Supplementary Information

Direct synthesis of oxaspirolactones in batch, photoflow, and silica gel-supported solvent-free conditions *via* visible-light photo- and heterogeneous Brønsted acid relay catalysis

Shinje Miñoza,[‡] Wei-Cheng Ke,[‡] Yin-Yin Yu,[‡] Prem Kumar Keerthipati, Kuei-Chen Chang, Wei-Cheng Kao, Zong-Nan Tsai, and Hsuan-Hung Liao*

Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan *Email: <u>hsuan-hung.liao@mail.nsysu.edu.tw</u>

1. General Information	1
1.1. Experiment and pre-treatment of solvents and reagents	1
1.2. Chromatography, data analysis and collection	1
1.3. Instrument catalogue	1
1.4. Purchased solvents and reagents	3
1.5. Home-made LED photoreactors	8
2. Experimental Procedures	
2.1. General method for the synthesis of oxaspirolactones (2 and 4)	11
2.2. General method for the synthesis of hydroxyalkyl furans (1 and 3)	12
3. Optimization Studies	15
3.1. Oxaspirolactone synthesis	15
3.2. Synthesis of starting material 1a	17
4. Substrate Scope	
4.1. Summary of oxaspirolactones	19
4.1. Summary of starting materials	47
5. Applications	
5.1. Photoflow reaction	75
5.2. Solvent-free reaction	77
6. Preliminary Mechanism Studies	80
6.1. Control reactions	
6.2. Detection of formed singlet oxygen	
6.3. Light on/off experiment	
6.3. Reaction monitoring	
6.4. Plausible mechanism	
7. EcoScale and Green Metrics	
7.1. EcoScale	
7.2. Green metrics	93
8. References	96
9. NMR Spectra	
9.1. Oxaspirolactone substrate scope	97
9.2. Starting material scope	130

1. General Information

1.1. Experiment and pre-treatment of solvents and reagents

Glassware. All glassware were oven-dried after washing with cleaning machine Steelco LAB 500CL.

Experiment. Otherwise specified, air- and water-sensitive reactions were carried out in a nitrogen-filled glovebox (Vigor SG1200/750TS-F) or via standard Schlenk techniques.

Chemicals. TMSCl was distilled according to the Purification of Laboratory Chemicals prior to use. To maintain the activity, highly sensitive compounds such as metal reagents were opened and stored in the glovebox. Other chemicals were directly used as received and were always filled with nitrogen and twined with parafilm carefully before storage. See <u>Section S1.4</u>. for the complete list of suppliers for each chemical. All the names of the chemicals listed herein were generated from ChemDraw.

Solvents. All solvents were purchased from suppliers (<u>Table S2</u> to <u>Table S4</u>). Unless otherwise stated, ACS grade solvents (Acetonitrile, 1,4-Dioxane, Diethyl Ether, DCM, DMF, THF, Toluene) were stored over microwave-activated 3Å molecular sieves for at least one night before transferring into our anhydrous engineering alumina column drying system (*Vigor* Gas Purification Technologies Co., Ltf, VSPS-7) prior to use.

Experiment Except as specified, air- and water-sensitive reactions were carried out in nitrogenfilled glovebox or standard Schlenk techniques.

1.2. Chromatography, data analysis and collection

Thin-layer Chromatography (TLC). Merck aluminium backed sheets coated with $60F_{254}$ silica gel. Visualization of the silica plates was achieved using a UV lamp ($\lambda_{max} = 254$ nm), and/or PMA stain (10% PMA in 95% EtOH), CAM stain (2.5% Ammonium molybdate tetrahydrate, aqueous solution KMnO₄, phosphomolybdic acid (PMA), or *p*-anisaldehyde solution followed by heating.

Column Chromatography. Column chromatography was carried out using KM3 scientific silica gel (45 – 75 μ m) purchased from KM3 scientific or Merck silica gel 60 GF254 (5–40 μ m, Catalogue Number: 1.07730.9025).

Automated Flash Column Chromatography. Automated flash column chromatography was carried out Biotage[®] Selekt.

1.3. Instrument catalogue

Nuclear Magnetic Resonance (NMR) ¹H-, and ¹³C-Nuclear Magnetic Resonance (NMR) spectra were used to identify the structure of starting materials and products by using Bruker Avance 300 MHz, Jeol ECZS 400 MHz, Bruker Avance 500 MHz and Jeol ECZR 600 MHz. Coupling constants are abridged as following: s = singlet, br.s = broad singlet, d = doublet, br. d = broad doublet, t = triplet, q = quartet, quin = quintet, sext = sextet, sept = septet, m = multiplet, dd = doublet of doublet.

High Resolution Mass Spectra (HRMS) Jeol AccuTOF GCx-plus / Shimadzu QP2020

Gas Chromatography–Mass Spectrometry (GC-MS) The operation method was set as following: 1.0 mL sample was injected by auto-sampler in a split mode (100:1) with 0.5 mL air gap into the GC-MS system consisting of an Agilent 8860 gas chromatograph, an Agilent 5977B mass selective detector, and Agilent 7693A autoinjector. Gas chromatography was performed on a 30 m HP-5MS with 0.25 mm inner diameter (I.D.) and 0.25 mm film thickness with an initial injection temperature of 50 °C to 300 °C, MSD transfer line of 280 °C, and the ion source adjusted to 230 °C. The helium carrier gas was set at a constant flow rate of 1.197 ml min⁻¹. The mass spectrometer was operated in positive electron impact mode (EI), ionization energy in m/z 50 – 550 scan range. The spectra of all chromatogram peaks were evaluated using the MSD Chemstation.

Fourier Transform-Infrared (FT-IR) Spectrophotometer PerkinElmer Spectrum Two FT-IR spectrometer equipped with Attenuated Total Reflectance (ATR) accessory.

Melting Point Apparatus Tianjin Tianguang New Optical Instrument Technology Co., Ltd. RY-1G Melting Point Apparatus.

Equipment	Supplier
Electronic balance	Shimadzu UW2200H/ ATX224
Hot plate stirrer	Corning PC-420D
Immersion cooler	Panchum IC-9090
Pump of rotary evaporator	KNF Laboport N820.3FT.18
Rotary evaporator	Heidolph Hei-Vap Core HL G3
Refrigerated circulator bath	Panchum CC-300
Ultra-low temp. reaction bath	Panchum UR-8500
Vacuum pump	Edwards RV5
Light Sources	Kessil PR160L-456 nm
Light Sources	Kessil PR160L-525 nm
Shutter controller	Thorlabs SC10
Solvent purification systems	Vigor VSPS-7
Instruments	Supplier
Flash chromatography instrument	Biotage Biotage® Selekt
Glovebox	Vigor SG1200/750TS-F
GC-MS	A cilerat 5077P
(Gas Chromatograph Mass Spectrometer)	Agueni 5977B
HPLC	A gilant 1260 Infinity II
(High Performance Liquid Chromatography)	Aguent 1200 mininty II
UV-Vis	Agilent Cary 8454

Table S1. Supplier of equipment and instruments.

1.4. Purchased solvents and reagents

Table S2. Supplier of solvents.

Solvent	Supplier	Solvent	Supplier
ACS Acetone	Duksan	HPLC Acetonitrile	J.T. Baker
ACS Acetonitrile	J.T. Baker	HPLC DMF	Macron
ACS Benzene	Echo	HPLC Ethyl acetate	Merck
ACS Chloroform	Acros	HPLC Hexane	Echo
ACS Dimethyl sulfoxide	UR	HPLC Isopropanol	Echo
ACS Diethyl ether	Duksan	ACS Hexane	Duksan
ACS Dichloromethane	Macron /Duksan	ACS Methanol	Macron
ACS Ethanol	J.T. Baker	ACS THF	Macron
ACS Ethyl acetate	Macron	ACS Toluene	Echo

Table S3. Supplier of solvents in solvent purification systems.

	-	•	
Solvent	Supplier	Solvent	Supplier
Acetonitrile	J.T. Baker	Dichloromethane	Macron
DMF	Macron	THF	Macron
1,4-Dioxane	J.T. Baker	Toluene	J.T. Baker
Diethyl ether	Echo		

Table S4. Supplier of deuterated solvents.

Solvent	Supplier Solvent		Supplier
Acetonitrile-d ₃	Sigma-Aldrich	Sigma-Aldrich DMSO-d ₆	
Benzene-d ₆	Sigma-Aldrich	Dichloromethane-d ₂	Sigma-Aldrich
Chloroform-d ₁	Merck	Methanol-d ₄	Sigma-Aldrich

Structure	Name	CAS Number	Supplier
Br NaO Br Br Br	Na ₂ -Eosin Y (Acid Red 87)	17372-87-1	TCI
Br HO Br Br Br Br	Eosin Y (Tetrabromofluorescein)	15086-94-9	TCI
	Rose Bengal	632-69-9	Alfa Aesar
	4CzIPN*	1416881-52-1	1
	10 <i>H</i> -Phenothiazine	92-84-2	Alfa Aesar
$\begin{array}{c} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & \\ & & & & \\ & & & & \\$	Methyl blue	28983-56-4	Acros
	9H-Thioxanthen-9-one	492-22-8	Fluorochem
HO,,, OH HO,,, OH OH OH N, N, O NH O	Riboflavin	83-88-5	Acros

Table S5. Catalogue of photocatalysts.

*Synthesized in the laboratory using a literature method.¹

Back to contents

Structure	Name	CAS Number	Supplier
MeLi	Methyl lithium (3.1 M solution in diethoxymethane)	917-54-4	Sigma Aldrich
Li	<i>n</i> -Butyl lithium** (2.5 M solution in hexane)	10031-90-0	Alfa Aesar/ Sigma-Aldrich
LiX	<i>tert</i> -Butyl lithium (1.9 M solution in pentane)	594-19-4	Acros
Li	Phenyl lithium (20% solution in dibutyl ether)	591-51-5	Rockwood
MgBr	Phenylmagnesium bromide (1 M solution in THF)	100-58-3	TCI
EtMgBr	Ethylmagnesium bromide (3.0 M solution in diethyl ether)	925-90-6	Acros
₩gBr	Isopropylmagnesium chloride (2.0 M solution in THF)	1068-55-9	Acros
MgBr	Cyclopentylmagnesium bromide (2.0M solution in diethyl ether)	33240-34-5	Acros
₩gBr	Isopropenylmagnesium bromide (0.5 M solution in THF)	13291-18-4	Acros
MgBr	Allylmagnesium bromide (1.0 M solution in diethyl ether)	1730-25-2	Acros
Br	4-Bromotoluene	106-38-7	TCI
Br	1-Bromo-3-methylbenzene	591-17-3	TCI
Br	1-Bromo-3,5-dimethylbenzene	556-96-7	BLDpharm
Br	1-Bromo-4-tert-butylbenzene	3972-65-4	Fluorochem
F Br	4-Bromofluorobenzene	460-00-4	Alfa Aesar
Br Br	1,4-Dibromobutane	110-52-1	Alfa Aesar
Br Br	1,5-Dibromopentane	111-24-0	Alfa Aesar
O OEt	Ethyl 3-(furan-2-yl)propionate	10031-90-0	Alfa Aesar
Br	Ethyl 4-bromobutyrate	2969-81-5	Alfa Aesar

