)isoindolin-1-one(2r)^[3]

White solid (43 mg, 76%), m.p. 116-117 °C; ¹**H NMR** (400 MHz, Chloroform-d) δ 7.93 (d, *J* = 8.0 Hz, 1H), 7.79 (d, *J* = 8.0 Hz, 3H), 7.69-7.66 (m, 1H), 7.60-7.26(m, 3H), 5.29 (d, *J* = 4.0 Hz, 1H), 4.86 (d, *J* = 4.0 Hz, 1H); ¹⁹**F NMR** (376 MHz, Chloroform-d)δ -62.55; ¹³**C NMR** (101 MHz, Chloroform-d) δ 166.4, 142.4, 137.8, 136.2, 132.7, 123.76, 130.0, 129.9(d, *J*=33 Hz), 128.3, 126.3(q, *J*=4 Hz), 123.81(q, *J*=270 Hz), 120.2, 90.7 ppm. **HRMS** (ESI-TOF) calc. for [C₁₆H₁₀F₃NO +H]⁺: 290.0787, Found: 290.0783.

2-(3,5-dimethylphenyl)-3-methyleneisoindolin-1-one(2t)

White solid (38 mg, 76%), m.p. 94-96 °C; ¹H NMR (400 MHz, Chloroform-d) δ 7.91 (d, *J*=8.0 Hz, 1H), 7.76-7.74 (m, 1H), 7.65-7.61(m, 1H), 7.57-7.53(m, 1H), 7.25-6.05(m, 1H), 6.97 (s, 2H), 5.21 (d, *J* =4.0 Hz, 1H), 4.77 (d, *J* =4.0 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-d) δ 166.8, 142.3, 139.1, 138.9, 137.4, 136.2, 134.3, 133.4, 132.2, 129.9, 129.7, 129.0, 125.8, 123.5, 120.0, 117.7, 90.5, 21.2 ppm; HRMS (ESI-TOF) calc. for [C₁₇H₁₅NO +H]⁺: 250.1226, Found: 250.1220.

3-methylene-2-(naphthalen-2-yl)isoindolin-1-one(2u)^[4]

White solid (37 mg, 69%); m.p. 143-144 °C; ¹H NMR (400 MHz, Chloroform-d) δ 7.98 (t, *J*=8.0 Hz, 2H), 7.92-7.87 (m, 3H), 7.79 (d, *J*=8.0 Hz, 1H), 7.67 (t, *J*=8.0 Hz, 1H), 7.59 (d, *J*=8.0 Hz, 1H), 7.57-7.53 (m, 2H), 7.50-7.47 (m, 1H), 5.27 (d, *J*=4.0 Hz, 1H), 4.87 (t, *J*=4.0 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-d) δ 166.09, 143.2, 136.2, 133.6, 132.7, 132.4, 132.0, 129.9, 129.3, 128.9, 128.1, 127.8, 127.1, 126.7, 126.6, 125.8, 123.7, 120.1, 90.7 ppm; HRMS (ESI-TOF) calc. for [C₁₉H₁₃NO +H]⁺: 250.1226, Found: 250.1220.

2-(6-chloropyridin-3-yl)-3-methyleneisoindolin-1-one(2v)^[2]

White solid (35 mg, 68%); m.p. 115-118 °C; ¹**H NMR** (400 MHz, Chloroform-d) δ 8.47 (d, *J* = 8.0 Hz, 1H), 7.92 (d, *J*=8.0 Hz, 1H), 7.79-7.73 (m, 2H), 7.70 (t, *J*=4.0 Hz, 1H), 7.59 (t, *J*=4.0 Hz, 1H), 7.50 (d, *J*=4.0 Hz, 1H), 5.30 (d, *J*= 4.0 Hz, 1H), 4.83 (d, *J*= 4.0 Hz, 1H); ¹³**C NMR** (101 MHz, Chloroform-*d*) δ166.5, 150.3, 148.8, 142.2, 138.1, 136.2, 132.9, 130.5, 130.2, 128.2, 124.9, 123.8, 120.3, 190.6 ppm.