Table S6. Catalogue of commercial reagents

© ↓ H	Furfural	98-01-1	Aldrich
Û	Furan*	110-00-9	Alfa-Aesar
HNNN	1 <i>H</i> -imidazole	288-32-4	Merck
	Triphenylphosphine	603-35-0	Alfa Aesar
<i>Н</i> ок	Potassium <i>tert</i> -butoxide	865-47-4	Aldrich
MeI	Iodomethane	74-88-4	Showa
	Tetrabutylammonium fluoride	429-41-4	Acros
0, , 0, 0 -0, , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	Pyridinium dichromate	20039-37-6	Acros
	Diisobutylaluminum hydride (1 M solution in hexane)	1191-15-7	Alfa Aesar
CI-Si-	Chlorotrimethylsilane	75-77-4	Merck
CI-Si-	tert-Butyldimethylsilane chloride	18162-48-6	TCI/ Nova-Matls
→ ^N →	(2,2,6,6-Tetramethylpiperidin-1- yl)oxyl	2564-83-2	Alfa Aesar
	Phenyl- λ^3 -iodanediyl diacetate	3240-34-4	Alfa Aesar
С О РОН	Diphenyl phosphate	838-85-7	Acros
$HO \left[\begin{array}{c} O \\ P \\ O \end{array} \right]_{n}$	Polyphosphoric acid (83% P ₂ O ₅)	8017-16-1	Showa
↔ SO ₃ H	Amberlyst® 15 hydrogen form	39389-20-3	Sigma Aldrich

SO ₃ H	Dowex 50X8-200	11119-67-8	JANSSEN
NaBH ₄	Sodium borohydride	16940-66-2	Aldrich
LiAlH ₄	Lithium Aluminium Hydride	16853-85-3	Merck
CuO	Copper oxide	1317-38-0	Sigma-Aldrich
I ₂	Iodine	7553-56-2	TCI
Cs ₂ CO ₃	Cesium carbonate	534-17-8	BLDpharm
Pd/C	Palladium on carbon	7440-05-3	Merck
Mg	Magnesium turnings	7439-95-4	SCHARLAU
O ₂	Oxygen	7782-44-7	JING SHANG
H ₂	Hydrogen	1333-74-0	JING SHANG

*The reagent was purified by distillation before using.

**The concentration of the reagent was confirmed by titration before using.

1.5. Home-made LED photoreactors

1.5.1 Details on the construction of photoreactors

Using a 24 cm x 25 cm pre-cut aluminum sheet, a roll with a 14-15 cm diameter was made enough to house a 4 x 5 metal test-tube rack. A 2.3 m LED strip was then pasted inside the bottom part of the aluminum roll using a double-sided tape starting from a 1 cm allowance. A computer fan is then placed at the top of the roll for every reaction to avoid overheating of the aluminum sheet.

Figure S1. Actual reaction setup for light irradiation using LED strip.

1.5.2 Wavelength of distribution for the purchased LEDs

1. Green LED strip, purchased from Centenary Materials, SMD3528-60-G, 518.34 nm (detected with Ocean Optics USB2000 Optic Spectrometer), 60 LED per meter, 4.8 W per meter, 120° beam angle.

Figure S2. Measured wavelength of distribution for green LED strip.

2. White LED strip, purchased from Centenary Materials, SMD3528-60-W, 60 LED per meter, 4.8 W per meter, 120° beam angle.

Figure S3. Measured wavelength of distribution for white LED strip.

3. Neutral white LED strip, purchased from Centenary Materials, 5050-60-W-IP67, 60 LED per meter, 12 W per meter, 120° beam angle.

Figure S4. Measured wavelength of distribution for neutral white LED strip.

4. Pure white LED strip, purchased from Centenary Materials, 5 SMD3528-60-W, 60 LED per meter, 12 W per meter, 120° beam angle.

Figure S5. Measured wavelength of distribution for pure white LED strip.

2. Experimental Procedures

2.1. General method for the synthesis of oxaspirolactones (2 and 4) General procedure A:

Scheme S1. Synthesis of oxaspirolactones in batch conditions.

To a 25-mL test tube equipped with a magnetic stirring bar, hydroxyalkyl furan (1 or 3) (1.0 equiv), Na₂-Eosin Y (0.01 equiv), and Dowex 50X8-200 (0.1 equiv) were added and sealed with a rubber septum. The system is then purged with oxygen for at least three times and was added with a pre-treated solvent (EtOH/H₂O = 1/1), gently bubbled with oxygen for an hour. The reaction mixture was then placed into an aluminium coil equipped with green LED strip and stirred vigorously under constant irradiation for 12 h. After completion of the reaction, the mixture was extracted with ethyl acetate and the combined organic layer was dried with magnesium sulfate and concentrated in vacuo. The crude product was then filtered through a short pad of silica placed in a Pasteur pipette and was eluted with diethyl ether to give the desired oxaspirolactone (**2** or **4**).

2.2. General method for the synthesis of hydroxyalkyl furans (1 and 3) General procedure B:

Scheme S2. Synthesis of disubstituted starting materials in one-pot conditions.

To a heat gun-dried Schlenk tube under nitrogen atmosphere, ethyl 3-(2-furyl)propionate **A** (1.0 equiv) in dry diethyl ether (0.1 M) was added and cooled to -78 °C. An appropriate organolithium reagent (2.5 equiv) was then slowly added dropwise, and the resulting mixture was stirred for 3 h at room temperature before it was recooled to -78 °C. A previously titrated *n*-BuLi (2.8 equiv, titrated against diphenylacetic acid) was slowly added dropwise and the mixture was stirred for an hour at room temperature before it was recooled again at 0 °C. Distilled trimethylsilyl chloride (3.0 equiv) was then added dropwise and the reaction was stirred for further 3 hours at room temperature before being quenched with saturated NH₄Cl_(aq) and 1 M HCl_(aq). The layers were then separated, and the aqueous layer was extracted with diethyl ether. The combined organic layers were dried with MgSO₄, filtered, and concentrated under reduced pressure. The crude product was then purified by column chromatography to give pure hydroxyalkyl furan **1**.

General procedure C:

Scheme S3. Synthesis of disubstituted starting materials in two-step.

To a heat gun-dried Schlenk tube under nitrogen atmosphere, ethyl 3-(2-furyl)propionate **A** (1.0 equiv) in dry THF (0.1 M) was added and cooled to 0 °C. An appropriate Grignard reagent (2.5 equiv) was then slowly added dropwise, and the resulting mixture was refluxed for 3 h before being quenched with water. The mixture was then extracted with ethyl acetate for three times and the combined organic layers were washed with brine, dried with MgSO₄, filtered, and concentrated under reduced pressure. The crude alcohol **1a**' was directly used for the next reaction.

To a heat gun-dried Schlenk tube under nitrogen atmosphere, the above crude alcohol in dry diethyl ether (0.6 M) was added and cooled to -78 °C. A previously titrated *n*-BuLi (2.8 equiv, titrated against diphenylacetic acid) was slowly added dropwise and the mixture was stirred for an hour at room temperature before it was recooled again at 0 °C. Distilled trimethylsilyl chloride (3.0 equiv) was then added dropwise and the reaction was stirred for further 3 hours at room temperature before being quenched with saturated NH₄Cl_(aq) and 1 M

 $HCl_{(aq)}$. The layers were then separated, and the aqueous layer was extracted with diethyl ether. The combined organic layers were dried with MgSO₄, filtered, and concentrated under reduced pressure. The crude product was then purified by column chromatography to give pure hydroxyalkyl furan **1**.

General procedure D:

Scheme S4. Synthesis of mono-substituted starting materials in one-pot conditions.

To a heat gun-dried Schlenk tube under nitrogen atmosphere, 3-(furan-2-yl)propanal **B** (1.0 equiv) in dry diethyl ether (0.1 M) was added and cooled to -78 °C. An appropriate organolithium reagent (2.5 equiv) was then slowly added dropwise, and the resulting mixture was stirred for 3 h at room temperature before it was recooled to -78 °C. A previously titrated n-BuLi (2.8 equiv, titrated against diphenylacetic acid) was slowly added dropwise and the mixture was stirred for an hour at room temperature before it was recooled again at 0 °C. Distilled trimethylsilyl chloride (3.0 equiv) was then added dropwise and the reaction was stirred for further 3 hours at room temperature before being quenched with saturated NH₄Cl_(aq) and 1 M HCl_(aq). The layers were then separated, and the aqueous layer was extracted with diethyl ether. The combined organic layers were dried with MgSO₄, filtered, and concentrated under reduced pressure. The crude product was then purified by column chromatography to give pure hydroxyalkyl furan **3**.

General procedure E:

Scheme S5. Synthesis of monosubstituted starting materials in two-step.

To a heat gun-dried Schlenk tube under nitrogen atmosphere, 3-(furan-2-yl)propanal **B** (1.0 equiv) in dry THF (0.1 M) was added and cooled to 0 °C. An appropriate Grignard reagent (2.5 equiv) was then slowly added dropwise, and the resulting mixture was refluxed for 3 h before being quenched with water. The mixture was then extracted with ethyl acetate for three times and the combined organic layers were washed with brine, dried with MgSO₄, filtered, and concentrated under reduced pressure. The crude alcohol **3a**' was directly used for the next reaction.

To a heat gun-dried Schlenk tube under nitrogen atmosphere, the above crude alcohol in dry diethyl ether (0.6 M) was added and cooled to -78 °C. A previously titrated n-BuLi (2.8 equiv, titrated against diphenylacetic acid) was slowly added dropwise and the mixture was stirred for an hour at room temperature before it was recooled again at 0 °C. Distilled trimethylsilyl chloride (3.0 equiv) was then added dropwise and the reaction was stirred for further 3 hours at room temperature before being quenched with saturated NH₄Cl_(aq) and 1 M HCl_(aq). The layers were then separated, and the aqueous layer was extracted with diethyl ether. The combined organic layers were dried with MgSO₄, filtered, and concentrated under reduced pressure. The crude product was then purified by column chromatography to give pure hydroxyalkyl furan **3**.

3. Optimization Studies

3.1. Oxaspirolactone synthesis

Table S7. Optimization of photocatalyst and light source

	TMS HO Ph -	O ₂ , <i>hv</i> , PC DPP, toluene rt, 12h 2a	ո Ph
Entry	Photo cat.	hv	Yield (%)
1	Eosin Y	Kessil lamp 456 nm 20 W	72
2	4Czipn	Kessil lamp 456 nm 20 W	68
3	9H-thioxanthen-9-one	Kessil lamp 456 nm 20 W	17
4	Riboflavin	Kessil lamp 525 nm 20 W	34
5	Rose Bengal	Kessil lamp 525 nm 20 W	46
6	Methyl blue	LED neutral white 36 W	5
7	10H-phenothiazine	LED neutral white 36 W	77
8	Na ₂ -Eosin Y	Kessil lamp 525 nm 20 W	75
9	Na ₂ -Eosin Y	LED white 12.5 W	83
10	Na ₂ -Eosin Y	Green LED strip 10 W	84 $(\text{trace})^a$
11	Na ₂ -Eosin Y	LED pure white 30 W	94
12	Na ₂ -Eosin Y	LED neutral white 36 W	99

Based on General procedure A, but the reaction conditions were changed accordingly as specified in the table. ^aWhen no DPP is added.

Table S8. Optimization of solvent

тмs	Ph →→ Ph HO 1a	O ₂ , Na ₂ -Eosin Y green LED strip 10 W DPP, solvent rt, 12h	o C Ph Ph 2a
Entry		Solvent	Yield (%)
1		Toluene	83
2		DCM	50
3		EA	79
4		1,4-Dioxane	47
5		MeCN	36
6		THF	87
7		H_2O	52
8		IPA	74
9		MeOH	74
10		EtOH	81

Based on General procedure A, but the reaction conditions were changed accordingly as specified in the table.

 Table S9. Optimization of cosolvent

TMS ()	HO Ph g	O ₂ , Na ₂ -Eosin Y reen LED strip 10 W DPP, solvent rt, 12h	$0 \rightarrow 0 \rightarrow Ph$ 2a
Entry		Solvent	Yield (%)
1	TH	$\mathrm{IF} \stackrel{:}{\cdot} \mathrm{H}_2\mathrm{O} = 1 \stackrel{:}{\cdot} 1$	91
2	$THF \ : \ H_2O = 1 \ : \ 10$		72
3	$EtOH : H_2O = 1 : 1$		93
4	EtC	$\mathbf{OH} : \mathbf{H}_2\mathbf{O} = 1 : 3$	43
5	THF : E	$tOH : H_2O = 1 : 1$: 2 88

Based on General procedure A, but the reaction conditions were changed accordingly as specified in the table.

Table S10. Optimization of Brønsted acid

TMS	$ \begin{array}{c} $	D ₂ , Na ₂ -Eosin Y then LED strip 10 W 1:1 EtOH-H ₂ O Brønsted acid rt, 12h 2a	Ph A Ph
Entry	Amount of [H ⁺]	Brønsted Acid	Yield (%)
1	10 mol%	Polyphosphoric acid	18
2	15 mg	KM3 Silica gel	90
3	10 mol%	Amberlyst 15	80
4	1 eq.	Amberlyst 15	95
5	10 mol%	Dowex 50X8-200	99

Based on General procedure A, but the reaction conditions were changed accordingly as specified in the table.

3.2. Synthesis of starting material 1a

3.2.1 Optimization of two-step synthesis of starting material 1a

Table S11. Phenyl Addition for the synthesis of 1a'.

	Ŷ	→ ▲ -	Ph[M] (X equiv solvent, Temp time,		Ph HO HO 1a'	Ph
Entry	[M]	Ph[M] (eq.)	Solvent	Temp	Time	Yield (%)
1	Li	2.0	Ether	0 °C	2.5 h	49
2	MgBr	2.0	Ether	rt	4.0 h	42
3	MgBr	2.2	Ether	Reflux	4.0 h	57
4	MgBr	2.6	Ether	Reflux	4.0 h	70
5	MgBr	2.6	THF	Reflux	3.0 h	88

Table S12. Silylation of 1a' for the synthesis of 1a.

Entry	<i>n</i> -BuLi (eq.)	Condition of <i>n</i> -BuLi	TMSCl (eq.)	Condition of TMSCl	Solvent	Yield (%)
1	2.3	-78 °C (1h)→rt (1h)	2.5	-78 °C→rt (1h)	THF	45
2	2.3	-78 °C→rt (1h)	2.5	-78 °C→rt (1h)	Ether	70
3	2.8	-78 °C→rt (1h)	3	$0 \circ C \rightarrow rt (3h)$	Ether	78

Based on the second part of General procedure C, but the reaction conditions were changed accordingly as specified in the table.

Back to contents3.2.2 Optimization of one-pot synthesis of starting material 1a

Table S13. Optimization for the synthesis of 1a in one-pot reaction.

			0 ↓	1) Ph[M] 2) <i>n</i> -BuLi 3) TMSCI	мs-{°)	$\rightarrow HO$ Ph HO Ph	
Entry [M]	Solvent	<i>n</i> -BuLi	Condition of	TMSCI	Condition of	Yield	
		(eq.)	<i>n</i> -BuLi	(eq.)	TMSCI	(%)	
1	MgBr	THF	1.1	-78 °C→rt (1h)	3.0	$0 \circ C \rightarrow rt (3h)$	0
2	MgBr	THF	2.5	$-78 \ ^{\circ}\mathrm{C} \ (0.5\mathrm{h}) \rightarrow \mathrm{rt} $	5.2	$-78 ^{\circ}\mathrm{C} \rightarrow \mathrm{rt}$	0
3	Li	THF	2.5	$-78 \ ^{\circ}C \ (0.5h) \rightarrow rt$ (2.5h)	5.2	$-78 ^{\circ}\mathrm{C} \rightarrow \mathrm{rt}$ (1h)	60
4	Li	THF	2.5	-78 °C (0.5h)→rt (2.5h)	5.2	-78 °C→rt (3h)	68
5	Li	Ether	2.5	-78 °C (0.5h)→rt (2.5h)	5.2	-78 °C→rt (3h)	40
6	Li	THF	2.5	-78 °C (1h)→rt (1h)	5.2	-78 °C→rt (3h)	44
7	Li	THF	2.5	-78 °C→rt (1h)	3.0	0 °C→rt (3h)	71

Based on the second part of General procedure B, but the reaction conditions were changed accordingly as specified in the table.

4. Substrate Scope

4.1. Summary of oxaspirolactones

			store <u>2d</u>
<u>Se</u>		524 <u>2g</u>	<u>2h</u>
		2 <u>k</u>	
<u>-</u> <u></u>	$\frac{1}{2n}$		
مراجع المراجع ا 2 م	<u>2r</u>	<u>4a</u>	
		520 <u>4e</u>	5707 <u>4f</u>
et de la constant de	5×07 <u>4h</u>	O_{S}, H^{Bu}	

Back to table of substrate scope

7,7-Diphenyl-1,6-dioxaspiro[4.4]non-3-en-2-one, 2a

The title compound was prepared according to General procedure A from **1a** (15.0 mg, 0.04 mmol) to give **2a** (12.4 mg, 0.042 mmol, 99%) as a yellow solid.

¹**H** NMR (400 MHz, CDCl₃) δ (CDCl₃, 400 MHz) δ 7.47 - 7.20 (10H, m, aryl-*H*), 7.15 (1H, d, *J* = 5.5 Hz, C_c*H*), 6.19 (1H, d, *J* = 5.5 Hz, C_b*H*), 3.00 - 2.85 (2H, m, C_e*H*), 2.34 - 2.19 (2H, m, C_f*H*).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 169.9 (*C*_a), 152.4 (*C*_c), 144.8 (*C*_h), 144.0 (*C*_h), 128.4 (*C*_j), 128.2 (*C*_j), 127.5 (*C*_k), 127.4 (*C*_k), 126.2 (*C*_i), 125.7 (*C*_i), 124.2 (*C*_b), 114.2 (*C*_d), 92.6 (*C*_g), 38.0 (*C*_e), 35.8 (*C*_f).

See NMR Spectra

HRMS (*m/z*): (EI) calc'd for C₁₉H₁₆O₃ [M]⁺ 292.1094, found 292.1094

IR (ATR) v_{max} : 3088, 2955, 2923, 2852, 1758, 1093, 926, 915, 898, 829, 756, 702, 693, 529 cm⁻¹

MP: 127±1 °C

TLC: $R_f = 0.25$ (1:4 EtOAc/Hexane)

Back to table of substrate scope

7,7-Di-p-tolyl-1,6-dioxaspiro[4.4]non-3-en-2-one, 2b

The title compound was prepared according to General procedure A from **1b** (26.5 mg, 0.07 mmol) to give **2b** (22.2 mg, 0.07 mmol, 99%) as a yellow oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.33 (d, 2H, *J* = 8.2 Hz), 7.24 (d, 2H, *J* = 8.2 Hz), 7.17 (d, 2H, *J* = 8.0 Hz), 7.13 (d, 1H, *J* = 5.5 Hz), 7.08 (d, 2H, *J* = 8.0 Hz), 6.17 (d, 1H, *J* = 5.5 Hz), 2.99 - 2.80 (m, 2H), 2.35 (s, 3H), 2.29 (s, 3H), 2.32 - 2.18 (m, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 169.9, 152.5, 142.1, 141.2, 137.1, 137.0, 129.0, 128.8, 126.1, 125.7, 124.0, 114.3, 92.6, 38.0, 35.8, 21.0.

See NMR Spectra

HRMS (*m*/*z*): (EI) calc'd for C₂₁H₂₀O₃ [M]⁺ 320.1407, found 320.1407

IR (ATR) v_{max}: 3087, 2920, 1767, 1078, 922, 892, 810, 751 cm⁻¹

TLC: $R_f = 0.12$ (1:10 EtOAc/Hexane)

7-Di-m-tolyl-1,6-dioxaspiro[4.4]non-3-en-2-one, 2c

The title compound was prepared according to General procedure A from **1c** (26.5 mg, 0.07 mmol) to give **2c** (22.2 mg, 0.07 mmol, 99%) as a yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.26 - 7.02 (m, 9H), 6.18 (d, 1H, *J* = 5.5 Hz), 2.97 - 2.81 (m, 2H), 2.31 (s, 3H), 2.35 (s, 3H), 2.30 - 2.18 (m, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 169.9, 152.5, 144.9, 144.2, 138.0, 137.8, 128.2, 128.1, 128.1, 126.7, 126.4, 124.1, 123.2, 122.7, 114.2, 92.7, 37.8, 35.7, 21.6, 21.6.

See NMR Spectra

HRMS (m/z): (EI) calc'd for C₂₁H₂₀O₃ [M]⁺ 320.1407, found 320.1404

IR (ATR) v_{max}: 3024, 2922, 2859, 1764, 1085, 921, 887, 696 cm⁻¹

TLC: $R_f = 0.12$ (1:10 EtOAc/Hexane)

 Back to table of substrate scope

 7,7-Bis(3,5-dimethylphenyl)-1,6-dioxaspiro[4.4]non-3-en-2-one, 2d

The title compound was prepared according to General procedure A from **1d** (28.5 mg, 0.07 mmol) to give **2d** (24.3 mg, 0.07 mmol, 99%) as a yellow solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.14 (d, 1H, J = 5.5), 7.04 (s, 2H), 6.98 (s, 2H), 6.91 (s, 1H), 6.85 (s, 1H), 6.18 (d, 1H, J = 5.5 Hz), 2.94 - 2.82 (m, 2H), 2.32 - 2.19 (m, 14H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 170.0, 152.6, 144.9, 144.3, 137.7, 137.6, 129.0, 128.9, 124.0, 123.7, 123.4, 114.2, 92.7, 37.5, 35.7, 21.5, 21.4.