3-methylene-2-(pyridin-3-yl)isoindolin-1-one(2w)

White solid (32 mg, 72%); m.p. 120-125 °C; ¹H NMR (400 MHz, Chloroform-d) δ 8.68-8.64 (m, 2H), 7.92 (d, *J*=8.0 Hz, 1H), 7.78-7.75(m, 2H), 7.68-7.64 (m, 1H), 7.59-7.55 (m, 1H), 7.48-7.45 (m, 1H), 5.27 (d, *J*=4.0 Hz, 1H), 4.81 (d, *J*= 4.0 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ166.6, 149.1, 148.9, 142.3, 136.3, 135.6, 132.7, 131.5, 130.1, 128.5, 124.0, 123.7, 120.2, 90.6, 90.5 ppm; HRMS (ESI-TOF) calc. for [C₁₄H₁₀N₂O +H]⁺: 223.0866, Found: 223.0862.

2-(2-(diethylamino)ethyl)-3-methyleneisoindolin-1-one(2y)

Yellow oil (43 mg, 89%); ¹**H NMR** (400 MHz, Chloroform-d) δ 7.79 (d, *J*=8.0 Hz, 1H), 7.66 (d, *J*=8.0 Hz, 1H), 7.54 (t, *J*=4.0 Hz, 1H), 7.46 (t, *J*=6.0 Hz, 1H), 5.18 (d, *J*=4.0 Hz, 1H), 4.89 (d, *J*=4.0 Hz, 1H), 3.86 (t, *J*=8.0 Hz, 2H), 2.69 (t, *J*=8.0 Hz, 2H), 2.63-2.58 (m, 4H), 1.03 (t, *J*=4.0 Hz, 6H); ¹³**C NMR** (101 MHz, Chloroform-d) δ 167.0, 141.9.2, 136.4, 131.8, 129.4, 123.0, 119.8, 88.6, 50.4, 47.5, 37.9, 12.1. ppm; **HRMS** (ESI-TOF) calc. for [C₁₅H₂₀N₂O +H]⁺ : 245.1648, Found: 245.1645.

2-(2,2-dimethoxyethyl)-3-methyleneisoindolin-1-one(2z)

Yellow oil (29 mg, 64%); ¹**H NMR** (400 MHz, Chloroform-d) δ 7.84-7.82 (d, *J*=8.0 Hz, 1H), 7.69-7.67 (d, *J*=8.0 Hz, 1H), 7.59-7.56 (t, *J*=4.0 Hz, 1H), 7.51-7.47(t, *J*=8.0 Hz, 1H), 5.23-5.22(d, *J*=4.0 Hz, 1H), 5.02-5.01(d, *J*=4.0 Hz, 1H), 5.66-5.63 (t, *J*=4.0 Hz, 1H), 3.91-3.90(d, *J*=4.0 Hz, 2H), 3.41(s, 6H); ¹³**C NMR** (101 MHz, Chloroform-d) δ 167.4, 142.0, 136.4, 132.0, 129.4, 128.9, 123.2, 119.9, 102.1, 89.7, 54.5, 54.4, 41.8 ppm; **HRMS** (ESI-TOF) calc. for [C₁₃H₁₅NO₃ +H]⁺ : 234.1124, Found: 234.1125

2-(2-bromophenyl)-5-methyl-3-methyleneisoindolin-1-one(4a)

White solid (51 mg, 82% yield). m.p. 80-91 °C; ¹H NMR (400 MHz, Chloroform-d) δ 7.82 (d, J = 8.0 Hz, 1H), 7.76-7.74 (m, 1H), 7.57 (s, 1H), 7.48-7.44 (m, 1H), 7.39-7.31 (m, 3H), 5.17 (d, J = 4.0 Hz, 1H), 4.41 (d, J = 4.0 Hz, 1H), 2.52 (t, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 166.1, 143.1, 142.2, 136.6, 134.1, 133.6, 131.1, 130.7, 130.4, 128.4, 126.4, 123.9, 123.5, 120.5, 89.9, 21.9, 21.8 ppm; HRMS (ESI-TOF) calc. for [C₁₆H₁₂BrNO +H]⁺ : 314.0175, Found: 314.0169.