See NMR Spectra

HRMS (*m*/*z*): (EI) calc'd for C₂₃H₂₄O₃ [M]⁺ 348.1720, found 348.1721

IR (ATR) v_{max}: 3116, 2918, 2860, 1759, 1095, 921, 849, 823, 742, 722, 667 cm⁻¹

MP: 154 ±1 °C

TLC: $R_f = 0.12$ (1:10 EtOAc/Hexane)

 Back to table of substrate scope

 7,7-Bis(4-(tert-butyl)phenyl)-1,6-dioxaspiro[4.4]non-3-en-2-one, 2e

The title compound was prepared based on General procedure A from **1e** (18.5 mg, 0.04 mmol) but solvent was ethanol to give **2e** (16.2 mg, 0.04 mmol, 99%) as a yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.37 - 7.30 (m, 8H), 7.16 (d, J = 5.5 Hz, 1H), 6.17 (d, 1H, J = 5.5 Hz), 2.95 - 2.84 (m, 2H), 2.31 - 2.19 (m, 2H), 1.32 (s, 9H), 1.28 (s, 9H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 170.0, 152.5, 150.2, 150.1, 141.9, 141.0, 126.0, 125.5, 125.2, 125.1, 124.0, 114.3, 92.7, 38.3, 35.8, 34.4, 34.4, 31.3, 31.3.

See NMR Spectra

HRMS (*m/z*): (EI) calc'd for C₂₇H₃₂O₃ [M]⁺ 404.2346, found 404.2343

IR (ATR) v_{max}: 2962, 2868, 1759, 921, 897, 815 cm⁻¹

TLC: $R_f = 0.13$ (1:10 EtOAc/Hexane)

Back to table of substrate scope 7,7-bis(4-fluorophenyl)-1,6-dioxaspiro[4.4]non-3-en-2-one, 2f

The title compound was prepared according to General procedure A from 1f (27.1 mg, 0.07 mmol) to give 2f (22.8 mg, 0.07 mmol, 99%) as a yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.42 - 7.29 (m, 4H), 7.12 (d, 1H, *J* = 5.5 Hz), 7.08 - 6.95 (m, 4H), 6.20 (d, 1H, *J* = 5.6 Hz), 2.94 - 2.80 (m, 2H), 2.34 - 2.18 (m, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 169.6, 162.1 (d, J = 248.2 Hz), 162.0 (d, J = 247.8 Hz), 152.1, 140.6 (d, J = 4.0 Hz), 139.6 (d, J = 3.4 Hz), 127.9 (d, J = 8.3 Hz), 127.5 (d, J = 8.3 Hz), 124.3, 115.3 (d, J = 25.9 Hz), 115.1 (d, J = 25.2 Hz), 114.1, 91.8, 38.3, 35.8.

See NMR Spectra

HRMS (*m*/*z*): (EI) calc'd for C₁₉H₁₄O₃F₂ [M]⁺ 328.0906, found 328.0903

IR (ATR) v_{max}: 2960, 1771, 1504, 1226, 1085, 839 cm⁻¹

TLC: $R_f = 0.15$ (1:10 EtOAc/Hexane)

Back to table of substrate scope

7,7-Dimethyl-1,6-dioxaspiro[4.4]non-3-en-2-one, 2g

The title compound was prepared according to General procedure A from **1g** (29.6 mg, 0.13 mmol) to give **2g** (13.1 mg, 0.08 mmol, 60%) as a yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.07 (d, 1H, *J* = 5.6 Hz), 6.11 (d, 1H, *J* = 5.6 Hz), 2.37 - 1.95 (m, 4H), 1.46 (s, 3H), 1.30 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 170.2, 152.4, 124.0, 114.7, 86.6, 36.8, 36.0, 29.2, 28.1.

See NMR Spectra

HRMS (*m/z*): (EI) calc'd for C₉H₁₂O₃ [M]⁺ 168.0781, found 168.0778

IR (ATR) v_{max}: 2973, 2867, 1760, 1234, 1118, 917, 816 cm⁻¹

TLC: $R_f = 0.10$ (1:10 EtOAc/Hexane)

Back to table of substrate scope

7,7-Diethyl-1,6-dioxaspiro[4.4]non-3-en-2-one, 2h

The title compound was prepared according to General procedure A from **1h** (17.8 mg, 0.07 mmol) to give 2h (11.6 mg, 0.06 mmol, 84%) as a yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.07 (d, 1H, J = 5.6 Hz), 6.11 (d, 1H, J = 5.6 Hz), 2.31 - 1.92 (m, 4H), 1.82 - 1.55 (m, 4H), 0.91 (t, 3H, J = 7.5 Hz), 0.89 (t, 3H, J = 7.5 Hz).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 170.3, 152.3, 124.0, 114.8, 92.1, 36.0, 32.9, 31.8, 30.0, 8.6, 8.4.

See NMR Spectra

HRMS (*m*/*z*): (EI) calc'd for C₁₁H₁₆O₃ [M]⁺ 196.1094, found 196.1095

IR (ATR) v_{max}: 2964, 2883, 1763, 1110, 914, 821 cm⁻¹

TLC: $R_f = 0.18$ (1:4 EtOAc/Hexane)

7,7-Dibutyl-1,6-dioxaspiro[4.4]non-3-en-2-one, 2i

The title compound was prepared according to General procedure A from **1i** (21.7 mg, 0.07 mmol) to give **2i** (14.6 mg, 0.06 mmol, 83%) as a yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.06 (d, 1H, J = 5.6 Hz), 6.11 (d, 1H, J = 5.6 Hz), 2.31 - 1.93 (m, 4H), 1.76 - 1.16 (m, 12H), 0.91 (t, 3H, J = 7.0 Hz), 0.91 (t, 3H, J = 7.0 Hz).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 170.3, 152.4, 124.0, 114.7, 91.6, 39.5, 37.8, 36.0, 33.9, 26.5, 26.3, 23.1, 23.1, 14.0, 14.0.

See NMR Spectra

HRMS (*m/z*): (EI) calc'd for C₁₅H₂₄O₃ [M]⁺ 252.1720, found 252.1719

IR (ATR) v_{max}: 2930, 2866, 1761, 1120, 913, 822 cm⁻¹

TLC: $R_f = 0.15$ (1:10 EtOAc/Hexane)

Back to table of substrate scope

7,7-Diisopropyl-1,6-dioxaspiro[4.4]non-3-en-2-one, 2j

The title compound was prepared according to General procedure A from **1j** (19.8 mg, 0.07 mmol) to give **2j** (15.2 mg, 0.07 mmol, 97%) as a yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ (CDCl₃, 400 MHz) δ 7.10 (d, 1H, J = 5.5 Hz), 6.09 (d, 1H, J = 5.5 Hz), 2.36 - 2.22 (m, 2H), 2.21 - 2.14 (m, 2H), 2.14 - 1.97 (m, 2H, 1.03 - 0.91 (m, 12H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 170.3, 152.4, 123.6, 115.3, 97.1, 36.8, 34.1, 33.6, 27.2, 18.3, 18.3, 17.7, 17.6.

See NMR Spectra

HRMS (m/z): (EI) calc'd for C₁₃H₂₀O₃ [M]⁺ 224.1407, found 224.1406

IR (ATR) v_{max} : 2962, 2878, 1762, 1095, 976, 914, 817 cm⁻¹

TLC: $R_f = 0.15$ (1:10 EtOAc/Hexane)

1,6-Dioxadispiro[4.1.4⁷.2⁵]tridec-3-en-2-one, 2k

The title compound was prepared according to General procedure A from 1k (17.7 mg, 0.07 mmol) to give 2k (12.2 mg, 0.07 mmol, 99%) as a yellow oil.

¹**H** NMR (400 MHz, CDCl₃) δ (CDCl₃, 400 MHz) δ 7.06 (d, J = 5.5 Hz, 1H), 6.10 (d, J = 5.6 Hz, 1H), 2.36 – 2.20 (m, 3H), 2.15 – 2.02 (m, 2H), 1.90 – 1.53 (m, 8H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 170.3, 152.6, 123.8, 114.5, 96.6, 39.1, 39.0, 36.2, 34.8, 24.0, 23.7.

<u>See NMR Spectra</u>

HRMS (*m/z*): (EI) calc'd for C₁₁H₁₄O₃ [M]⁺ 194.0938, found 194.0934

IR (ATR) v_{max}: 2956, 2875, 1756, 1116, 915, 812 cm⁻¹

TLC: $R_f = 0.25$ (1:4 EtOAc/Hexane)

Back to table of substrate scope

1,6-Dioxadispiro[4.1.57.25]tetradec-3-en-2-one, 2l

The title compound was prepared according to General procedure A from **1l** (18.7 mg, 0.07 mmol) to give **2l** (14.5 mg, 0.07 mmol, 99%) as a yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.07 (d, 1H, J = 5.6 Hz), 6.11 (d, 1H, J = 5.6 Hz), 2.31 - 2.15 (m, 2H), 2.09 - 1.97 (m, 2H), 1.80 - 1.40 (m, 10H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 170.3, 152.5, 124.0, 114.4, 88.6, 38.6, 37.0, 35.4, 25.1, 23.5.

See NMR Spectra

HRMS (*m*/*z*): (EI) calc'd for C₁₂H₁₆O₃ [M]⁺ 208.1094, found 208.1096

IR (ATR) v_{max}: 2932, 2859, 1756, 1124, 918, 814 cm⁻¹

TLC: $R_f = 0.29$ (1:4 EtOAc/Hexane)

7,7-Diallyl-1,6-dioxaspiro[4.4]non-3-en-2-one, 2m

The title compound was prepared according to General procedure A from **1m** (19.5 mg, 0.07 mmol) to give **2m** (15.4 mg, 0.07 mmol, 99%) as a yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.07 (d, 1H, *J* = 5.6 Hz), 6.12 (d, 1H, *J* = 5.6 Hz), 5.88 - 5.74 (m, 2H), 5.15 - 5.10 (m, 4H), 2.56 - 2.43 (m, 2H), 2.34 - 2.13 (m, 4H), 2.02 - 1.97 (m, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 170.1, 152.0, 133.4, 133.2, 124.1, 118.9, 118.6, 114.7, 89.9, 45.0, 43.0, 35.9, 32.7.

See NMR Spectra

HRMS (m/z): (EI) calc'd for C₁₃H₁₆O₃ [M]⁺ 220.1094, found 220.1095

IR (ATR) v_{max}: 3076, 2923, 2851, 1760, 1121, 917, 815, 750 cm⁻¹

TLC: $R_f = 0.35$ (1:4 EtOAc/Hexane)

1,6-Dioxaspiro[4.4]non-3-en-2-one, 2n

The title compound was prepared according to General procedure A from **1n** (23.8 mg, 0.12 mmol) but solvent was ethanol to give **2n** (16.8 mg, 0.12 mmol, 99%) as a yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.12 (d, 1H, J = 5.6 Hz), 6.14 (d, 1H, J = 5.6 Hz), 4.28 - 4.22 (m, 1H), 4.11 - 4.05 (m, 1H), 2.38 - 2.10 (m, 4H).

¹³C{¹H} NMR (101 MHz, CDCl₃) *δ* 170.1, 151.9, 124.3, 114.5, 70.6, 35.3, 24.2.

See NMR Spectra

HRMS (*m/z*): (EI) calc'd for C₇H₈O₃ [M]⁺ 140.0468, found 140.0466

IR (ATR) v_{max}: 3094, 2958, 2927, 2895, 1768, 1100, 917 cm⁻¹

TLC: $R_f = 0.10$ (1:4 EtOAc/Hexane)

1,6-Dioxaspiro[4.5]dec-3-en-2-one, 20

The title compound was prepared according to General procedure A from **1o** (14.4 mg, 0.06 mmol) but solvent was ethanol to give **2o** (9.6 mg, 0.0623 mmol, 92%) as a yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.13 (d, 1H, J = 5.6 Hz), 6.10 (d, 1H, J = 5.6 Hz), 4.06 - 4.00 (m, 1H), 3.94 - 3.89 (m, 1H), 2.00 - 1.67 (m, 6H).

¹³C{¹H} NMR (101 MHz, CDCl₃ with 0.05% v/v TMS) δ 170.5, 154.3, 123.0, 106.9, 65.0, 32.1, 24.0, 19.0.

See NMR Spectra

HRMS (*m/z*): (EI) calc'd for C₈H₁₀O₃ [M]⁺ 154.0625, found 154.0623

IR (ATR) v_{max}: 2927, 1755, 1463, 905 cm⁻¹

TLC: $R_f = 0.10$ (1:5 EtOAc/Hexane)

7-Phenyl-7-(m-tolyl)-1,6-dioxaspiro[4.4]non-3-en-2-one, 2p

The title compound was prepared according to General procedure A from **1p** (20.2 mg, 0.06 mmol) to give **2p** (16.3 mg, 0.06 mmol, 96%) as a colourless oil.

Diastereomer A:

¹**H NMR** (400 MHz, CDCl₃) δ 7.47 – 7.28 (m, 4H), 7.26 – 7.00 (m, 6H), 6.18 (d, 1H, *J* = 5.5 Hz), 3.00 – 2.81 (m, 2H), 2.36 (s, 3H), 2.29 – 2.16 (m, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 170.0, 152.6, 145.1, 144.4, 138.2, 128.5, 128.4, 128.3, 127.5, 126.9, 126.3, 124.3, 123.4, 114.4, 92.8, 38.1, 35.9, 21.8.

Diastereomer B:

¹**H NMR** (400 MHz, CDCl₃) δ 7.47 – 7.28 (m, 4H), 7.26 – 7.00 (m, 6H), 6.18 (d, 1H, *J* = 5.5 Hz), 3.00 – 2.81 (m, 2H), 2.31 (s, 3H), 2.29 – 2.16 (m, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 170.0, 152.6, 145.0, 144.1, 138.0, 128.5, 128.3, 128.2, 127.5, 126.7, 125.8, 124.2, 122.9, 114.4, 92.8, 38.0, 35.9, 21.7.

See NMR Spectra

HRMS (*m/z*): (EI) calc'd for C₂₀H₁₈O₃ [M]⁺ 306.1251, found 306.1248

IR (ATR) v_{max}: 3303, 3249, 3185, 3114, 2921, 2238, 1051 cm⁻¹

TLC: $R_f = 0.14$ (1:4 EtOAc/Hexane)

17,7-Diphenyl-1,6-dioxaspiro[4.5]dec-3-en-2-one, 2q

The title compound was prepared according to General procedure A from 1q (25.5 mg, 0.07 mmol) to give 2q (16.1 mg, 0.05 mmol, 75%) as a yellow oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.39 – 7.28 (m, 8H), 7.24 – 7.20 (m, 2H), 7.19 (d, 1H, *J* = 5.6 Hz), 6.10 (d, 1H, *J* = 5.6 Hz), 2.33 – 2.09 (m, 3H), 1.95 – 1.75 (m, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 170.2, 154.6, 146.7, 144.5, 128.2, 127.9, 127.2, 127.0, 126.7, 125.6, 122.9, 107.7, 81.7, 33.3, 30.6, 16.3.

See NMR Spectra

HRMS (m/z): (EI) calc'd for C₂₀H₁₈O₃ [M]⁺ 306.1251, found 306.1253

IR (ATR) v_{max}: 2926, 1770, 1244, 1118,1045, 912 cm⁻¹

TLC: $R_f = 0.30$ (1:4 EtOAc/Hexane)

7,7-diphenyl-1,6-dioxaspiro[4.6]undec-3-en-2-one, 2r

The title compound was prepared according to General procedure A from 1r (20.0 mg, 0.053 mmol) to give 2r (16.9 mg, 0.052 mmol, 99%) as a yellow oil.

¹**H NMR** (300 MHz, CDCl₃) δ 7.41 – 7.36 (m, 5H), 7.34 – 7.28 (m, 5H), 7.16 (d, 1H *J* = 5.6 Hz), 6.10 (d, 1H, *J* = 5.6 Hz), 2.32 – 2.25 (m, 2H), 1.95 – 1.86 (m, 2H), 1.47 – 1.31 (m, 4H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 170.75, 154.45, 146.94, 128.28, 128.25, 128.19, 126.98, 126.97, 126.93, 126.07, 123.12, 123.11, 108.28, 78.32, 41.60, 37.38, 23.76, 23.66.

See NMR Spectra

HRMS (*m/z*): (EI) calc'd for C₂₁H₂₀O₃ [M]⁺ 320.1407, found 306.1406

IR (ATR) v_{max}: 3055, 2927, 2853, 1722, 1265, 736, 704 cm⁻¹

7-Phenyl-1,6-dioxaspiro[4.4]non-3-en-2-one, 4a

The title compound was prepared according to General procedure A from **3a** (20.9 mg, 0.08 mmol) to give **4a** (16.4 mg, 0.08 mmol, 99%, 1.67:1 *d.r.*) as a yellow oil.

Major Diastereomer:

¹**H NMR** (400 MHz, CDCl₃ with 0.05% v/v TMS) *δ* 7.39 – 7.27 (m, 3H), 7.25 – 7.19 (m, 2H), 7.16 – 7.11 (m, 1H), 6.14 – 6.11 (m, 1H), 5.18 – 5.14 (m, 1H), 2.72 – 1.95 (m, 4H).

¹³C{¹H} NMR (101 MHz, CDCl₃ with 0.05% v/v TMS) δ 169.9, 152.0, 140.7, 128.6, 128.2, 126.3, 124.5, 114.5, 85.3, 37.2, 34.0.

Minor Diastereomer:

¹**H NMR** (400 MHz, CDCl₃ with 0.05% v/v TMS) *δ* 7.39 – 7.27 (m, 3H), 7.25 – 7.19 (m, 2H), 7.16 – 7.11 (m, 1H), 6.14 – 6.11 (m, 1H), 5.41 – 5.37 m, 1H), 2.72 – 1.95 (m, 4H).

¹³C{¹H} NMR (101 MHz, CDCl₃ with 0.05% v/v TMS) δ 169.9, 151.7, 141.0, 128.6, 127.9, 125.5, 124.3, 114.6, 82.8, 34.5, 32.5.

See NMR Spectra

HRMS (*m*/*z*): (EI) calc'd for C₁₃H₁₂O₃ [M]⁺ 216.0781, found 216.0781

IR (ATR) v_{max}: 3090, 2934, 1769, 193, 980, 920, 890, 700 cm⁻¹

TLC: R_f = 0.15; 0.09 (1:4 EtOAc/Hexane)

7-(m-Tolyl)-1,6-dioxaspiro[4.4]non-3-en-2-one, 4b

The title compound was prepared according to General procedure A from **3b** (12.0 mg, 0.05 mmol) to give **4b** (12 mg, 0.05 mmol, 96.4%, 1.38:1 *d.r.*) as a yellow oil.

Major Diastereomer:

¹**H NMR** (400 MHz, CDCl₃ with 0.05% v/v TMS) *δ* 7.46 – 7.11 (m, 5H), 6.22 – 6.17 (m, 1H), 5.29 – 5.14 (m, 1H), 2.79 – 2.37 (m, 2H), 2.36 (s, 3H), 2.34 – 2.06 (m, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃ with 0.05% v/v TMS) δ 170.0, 152.0, 140.5, 129.0, 128.5, 126.9, 126.2, 124.4, 123.4, 122.5, 114.5, 85.4, 37.2, 33.9, 21.4.

Minor Diastereomer:

¹**H NMR** (400 MHz, CDCl₃ with 0.05% v/v TMS) δ 7.46 – 7.11 (m, 5H), 6.22 – 6.17 (m, 1H), 5.51 – 5.38 (m, 1H), 2.79 – 2.37 (m, 2H), 2.36 (s, 3H), 2.34 – 2.06 (m, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃ with 0.05% v/v TMS) δ 170.0, 151.8, 140.8, 138.3, 128.7, 127.1, 126.3, 124.2, 122.6, 114.6, 82.9, 34.6, 32.5, 29.7.

<u>See NMR Spectra</u>

HRMS (m/z): (EI) calc'd for C₁₄H₁₄O₃ [M]⁺ 230.0938, found 230.0940

IR (ATR) v_{max}: 3030, 2923, 2859, 1758, 1248, 917, 731 cm⁻¹

TLC: R_f = 0.33; 0.16 (1:10 EtOAc/Hexane)

7-Butyl-1,6-dioxaspiro[4.4]non-3-en-2-one, 4c

The title compound was prepared according to General procedure A from 3c (17.8 mg, 0.07 mmol) to give 4c (12 mg, 0.05 mmol, 76%, 1.19:1 *d.r.*) as a yellow oil.

Major Diastereomer:

¹**H** NMR (500 MHz, CDCl₃ with 0.05% v/v TMS) δ 7.09 (d, 1H, J = 5.6 Hz), 6.13 (d, 1H, J = 5.6 Hz), 4.23 - 4.28 (m, 1H), 2.41 - 1.72 (m, 7H), 1.42 - 1.28 (m, 3H), 0.90 (t, 3H, J = 6.9 Hz).

¹³C{¹H} NMR (101 MHz, CDCl₃ with 0.05% v/v TMS) δ 170.2, 152.1, 124.2, 114.4, 84.0, 36.5, 34.5, 30.3, 29.5, 28.1, 22.6.

Minor Diastereomer:

¹**H** NMR (500 MHz, CDCl₃ with 0.05% v/v TMS) δ 7.11 (d, 1H, *J* = 5.6 Hz), 6.13 (d, 1H, *J* = 5.6 Hz), 4.39 - 4.44 (m,1H), 2.41 - 1.72 (m, 7H), 1.42 - 1.28 (m, 3H), 0.91 (t, 3H, *J* = 6.9 Hz).