2-(2-bromophenyl)-5-methoxy-3-methyleneisoindolin-1-one(4b)

White solid (46 mg, 71% yield). m.p. 95-97 °C; ¹H NMR (400 MHz, Chloroform-d) δ 7.84 (d, *J*=8.0 Hz, 1H), 7.75 (d, *J*=8.0, 1.0 Hz, 1H), 7.48-7.43 (m,1H), 7.38-7.31 (m, 2H), 7.21 (d, *J*=8.0 Hz, 1H), 7.10-7.07 (m, 1H), 5.15 (d, *J* = 4.0 Hz, 1H), 4.42 (d, *J* = 4.0 Hz, 1H), 3.93 (m, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 166.1, 163.6, 142.2, 138.6, 134.2, 133.7, 131.4, 130.4, 128.6, 125.3, 124.1, 121.7, 116.5, 104.5, 90.1, 55.9, 55.8 ppm; HRMS (ESI-TOF) calc. for [C₁₆H₁₂BrNO₂ +H]⁺: 330.0124, Found: 330.0118.

2-(2-bromophenyl)-5,6-dimethoxy-3-methyleneisoindolin-1-one(4c)

White solid (61 mg, 85% yield). m.p.112-114 °C; ¹H NMR (400 MHz, Chloroform-d) δ 7.75 (d, *J*=8.0 Hz, 1H), 7.48-7.45 (m, 1H), 7.38-7.32 (m, 3H), 7.19 (s, 1H), 5.08 (d, *J*=4.0 Hz, 1H), 4.38 (d, *J*=4.0 Hz, 1H), 4.02 (s, 3H), 3.98 (s, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 168.6 , 166.4 , 153.3, 151.2, 142.2, 134.3, 1333.7, 131.4, 130.5, 130.3, 128.5, 124.1, 121.8, 104.9, 102.3, 102.2, 89.6, 56.4, 56.3 ppm; HRMS (ESI-TOF) calc. for [C₁₇H₁₄BrNO₃+H]⁺:360.0229, Found:360.0223.

2-(2-bromophenyl)-5-fluoro-3-methyleneisoindolin-1-one(4d)

Colorless liquid(57 mg, 91% yield); ¹**H NMR** (400 MHz, Chloroform-d) δ 7.97-7.73 (m, 1H), 7.80-7.78 (m, 1H), 7.52-7.44 (m, 2H), 7.40-7.36 (m, 2H), 7.31-7.28 (m, 1H), 5.21 (d, *J* = 4.0 Hz, 1H), 4.53 (d, *J* = 4.0 Hz, 1H); ¹⁹**F NMR** (376 MHz, CDCl₃)δ -105.70; ¹³**C NMR** (101 MHz, Chloroformd) δ 165.8 (d, *J*=251 Hz), 165.1, 141.4 (d, *J*=4 Hz), 138.7 (d, *J*=10 Hz), 133.83, 133.79, 131.2, 130.6, 128.6, 126.0 (d, *J*=10 Hz), 125.01 (d, *J*=2Hz), 123.8, 117.5 (d, *J*=24 Hz), 107.5 (d, *J*=24 Hz), 91.4 ppm; **HRMS** (ESI-TOF) calc. for [C₁₅H₉BrFNO+H]⁺: 317.9924, Found:317.9917.

2-(2-bromophenyl)-5-chloro-3-methyleneisoindolin-1-one(4e)

White solid (61 mg, 93% yield). m.p.129-131 °C; ¹H NMR (400 MHz, Chloroform-d) δ 7.87 (d, *J*=8.0, 1.0 Hz, 1H), 7.77-7.74 (m, 2H), 7.55-7.53 (m, 1H), 7.49-7.45 (m, 1H), 7.37-7.33(m, 2H), 5.21 (d, *J* = 4.0 Hz, 1H), 4.50 (d, *J* = 4.0 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-d) δ 164.9, 140.9, 138.7, 137.6, 133.7, 133.6, 131.0, 130.5, 130.0, 128.5, 127.1, 124.9, 123.6, 120.5, 91.6, 91.5 ppm; HRMS (ESI-TOF) calc. for [C₁₅H₉BrClNO +H]⁺: 333.9628, Found:333.9623.

2-(2-bromophenyl)-3-methylene-6-(trifluoromethyl)isoindolin-1-one(4f)

White solid (57 mg, 79% yield). m.p.145-148 °C; ¹H NMR (400 MHz, Chloroform-d) δ 8.23 (s, 1H), 7.93-7.88 (m, 2H), 7.79-7.76 (m, 1H), 7.51-7.47 (m, 1H), 7.39-7.35 (m, 2H), 5.33 (d, *J* = 4.0 Hz, 1H), 4.60 (d, *J* = 4.0 Hz, 1H); ¹³C NMR (101 MHz, DMSO-d₆) δ 164.0, 163.9, 140.6, 139.2, 136.5, 133.4, 133.2, 131.6, 131.3, 130.5 (q, *J*=32 Hz), 129.1, 128.7, 126.9(q, *J*=4 Hz), 124.3, 123.8(q, *J*=27 Hz), 123.71(q, *J*=271 Hz), 123.0, 122.6, 120.1(q, *J*=4 Hz), 118.9(q, *J*=4 Hz), 90.4,

93.7 ppm.; **HRMS** (ESI-TOF) calc. for [C₁₆H₉BrF₃NO +H]⁺: 367.9892, Found: 367.9891.