¹³C{¹H} NMR (101 MHz, CDCl₃ with 0.05% v/v TMS) δ 170.2, 152.2, 123.9, 114.5, 82.4, 36.1, 35.2, 30.3, 29.7, 27.8, 14.0.

See NMR Spectra

HRMS (*m*/*z*): (EI) calc'd for C₁₁H₁₆O₃ [M]⁺ 196.1094, found 196.1091

IR (ATR) v_{max}: 2931, 2872, 1763, 1461, 1116, 921 cm⁻¹

TLC: R_f = 0.26; 0.23 (1:10 EtOAc/Hexane)

7-Isopropyl-1,6-dioxaspiro[4.4]non-3-en-2-one, 4d

The title compound was prepared according to General procedure A from **3d** (16.8 mg, 0.07 mmol) to give **4d** (10.9 mg, 0.06 mmol, 86%, 1.22:1 *d.r.*) as a yellow oil.

Major Diastereomer:

¹**H** NMR (500 MHz, CDCl₃ with 0.05% v/v TMS) δ 7.09 (d, 1H, J = 5.6 Hz), 6.12 (d, 1H, J = 5.6 Hz), 3.95 - 3.90 (m, 1H), 2.33 - 1.96 (m, 4H), 1.88 - 1.72 (m, 1H), 0.99 (d, 3H, J = 6.6 Hz), 0.90 (d, 3H, J = 6.8 Hz).

¹³C{¹H} NMR (101 MHz, CDCl₃ with 0.05% v/v TMS) δ 170.0, 152.2, 124.2, 114.3, 89.4, 36.7, 33.7, 28.1, 19.3, 18.1.

Minor Diastereomer:

¹**H NMR** (500 MHz, CDCl₃ with 0.05% v/v TMS) δ 7.11 (d, 1H, J = 5.6 Hz), 6.13 (d, 1H, J = 5.6 Hz), 4.18 - 4.14 (m, 1H), 2.33 - 1.96 (m, 4H), 1.88 - 1.72 (m, 1H), 0.95 (d, 3H, J = 6.7 Hz), 0.91 (d, 3H, J = 6.8 Hz).

¹³C{¹H} NMR (101 MHz, CDCl₃ with 0.05% v/v TMS) δ 170.2, 152.0, 124.0, 114.6, 87.3, 34.8, 32.6, 26.9, 18.5, 18.1.

See NMR Spectra

HRMS (m/z): (EI) calc'd for C₁₀H₁₄O₃ [M]⁺ 182.0938, found 182.0940

IR (ATR) v_{max}: 3099, 2963, 1766, 1118, 917 cm⁻¹

TLC: R_f = 0.28; 0.19 (1:20 EtOAc/Hexane)

7-Cyclopentyl-1,6-dioxaspiro[4.4]non-3-en-2-one, 4e

The title compound was prepared according to General procedure A from **3e** (21.3 mg, 0.08 mmol) to give 4e (14.7mg, 0.07 mmol, 71%, 1.17:1 *d.r.*) as a yellow oil.

Major Diastereomer:

¹**H NMR** (500 MHz, CDCl₃ with 0.05% v/v TMS) δ 7.09 (d, 1H, J = 5.6 Hz), 6.12 (d, 1H, J = 5.6 Hz), 4.09 - 4.04 (m, 1H), 2.36 - 2.17 (m, 4H), 2.30 - 1.53 (m, 9H).

¹³C{¹H} NMR (126 MHz, CDCl₃ with 0.05% v/v TMS) δ 170.1, 152.2, 124.2, 114.5, 88.2, 45.6, 36.6, 29.9, 29.4, 28.6, 25.4, 25.4.

Minor Diastereomer:

¹**H NMR** (500 MHz, CDCl₃ with 0.05% v/v TMS) δ 7.11 (d, 1H, J = 5.6 Hz), 6.12 (d, 1H, J = 5.6 Hz), 4.26 - 4.22 (m, 1H), 2.36 - 2.17 (m, 4H), 2.30 - 1.53 (m, 9H)

¹³C{¹H} NMR (126 MHz, CDCl₃ with 0.05% v/v TMS) δ 170.2, 152.1, 123.9, 114.6, 86.4, 44.7, 34.7, 29.4, 28.9, 28.6, 25.5, 25.4.

<u>See NMR Spectra</u>

HRMS (m/z): (EI) calc'd for C₁₂H₁₆O₃ [M]⁺ 208.1094, found 208.1096

IR (ATR) v_{max}: 2951, 2865, 1761, 1454. 1137, 920, 816, 748 cm⁻¹

TLC: R_f = 0.37; 0.31 (1:10 EtOAc/Hexane)

7-(tert-Butyl)-1,6-dioxaspiro[4.4]non-3-en-2-one, 4f

The title compound was prepared according to General procedure A from 3f (15.0 mg, 0.06 mmol) to give 4f (7.8 mg, 0.04 mmol, 67%, 1.42:1 *d.r.*) as a yellow oil.

Major Diastereomer:

¹**H NMR** (400 MHz, CDCl₃ with 0.05% v/v TMS) δ 7.09 (d, 1H, J = 5.6 Hz), 6.11 (d, 1H, J = 5.6 Hz), 3.97 - 3.93 (m, 1H), 2.21 - 2.16 (m, 2H), 2.14 - 2.08 (m, 2H) 0.94 (s, 9H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 170.2, 152.5, 124.1, 114.3, 92.1, 36.8, 33.5, 25.7, 25.4.

Minor Diastereomer:

¹**H NMR** (400 MHz, CDCl₃ with 0.05% v/v TMS) δ 7.09 (d, 1H, J = 5.6 Hz), 6.11 (d, 1H, J = 5.6 Hz), 3.97 - 3.93 (m, 1H), 2.21 - 2.16 (m, 2H), 2.14 - 2.08 (m, 2H) 0.94 (s, 9H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 170.2, 151.8, 124.1, 114.8, 89.9, 35.1, 33.9, 25.3, 24.9.

See NMR Spectra

HRMS (*m*/*z*): (EI) calc'd for C₁₁H₁₆O₃ [M]⁺ 196.1094, found 196.1097

IR (ATR) v_{max}: 2958, 2871, 2927, 1765, 1463, 1087, 920 cm⁻¹

TLC: $R_f = 0.27$; 0.23 (1:5 EtOAc/Hexane)

Back to table of substrate scope 7-(Prop-1-en-2-yl)-1,6-dioxaspiro[4.4]non-3-en-2-one, 4g

The title compound was prepared according to General procedure A from 3g (16.7 mg, 0.07 mmol) to give 4g (10.0 mg, 0.06 mmol, 79%, 1.37:1 *d.r.*) as a yellow oil.

Major Diastereomer:

¹**H NMR** (500 MHz, CDCl₃ with 0.05% v/v TMS) δ 7.05 (d, 1H, J = 5.6 Hz), 6.08 (d, 1H, J = 5.6 Hz), 4.99 (s, 1H), 4.84 (s, 1H), 4.62 - 4.59 (m, 1H), 2.44 - 1.86 (m, 4H), 1.72 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 170, 152.0, 143.5, 124.3, 114.3, 112.9, 86.8, 36.6, 29.4, 17.1.

Minor Diastereomer:

¹**H NMR** (500 MHz, CDCl₃ with 0.05% v/v TMS) δ 7.10 (d, 1H, J = 5.6 Hz), 6.10 (d, 1H, J = 5.6 Hz), 4.93 (s, 1H), 4.81 (s, 1H), 4.75 (dd, 1H, J = 8.2, 5.1 Hz), 2.44 - 1.86 (m, 4H), 1.67 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 170, 151.7, 129.7, 124.3, 114.5, 111.4, 84.4, 34.4, 28.7, 18.0.

See NMR Spectra

HRMS (m/z): (EI) calc'd for C₁₀H₁₂O₃ [M]⁺ 180.0781, found 180.0779

IR (ATR) v_{max}: 3090, 2972, 1085, 1764, 915 cm⁻¹

TLC: $R_f = 0.29$; 0.18 (1:20 EtOAc/Hexane)

7-Allyl-1,6-dioxaspiro[4.4]non-3-en-2-one, 4h

The title compound was prepared according to General procedure A from 3h (16.7 mg, 0.07 mmol) to give 4h (6.5 mg, 0.04 mmol, 52%, 1.19:1 d.r.) as a yellow oil.

Major Diastereomer:

¹**H** NMR (600 MHz, CDCl₃ with 0.05% v/v TMS) δ 7.09 (d, 1H, J = 5.6 Hz), 6.14 (d, 1H, J = 5.6 Hz), 5.85 - 5.75 (m, 1H), 5.16 - 5.09 (m, 2H), 4.35 - 4.30 (m, 1H), 2.57 - 1.81 (m, 6H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 151.9, 133.8, 124.3, 117.7, 114.3, 82.9, 40.6, 36.4, 29.9, 28.7.

Minor Diastereomer:

¹**H NMR** (600 MHz, CDCl₃) δ 7.11 (d, 1H, J = 5.6 Hz), 6.13 (d, 1H, J = 5.6 Hz), 5.85 - 5.75 (m, 1H), 5.16 - 5.09 (m, 2H), 4.54 - 4.49 (m, 1H), 2.57 - 1.81 (m, 6H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 151.9, 133.4, 124.1, 118.0, 114.6, 81.3, 39.6, 34.5, 29.7, 28.7.

See NMR Spectra

HRMS (*m*/*z*): (EI) calc'd for C₁₀H₁₂O₃ [M]⁺ 180.0781, found 180.0780

IR (ATR) v_{max}: 3078, 2922, 1762, 1087, 815 cm⁻¹

TLC: $R_f = 0.18$; 0.13 (1:4 EtOAc/Hexane)

The title compound was prepared according to General procedure A from 6 (60 mg, 0.18 mmol) to give 7 (10 mg, 0.04 mmol, 20%, single diastereomer) as a yellow oil.

¹**H** NMR (300 MHz, CDCl₃) δ 7.44 (1H, d, J = 5.6 Hz, C_cH), 6.15 (1H, d, J = 5.6 Hz, C_bH), 4.07 – 3.83 (1H, m, C_gH), 2.47 – 2.19 (2H, m, C_eH), 2.11 – 1.91 (2H, m, C_fH), 1.86 – 1.67 (2H, m, C_hH), 1.17 (9H, d, J = 7.8 Hz, C_kH), 0.93 (3H, td, J = 7.4, 4.7 Hz, C*i*H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 170.2 (C_{*a*}), 153.7 (C_{*c*}), 122.3 (C_{*b*}), 107.3 (C_{*d*}), 57.7 (C_{*j*}), 56.1 (C_{*g*}), 35.4 (C_{*e*}), 29.9 (C_{*f*}), 28.2 (C_{*h*}), 23.0 (C_{*k*}), 11.1 (C_{*i*}).