2-(2-bromophenyl)-6-methyl-3-methyleneisoindolin-1-one(4g)

White solid (46 mg, 73% yield). m.p.196-198 °C; ¹H NMR (400 MHz, Chloroform-d) δ 7.76-7.74 (m, 2H), 7.65 (d, *J*=4.0, 1.0 Hz, 1H), 7.48-7.44 (m,2H), 7.38-7.31 (m, 2H), 5.14 (d, *J* = 4.0 Hz, 1H), 4.40 (d, *J* = 4.0 Hz, 1H), 2.49 (m, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 166.4 , 142.3 , 140.2 , 134.2 , 133.8 , 133.7 , 133.5 , 131.3 , 129.1 , 128.5 , 124.1 , 123.9 , 120.1 , 89.8 , 21.7 , 21.6 ppm; HRMS (ESI-TOF) calc. for [C₁₆H₁₂BrNO +H]⁺: 314.0175; Found: 314.0169.

2-(2-bromophenyl)-3-methyleneisoindoline-1-thione(4i)

White solid (42 mg, 68%); m.p. 143-144 °C; ¹**H NMR** (400 MHz, Chloroform-d) δ 7.94 (d, *J*=8.0 Hz, 1H), 7.76 (d, *J*=8.0 Hz, 2H), 7.64 (t, *J*=4.0 Hz, 1H), 7.55 (t, *J*=6.0 Hz, 1H), 7.46 (t, *J*=6.0 Hz, 1H), 7.38-7.32 (m, 2H), 5.21 (d, *J*=4.0 Hz, 1H), 4.45 (d, *J*=4.0 Hz, 1H); ¹³**C NMR** (101 MHz, Chloroform-d) δ166.6, 166.2, 142.2, 136.3, 134.6, 134.0, 133.8, 132.5, 131.3, 130.6, 129.8, 128.9, 128.6, 124.0, 123.9, 123.7, 120.3, 90.6 ppm; **HRMS** (ESI-TOF) calc. for [C₁₅H₁₀BrNS +H]⁺: 315.9967; Found: 315.9962.

6H-isoindolo[2,1-a]indol-6-one(5c)^[1]

Yellow solid (1000 mg, 89% yield). m.p.157-158 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.88(d, *J* = 8.0 Hz, 1H), 7.74 (d, *J* = 4 Hz, 1H), 7.51-7.49 (m, 2H), 7.43 (d, *J*=4 Hz, 1H), 7.357.25 (m, 2H), 7.15 (t, J = 8 Hz, 1H), 6.59 (s, 1H); ¹³C NMR (101 MHz, Chloroform-d) δ 162.5, 138.7, 134.6, 134.4, 133.8, 133.6, 133.5, 128.7, 126.2, 125.1, 123.8, 122.2, 121.1, 113.2, 103.4, 103.3 ppm.

6H-isoindolo[2,1-a]indol-6-one(5i)

Red solid (32 mg, 87% yield). m.p.64-67 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.45 (d, *J* =8.0 Hz, 1H), 7.82 (d, *J* = 4 Hz, 1H), 7.49-7.40 (m, 3H), 7.32-7.26 (m, 2H), 7.15 (t, J = 8 Hz, 1H), 6.57 (s, 1H); ¹³C NMR (101 MHz, Chloroform-d) δ 188.9, 142.5, 141.9, 135.2, 134.9, 133.1, 132.0, 128.9, 127.7, 125.3, 125.2, 122.6, 120.5, 114.3, 104.1 ppm. HRMS (ESI-TOF) calc. for [C₁₅H₉NS + H]⁺ : 236.0528; Found: 236.0524.

4. X-raySpectra of 2c, 5c and 5i.

4.1 Single crystal data for compound 2c

Figure S6. X-ray(CCDC2237111) Spectra of 2c

```
Datablock wjl-1 - ellipsoid plot
```


Figure S7. X-ray (CCDC2237111) Spectra of 2c

checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: wjl-1

Bond precision:	C-C = 0.0049 A	Wavelength=	=0.71073
Cell:	a=13.0551(6)	b=7.4021(3)	c=13.9932(6)
	alpha=90	beta=101.381(2)	gamma=90
Temperature:	300 K		
	Calculated	Reported	
Volume	1325.65(10)	1325.65(10))
Space group	P 21/c	P 1 21/c 1	L
Hall group	-P 2ybc	-P 2ybc	
Moiety formula	C15 H10 I N O	C15 H10 I	N O
Sum formula	C15 H10 I N O	C15 H10 I	N O
Mr	347.14	347.14	
Dx,g cm-3	1.739	1.739	
Z	4	4	
Mu (mm-1)	2.402	2.402	
F000	672.0	672.0	
F000'	670.34		
h,k,lmax	16,9,17	16,9,17	
Nref	2772	2735	
Tmin, Tmax	0.655,0.768	0.622,0.74	15
Tmin'	0.627		
Correction metho AbsCorr = MULTI-	od= # Reported T L: -SCAN	imits: Tmin=0.622 Tma	ax=0.745
Data completenes	s= 0.987	Theta(max) = 26.578	8
P(reflections) =	0 02707 2437)		wR2(reflections)=
v(rerrectrons) =	0.02/01 245/)		0.0982(2735)
S = 0.997	Npar= 1	63	