See NMR Spectra

HRMS (*m*/*z*): (EI) calc'd for C₁₃H₂₁NO₃S [M]⁺ 271.1236, found 271.1237

IR (ATR) v_{max}: 2926, 2857, 1729, 1365, 1245, 1122, 1074, 913 cm⁻¹

TLC: $R_f = 0.3$ (2:1 EtOAc/Hexane)

Due to the instability of the title compound, we are not able to measure the $[\alpha]D$ value and sufficient NOE experiments.

Back to contents

4.1. Summary of starting materials

<u>Back to table of starting materials</u> 1,1-Diphenyl-3-(5-(trimethylsilyl)furan-2-yl)propan-1-ol, 1a

The title compound was prepared according to General procedure C to give **1a** (295.0 mg, 0.84 mmol, 69% (two step yield)) as a pale-yellow solid. The title compound can also be directly prepared according to General procedure B from ethyl 3-(2-furyl)propionate (0.2 mL, 1.25 mmol) to give **1a** (312.9 mg, 0.89 mmol, 71%) as a pale yellow solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.46 - 7.44 (m, 4H), 7.34 - 7.31 (m, 4H), 7.25 - 7.22 (m, 2H), 6.49 (d, 1H, J = 3.1 Hz), 5.95 (d, 1H, J = 3.1 Hz), 2.66 (s, 2H), 2.66 (s, 2H), 0.23 (s, 9H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 160.2, 158.6, 146.6, 128.2, 127.0, 126.0, 120.4, 104.8, 78.0, 39.9, 23.0, -1.5.

See NMR Spectra

HRMS (*m*/*z*): (EI) calc'd for C₂₂H₂₆O₂Si [M]⁺ 350.1696, found 350.1697

IR (ATR) v_{max} : 3599, 3569, 3059, 3024, 2963, 2953, 2897, 1588, 1492, 1247, 837, 787, 757, 746, 693 and 594 cm⁻¹

MP: 63±1 °C

TLC (two steps reaction procedure/ one pot reaction procedure):

 $R_f = 0.35$ (1:10 EtOAc/Hexane)

<u>Back to table of starting materials</u> 1,1-Di-p-tolyl-3-(5-(trimethylsilyl)furan-2-yl)propan-1-ol, 1b

The title compound was prepared according to General procedure C but use 3.0 eq. Grignard reagent to give **1b** (196.9 mg, 0.52 mmol, 21%) as a yellow oil.

¹**H** NMR (300 MHz, CDCl₃) δ 7.32 (d, 4H, J = 8.2 Hz), 7.12 (d, 4H, J = 8.0 Hz), 6.50 (d, 1H, J = 3.1 Hz), 5.95 (d, 1H, J = 3.1 Hz), 2.70 - 2.58 (m, 4H), 2.32 (s, 6H), 0.23 (s, 9H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 160.4, 158.5, 143.9, 136.5, 128.9, 125.9, 120.4, 104.7, 77.7, 39.9, 23.1, 21.0, -1.5.

See NMR Spectra

HRMS (*m*/*z*): (EI) calc'd for C₂₄H₃₀O₂Si [M]⁺ 378.2009, found 378.2007

IR (ATR) v_{max}: 3548, 3020, 2960, 1246, 834, 754 cm⁻¹

TLC: $R_f = 0.21$ (1:20 EtOAc/Hexane)

<u>Back to table of starting materials</u> 1,1-Di-m-tolyl-3-(5-(trimethylsilyl)furan-2-yl)propan-1-ol, 1c

The title compound was prepared according to General procedure C but use 3.0 eq. Grignard reagent to give **1c** (248.4 mg, 0.66 mmol, 17%) as a yellow solid.

¹**H NMR** (400 MHz, CDCl₃) δ 7.27 (m, 2H), 7.22 - 7.20 (m, 4H), 7.06 - 7.03 (m, 2H), 6.51 (d, 1H, *J* = 3.1 Hz), 5.97 (d, 1H, *J* = 3.1 Hz), 2.69 - 2.59 (m, 4H), 2.34 (s, 6H), 0.23 (s, 9H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 160.4, 158.5, 146.6, 137.8, 128.1, 127.7, 126.6, 123.1, 120.4, 104.7, 77.9, 40.0, 23.1, 21.7, -1.5.

See NMR Spectra

HRMS (*m*/*z*): (EI) calc'd for C₂₄H₃₀O₂Si [M]⁺ 378.2009, found 378.2010

IR (ATR) v_{max}: 3543, 3028, 2952, 2859, 1251, 837, 775, 704 cm⁻¹

MP: 53±1 °C

TLC: $R_f = 0.21$ (1:20 EtOAc/Hexane)

<u>Back to table of starting materials</u> 1,1-Bis(3,5-dimethylphenyl)-3-(furan-2-yl)propan-1-ol, 1d

The title compound was prepared according to General procedure C but use 3.0 eq. Grignard reagent to give **1d** (241.0 mg, 0.59 mmol, 15%) as a white solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.05 (s, 4H), 6.87 (s, 2H), 6.51 (d, 1H, *J* = 3.1 Hz), 5.97 (d, 1H, *J* = 3.1 Hz), 2.67 - 2.56 (m, 4H), 2.29 (s, 12H), 0.23 (s, 9H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 160.6, 158.5, 146.7, 137.6, 128.5, 123.7, 120.4, 104.7, 77.8, 40.0, 23.1, 21.5, -1.5.

<u>See NMR Spectra</u>

HRMS (*m*/*z*): (EI) calc'd for C₂₆H₃₄O₂Si [M]⁺ 406.2322, found 406.2324

IR (ATR) v_{max}: 3543, 2953, 2864, 1249, 837, 751 cm⁻¹

MP: 92±1 °C

TLC: $R_f = 0.25$ (1:20 EtOAc/Hexane)

<u>Back to table of starting materials</u> 1,1-Bis(4-(tert-butyl)phenyl)-3-(5-(trimethylsilyl)furan-2-yl)propan-1-ol, 1e

The title compound was prepared according to General procedure C but use 3.0 eq. Grignard reagent to give **1e** (739.8 mg, 1.60 mmol, 40%) as a yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.38 - 7.32 (m, 8H), 6.50 (d, 1H, J = 3.1 Hz), 5.96 (d, 1H, J = 3.1 Hz), 2.70 - 2.60 (m, 4H), 1.30 (s, 18H), 0.23 (s, 9H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 160.5, 158.4, 149.6, 143.6, 125.7, 125.1, 120.4, 104.65, 77.7, 40.0, 34.4, 31.3, 23.1, -1.5.

See NMR Spectra

HRMS (*m*/*z*): (EI) calc'd for C₃₀H₄₂O₂Si [M]⁺ 462.2948, found 462.2947

IR (ATR) v_{max}: 3555, 2959, 2865, 1247, 838, 756 cm⁻¹

TLC: $R_f = 0.25$ (1:20 EtOAc/Hexane)

<u>Back to table of starting materials</u> 1,1-Bis(4-fluorophenyl)-3-(5-(trimethylsilyl)furan-2-yl)propan-1-ol, 1f

The title compound was prepared according to General procedure C but use 3.0 eq. Grignard reagent to give **1f** (48.9 mg, 0.13 mmol, 7%) as a yellow oil.

¹**H** NMR (300 MHz, CDCl₃) δ 7.41 - 7.36 (m, 4H), 7.04 - 6.98 (m, 4H), 6.50 (d, 1H, J = 4.1 Hz), 5.95 (d, 1H, J = 4.1 Hz), 2.63 (m, 4H), 0.23 (s, 9H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 161.8 (d, J = 247.3 Hz), 159.7, 158.8, 142.3 (d, J = 3.1 Hz), 127.7 (d, J = 8.0 Hz), 120.4, 115.1 (d, J = 21.3 Hz), 105.0, 65.8, 40.1, 22.9, -1.5.

See NMR Spectra

HRMS (*m*/*z*): (EI) calc'd for C₂₂H₂₆O₂Si [M]⁺ 386.1508, found 386.1510

IR (ATR) v_{max}: 3467, 2956, 1502, 1224, 1160, 832, 574 cm⁻¹

TLC: $R_f = 0.25$ (1:10 EtOAc/Hexane)

Back to table of starting materials

2-Methyl-4-(5-(trimethylsilyl)furan-2-yl)butan-2-ol, 1g

The title compound was prepared according to General procedure B from ethyl 3-(2-furyl)propionate (0.48 mL, 3.0 mmol) but use 2.2 eq. MeLi, 2.2 eq. n-BuLi and 2.5 eq. TMSCl to give **1g** (301.4 mg, 1.33 mmol, 44%) as a yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ 6.52 (d, 1H, J = 3.1 Hz), 5.98 (d, 1H, J = 3.1 Hz), 2.80 - 2.74 (m, 2H), 1.88 - 1.82 (m, 2H), 1.27 (s, 6H), 0.24 (s, 9H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 160.4, 158.4, 120.4, 104.7, 70.6, 41.6, 29.2, 23.3, -1.5.

<u>See NMR Spectra</u>

HRMS (*m/z*): (EI) calc'd for C₁₂H₂₂O₂Si [M]⁺ 226.1383, found 226.1381

IR (ATR) v_{max}: 3423, 2970, 1755, 1119, 928, 839 cm⁻¹

TLC: $R_f = 0.45$ (1:4 EtOAc/Hexane)

<u>Back to table of starting materials</u> 3-Ethyl-1-(5-(trimethylsilyl)furan-2-yl)pentan-3-ol, 1h

The title compound was prepared according to General procedure C to give **1h** (146.4 mg, 1.74 mmol, 24%) as a yellow oil.

¹**H NMR** (300 MHz, CDCl₃) δ 6.52 (d, 1H, *J* = 3.1 Hz), 5.98 (d, 1H, *J* = 3.1 Hz), 2.75 - 2.66 (m, 2H), 1.84 - 1.75 (m, 2H), 1.51 (q, 4H, *J* = 7.5 Hz), 0.89 (t, 6H, *J* = 7.5 Hz), 0.24 (s, 9H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 160.8, 158.5, 120.5, 104.7, 74.4, 36.2, 31.0, 22.6, 7.9, -1.4.

<u>See NMR Spectra</u>

HRMS (*m/z*): (EI) calc'd for C₁₄H₂₆O₂Si [M]⁺ 254.1696, found 254.1698

IR (ATR) v_{max}: 3453, 2968, 2878, 1760, 926, 841 cm⁻¹

TLC: $R_f = 0.28$ (1:10 EtOAc/Hexane)

The title compound was prepared according to General procedure B to give **1i** (653.5 mg, 2.1 mmol, 60%) as a yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ 6.52 (d, 1H, J = 3.1 Hz), 5.98 (d, 1H, J = 3.1 Hz), 2.72 - 2.68 (m, 2H), 1.82 - 1.78 (m, 2H), 1.49 - 1.45 (m, 4H), 1.35 - 1.25 (m, 9H), 0.92 (t, 6H, J = 6.7 Hz), 0.24 (s, 9H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 160.7, 158.4, 120.4, 104.6, 74.1, 38.8, 37.1, 25.7, 23.3, 22.5, 14.1, -1.5.