S = 0.997 Npar= 163

```
The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.
```

```
Alert level G
PLAT941_ALERT_3_G Average HKL Measurement Multiplicity ...... 4.6 Low
0 ALERT level A = Most likely a serious problem - resolve or explain
0 ALERT level B = A potentially serious problem, consider carefully
0 ALERT level C = Check. Ensure it is not caused by an omission or oversight
1 ALERT level G = General information/check it is not something unexpected
0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
0 ALERT type 2 Indicator that the structure model may be wrong or deficient
1 ALERT type 3 Indicator that the structure quality may be low
0 ALERT type 4 Improvement, methodology, query or suggestion
0 ALERT type 5 Informative message, check
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that [full publication checks] are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Figure S8. Single crystal data of 2c (X-ray(CCDC2237111))

4.2 Single crystal data for compound 5c

Scheme S7. Synthesis of substrates 5c

Figure S9. X-ray (CCDC2219270) Spectra of 5c

checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: 1

Bond precision:	C-C = 0.0093 A	Wavelength=0.71073		
Cell:	a=6.52(2) alpha=90	b=5.62(2) beta=94.416(5)	c=14.76(5) gamma=90	
Temperature:	296 K		·	
	Calculated	Reported		
Volume	539(3)	539(3)		
Space group	P 21/n	P 21/n		
Hall group	-P 2yn	-P 2yn		
Moiety formula	C15 H9 N O	?		
Sum formula	C15 H9 N O	C15 H9 N O		
Mr	219.23	219.23		
Dx,g cm-3	1.351	1.350		
Z	2	2		
Mu (mm-1)	0.085	0.085		
F000	228.0	228.0		
F000'	228.10			
h, k, lmax	7,6,17	7, 6, 17		
Nref	943	929		
Tmin, Tmax	0.983,0.983	0.864,0.864		
Tmin'	0.983			
Correction metho AbsCorr = MULTI-	d= # Reported T Li SCAN	imits: Tmin=0.864 Tmax=	=0.864	
Data completeness= 0.985 Theta(max)= 24.930				

Npar= 71

R(reflections) = 0.1006(393)

S = 1.037

wR2(reflections) = 0.3217(929)

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

Alert level C PLAT026_ALERT_3_C Ratio Observed / Unique Reflections (too) Low .. 42% Check PLAT031_ALERT_4_C Refined Extinction Parameter Within Range of ... 2.667 Sigma PLAT084_ALERT_3_C High wR2 Value (i.e. > 0.25) 0.32 Report PLAT148_ALERT_3_C s.u. on the 0.020 Ang. - Axis is (Too) Large a b PLAT148_ALERT_3_C s.u. on the - Axis is (Too) Large 0.0200 Ang. PLAT148_ALERT_3_C s.u. on the C - Axis is (Too) Large 0.050 Ang. PLAT234_ALERT_4_C Large Hirshfeld Difference C1 0.16 Ang. PLAT260_ALERT_2_C Large Average Ueq of Residue Including 0.117 Check PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds 0.00929 Ang. Alert level G PLAT168_ALERT_4_G The CIF-Embedded .res File Contains EXYZ Records 1 Report PLAT171_ALERT_4_G The CIF-Embedded .res File Contains EADP Records 1 Report PLAT230 ALERT 2 G Hirshfeld Test Diff for --c7 5.1 s.u. 01 PLAT300_ALERT_4_G Atom Site Occupancy of 01 Constrained at 0.5 Check PLAT300_ALERT_4_G Atom Site Occupancy of N1 Constrained at 0.5 Check PLAT300_ALERT_4_G Atom Site Occupancy of C8 0.5 Check Constrained at PLAT300_ALERT_4_G Atom Site Occupancy of H7 Constrained at 0.5 Check PLAT301_ALERT_3_G Main Residue Disorder (Resd 1) 18% Note PLAT764_ALERT_4_G Overcomplete CIF Bond List Detected (Rep/Expd) . 1.25 Ratio PLAT767_ALERT_4_G INS Embedded LIST 6 Instruction Should be LIST 4 Please Check PLAT883_ALERT_1_G No Info/Value for _atom_sites_solution_primary . Please Do ! PLAT965_ALERT_2_G The SHELXL WEIGHT Optimisation has not Converged Please Check PLAT967_ALERT_5_G Note: Two-Theta Cutoff Value in Embedded .res .. 50.0 Degree

0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 9 ALERT level C = Check. Ensure it is not caused by an omission or oversight 13 ALERT level G = General information/check it is not something unexpected 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 7 ALERT type 3 Indicator that the structure quality may be low 10 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Figure S10. Single crystal data of 5c (X-ray (CCDC2219270))

4.3 Single crystal data for compound 5i

Scheme S8. Synthesis of substrates 5i

checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: wjl-s1

Bond precision:	C-C = 0.0070 A	Wavelength=0	0.71073
Cell:	a=13.5296(8)	b=17.6839(10)	c=4.6966(2)
Temperature:	alpha=90 300 K	beta=90	gamma=90
	Calculated	Reported	
Volume	1123.69(10)	1123.69(10))
Space group	P 21 21 21	P 21 21 21	
Hall group	P 2ac 2ab	P 2ac 2ab	
Moiety formula	C15 H9 N S	C15 H9 N S	
Sum formula	C15 H9 N S	C15 H9 N S	
Mr	235.29	235.29	
Dx,g cm-3	1.391	1.391	
Z	4	4	
Mu (mm-1)	0.260	0.260	
F000	488.0	488.0	
F000'	488.65		
h,k,lmax	16,21,5	16,21,5	
Nref	2205[1321]	1753	
Tmin, Tmax	0.954,0.974	0.673,0.745	5
Tmin'	0.949		
Correction metho	d= # Reported T Lim	its: Tmin=0.673 Tma:	κ=0.745
AbsCorr = MULTI-	SCAN		
Data completenes	s= 1.33/0.80	Theta(max) = 26.020	
D (C) t ()	0 04004 15411	,	wR2(reflections)=

R(reflections)= 0.0432(1541) S = 1.149 Npar= 154

0.1133(1753)

```
The following ALERTS were generated. Each ALERT has the format
       test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.
🗳 Alert level A
PLAT029_ALERT_3_A _diffrn_measured_fraction_theta_full value Low .
                                                                         0.856 Whv?
                Author Response: The completeness of data is less than the usual 99-100% for
                this compound, however it is only the very high angle data that is incomplete
                and above 0.75 angstroms we have 100% coverage. This will always be a
                problem with area detector data that is not truncated.
Alert level C
PLAT340 ALERT 3 C Low Bond Precision on C-C Bonds .....
                                                                         0.007 Ang.
۲
  Alert level G
PLAT941_ALERT_3_G Average HKL Measurement Multiplicity .....
                                                                           3.7 Low
   1 ALERT level A = Most likely a serious problem - resolve or explain
   0 ALERT level B = A potentially serious problem, consider carefully
   1 ALERT level C = Check. Ensure it is not caused by an omission or oversight
   1 ALERT level G = General information/check it is not something unexpected
   0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
   0 ALERT type 2 Indicator that the structure model may be wrong or deficient
   3 ALERT type 3 Indicator that the structure quality may be low
   0 ALERT type 4 Improvement, methodology, query or suggestion
   0 ALERT type 5 Informative message, check
```

Figure S12. Single crystal data of 5i (X-ray (CCDC 2224294))

5. References

- [1](a)Long Y, She Z, Liu X, et al. Synthesis of 1-aminoisoquinolines by gold (III)-mediated domino reactions from
 2-alkynylbenzamides and ammonium acetate. *J Org Chem.* 2013, 78(6): 2579-2588. (b)Marques C S, Peixoto D,
 Burke A J. Transition-metal-catalyzed intramolecular cyclization of amido (hetero) arylboronic acid aldehydes to
 isoquinolinones and derivatives. *RSC Adv.* 2015, 5(26): 20108-20114.
- [2] Dai X J, Liu M, Zhang J Y, et al. A Facile Direct Synthesis of 3-Methyleneisoindolin-1-ones by Annulation of Methyl 2-Acylbenzoates with Amines. *ChemistrySelect.* 2019, 4(15): 4458-4461
- [3] Wei W, Chen Z, Lin Y, et al. Synthesis of Isoindolinones through Intramolecular Amidation of ortho-Vinyl Benzamides. Adv Synth & Catal. 2020, 362(10): 1972-1976.
- [4]Sharma S, Nayal O S, Sharma A, et al. Tin (II) triflate catalysed synthesis of 3-methyleneisoindolin-1-ones[J]. ChemistrySelect, 2019, 4(6): 1985-1988.

[5]Zhou B, Hou W, Yang Y, et al. Rhodium (III)-Catalyzed Amidation of Aryl Ketone O-Methyl Oximes with

Isocyanates by C H Activation: Convergent Synthesis of 3-Methyleneisoindolin-1-ones[J]. Chemistry–A European Journal, 2013, 19(15): 4701-4706.

- [6]Gao B, Liu S, Lan Y, et al. Rhodium-catalyzed cyclocarbonylation of ketimines via C-H bond activation[J]. Organometallics, 2016, 35(10): 1480-1487.
- [7]Albano G, Giuntini S, Aronica L A. Synthesis of 3-Alkylideneisoindolin-1-ones via sonogashira cyclocarbonylative reactions of 2-ethynylbenzamides[J]. The Journal of organic chemistry, 2020, 85(15): 10022-10034.

6. ¹H, ¹³C and ¹⁹F NMR Spectra for Products **2a-5i**

Figure S17.1H NMR (400 MHz, CDCl₃) of of 2c

Figure S19. $^1\mathrm{H}$ NMR (400 MHz, CDCl₃) of 2d

Figure S21. ¹H NMR (400 MHz, CDCl₃) of 2e

Figure S25.¹H NMR (400 MHz, CDCl₃) of 2g

Figure S27. ¹³C NMR (101 MHz, CDCl₃) of 2g

Figure S29. ¹³C NMR (101 MHz, CDCl₃) of 2h

Figure S31.¹³C NMR (101 MHz, CDCl₃) of 2i

Figure S33. ¹⁹F NMR (376 MHz, CDCl₃) of 2j

Figure S35.¹H NMR (400 MHz, CDCl₃) of 2k

Figure S37. ¹H NMR (400 MHz, CDCl₃) of 2l

Figure S39. ¹H NMR (400 MHz, CDCl₃) of 2m

Figure S51. ¹H NMR (400 MHz, CDCl₃) of 2r

Figure S59.¹³C NMR (101 MHz, CDCl₃) of 2v

Figure S63. ¹³C NMR (101 MHz, CDCl₃) of 2y

Figure S67.¹³C NMR (101 MHz, CDCl₃) of 4a

Figure S69. ¹³C NMR (101 MHz, CDCl₃) of 4b

Figure S71. ¹³C NMR (101 MHz, CDCl₃) of 4c

Figure S75. ¹H NMR (400 MHz, CDCl₃) of 4e

Figure S79. $^{13}\mathrm{C}$ NMR (101 MHz, CDCl₃) of 4f

Figure S81. ¹³C NMR (101 MHz, CDCl₃) of 4g

Figure S83. $^{13}\mathrm{C}$ NMR (101 MHz, CDCl₃) of 4i

Figure S85. ¹³C NMR (101 MHz, CDCl₃) of 5c

Figure S87. ¹³C NMR (101 MHz, CDCl₃) of 5i