<u>See NMR Spectra</u>

HRMS (*m/z*): (EI) calc'd for C₁₈H₃₄O₂Si [M]⁺ 310.2323, found 310.2323

IR (ATR) v_{max}: 3423, 2956, 2863, 1247, 837, 780, 755 cm⁻¹

TLC: $R_f = 0.18$ (1:20 EtOAc/Hexane)

The title compound was prepared according to General procedure C to give **1j** (174.6 mg, 0.62 mmol, 31%) as an orange oil.

¹**H NMR** (400 MHz, CDCl₃) δ 6.52 (d, 1H, J = 3.1 Hz), 5.98 (d, 1H, J = 3.1 Hz), 2.75 - 2.71 (m, 2H), 2.01 - 1.91 (m, 2H), 1.89 - 1.84 (m, 2H), 0.98 (d, 6H, J = 7.0 Hz), 0.96 (d, 6H, J = 7.0 Hz), 0.24 (s, 9H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 160.9, 158.4, 120.4, 104.4, 34.2, 31.5, 23.4, 17.5, 17.2, - 1.5. (Hydroxyl carbon peak not observed: 50-90 ppm)

<u>See NMR Spectra</u>

HRMS (*m*/*z*): (EI) calc'd for C₁₆H₃₀O₂Si [M]⁺ 282.2009, found 282.2008

IR (ATR) v_{max}: 3494, 2959, 1248, 1007, 837, 755 cm⁻¹

TLC: $R_f = 0.25$ (1:15 EtOAc/Hexane)

Back to table of starting materials 1-(2-(5-(Trimethylsilyl)furan-2-yl)ethyl)cyclopentan-1-ol, 1k

The title compound was prepared according to General procedure C but use 6.0 eq. Grignard reagent, 2.2 eq. n-BuLi and 2.3 eq. TMSCl to give **1k** (467.5 mg, 1.85 mmol, 53%) as a yellow oil.

¹**H** NMR (400 MHz, CDCl₃) δ 6.52 (d, 1H, J = 3.1 Hz), 5.98 (d, 1H, J = 3.1 Hz), 2.88 – 2.76 (m, 2H), 1.97 – 1.93 (m, 2H), 1.83 – 1.57 (m, 8H, overlapped with H₂O), 0.24 (s, 9H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 160.6, 158.4, 120.4, 104.7, 82.1, 39.7, 39.5, 23.8, 23.7, -1.5.

<u>See NMR Spectra</u>

HRMS (*m/z*): (EI) calc'd for C₁₄H₂₄O₂Si [M]⁺ 252.1540, found 252.1539

IR (ATR) v_{max}: 3434, 2952, 1750, 1102, 984, 846 cm⁻¹

TLC: $R_f = 0.20$ (1:10 EtOAc/Hexane)

<u>Back to table of starting materials</u> 1-(2-(5-(Trimethylsilyl)furan-2-yl)ethyl)cyclopentan-1-ol, 11

The title compound was prepared according to General procedure C but use 6.0 eq. Grignard reagent, 2.2 eq. n-BuLi and 2.3 eq. TMSCl to give **1l** (312.9 mg, 1.17 mmol, 20%) as a yellow solid.

¹**H NMR** (400 MHz, CDCl₃) δ 6.51 (d, 1H, J = 3.1 Hz), 5.97 (d, 1H, J = 3.1 Hz), 2.78 - 2.74 (m, 2H), 1.83 - 1.79 (m, 2H), 1.64 - 1.42 (m, 10H, overlapped with H₂O), 0.24 (s, 9H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 160.8, 158.4, 120.4, 104.6, 71.1, 37.4, 25.8, 22.2, 22.0, -1.5.

<u>See NMR Spectra</u>

HRMS (*m*/*z*): (EI) calc'd for C₁₅H₂₆O₂Si [M]⁺ 266.1696, found 266.1699

IR (ATR) v_{max}: 3269, 2932, 2861, 1246, 833, 786, 758 cm⁻¹

TLC: $R_f = 0.25$ (1:10 EtOAc/Hexane)

The title compound was prepared according to General procedure C to give **1m** (721.6 mg, 2.59 mmol, 78%) as a yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ 6.52 (d, 1H, *J* = 3.1 Hz), 5.97 (d, 1H, *J* = 3.1 Hz), 5.92 - 5.81 (m, 2H), 5.18 - 5.12 (m, 4H), 2.79 - 2.74 (m, 2H), 2.33 - 2.23 (m, 4H), 1.86 - 1.82 (m, 2H), 0.24 (s, 9H).

¹³C{¹H} NMR (101 MHz, CDCl₃) *δ* 160.3, 158.5, 133.4, 120.4, 119.0, 104.7, 73.1, 43.6, 37.0, 22.4, -1.5.

See NMR Spectra

HRMS (*m/z*): (EI) calc'd for C₁₆H₂₆O₂Si [M]⁺ 278.1696, found 278.1697

IR (ATR) v_{max}: 3457, 3075, 2955, 1757, 1247, 918, 840, 757 cm⁻¹

TLC: $R_f = 0.15$ (1:15 EtOAc/Hexane)

Back to table of starting materials

3-(5-(Trimethylsilyl)furan-2-yl)propan-1-ol, 1n

The title compound was prepared based on a literature method,² to afford the pure alcohol (580.1 mg, 4.60 mmol, 98%) as a colorless oil. Then, according to the second step of General procedure C to 1p (448.4 mg, 2.26 mmol, 45%) as a yellow oil.

¹**H** NMR (400 MHz, CDCl₃) δ 6.52 (d, 1H, J = 3.2 Hz), 6.00 (d, 1H, J = 3.2 Hz), 3.70 (t, 2H, J = 6.5 Hz), 2.76 (t, 2H, J = 8.0 Hz), 1.92 - 1.89 (m, 2H), 0.24 (s, 9H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 159.9, 158.6, 120.4, 105.1, 62.3, 31.1, 24.5, -1.6.

See NMR Spectra

HRMS (*m*/*z*): (EI) calc'd for C₁₀H₁₈O₂Si [M]⁺ 198.1070, found 198.1070

IR (ATR) v_{max}: 2335, 2595, 1248, 835, 755 cm⁻¹

TLC: $R_f = 0.28$ (1:4 EtOAc/Hexane)

Back to table of starting materials

3-(5-(Trimethylsilyl)furan-2-yl)propan-1-ol, 10

The title compound was prepared based on a literature method,³ to afford the pure alcohol. Then, according to the second step of General procedure D but from 4-(furan-2-yl)butan-1-ol (616 mg, 4.39 mmol) to give 1q (90mg, 0.424 mmol, 42.4 %) as a yellowish oil.

¹**H NMR** (400 MHz, CDCl₃) δ 6.50 (d, J = 3.0 Hz, 1H), 5.96 (d, J = 2.8 Hz, 1H), 4.68 - 4.64 (m, 1H), 3.62 - 3.57 (m, 1H), 3.45 - 3.40 (m, 1H), 2.67 (t, J = 7.2 Hz, 2H), 1.76 - 1.61 (m, 4H), 0.23 (s, 9H).

¹³C{¹H} NMR (101 MHz, CDCl₃ with 0.05% v/v TMS) δ 160.6, 158.5, 120.5, 105.1, 62.9, 32.4, 28.1, 24.5, -1.4.

See NMR Spectra

HRMS (m/z): (EI) calc'd for C₁₁H₂₀O₂Si [M]⁺ 212.1227, found 212.1227

IR (ATR) v_{max}: 3393, 2926, 2160, 1714, 1495, 841 cm⁻¹

TLC: $R_f = 0.26$ (1:10 EtOAc/Hexane)

<u>Back to table of starting materials</u> 1-Phenyl-1-(m-tolyl)-3-(5-(trimethylsilyl)furan-2-yl)propan-1-ol, 1p

The title compound was prepared according to General procedure C to give **1n** (159 mg, 0.44 mmol, 43%) as a yellow oil, and the reactant used is 3-(furan-2-yl)-1-phenylpropan-1-one. The preparation of 3-(furan-2-yl)-1-phenylpropan-1-one from furfural was according to a previous literature.⁴

¹**H** NMR (400 MHz, CDCl₃) δ 7.46 – 7.26 (m, 6H), 7.26 – 7.19 (m, 3H), 7.07 – 7.05 (m, 1H), 6.51 (dd, 1H, J = 3.1, 1.9 Hz), 5.97 (dd, 1H, J = 2.5 Hz), 2.66 – 2.64 (m, 4H), 2.34 (d, 3H, J = 1.8 Hz), 0.24 (s, 9H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 160.5, 158.7, 146.8, 146.7, 138.0, 128.4, 128.3, 127.9, 127.1, 126.9, 126.2, 123.3, 120.6, 104.9, 78.1, 40.1, 23.2, 21.8, -1.4.

See NMR Spectra

HRMS (*m*/*z*): (EI) calc'd for C₁₆H₂₆O₂Si [M]⁺ 364.1853, found 364.1855

IR (ATR) v_{max}: 3304, 3209, 3164, 3075, 2988, 2752, 2554, 2506, 2414, 1045, 461 cm⁻¹

MP: 67-68 °C

TLC: $R_f = 0.43$ (1:10 EtOAc/Hexane)

The title compound was prepared according to General procedure C to give **10** (159 mg, 0.44 mmol, 43%) as a yellow oil using methyl 4-(furan-2-yl)butanoate. The preparation of methyl 4-(furan-2-yl)butanoate from furan was according to a previous literature.^{3,5}

¹**H** NMR (500 MHz, CDCl₃) δ 7.40 - 7.38 (m, 4H), 7.31 - 7.28 (m, 4H), 7.23 - 7.20 (m, 2H), 6.50 (d, 1H, J = 3.1 Hz), 5.92 (d, 1H, J = 3.0 Hz), 2.68 (t, 2H, J = 7.3 Hz), 2.34 - 2.31 (m, 2H), 1.69 - 1.63 (m, 2H), 0.23 (s, 9H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 160.2, 158.4, 146.9, 128.1, 126.8, 126.0, 120.4, 105.1, 78.2, 41.3, 28.2, 22.4, -1.5.

See NMR Spectra

HRMS (*m/z*): (EI) calc'd for C₂₃H₂₈O₂Si [M]⁺ 364.1853, found 364.1850

IR (ATR) v_{max}: 3565, 3453, 2960, 1492, 1448, 1250, 841, 754, 700 cm⁻¹

TLC: $R_f = 0.25$ (1:10 EtOAc/Hexane)

<u>Back to table of starting materials</u> 1,1-Diphenyl-5-(5-(trimethylsilyl)furan-2-yl)pentan-1-ol, 1r

The title compound was prepared according to General procedure C to give **1r** (184 mg, 0.49 mmol, 39%) as a yellow oil using ethyl 5-(furan-2-yl)pentanoate. The preparation of ethyl 5-(furan-2-yl)pentanoate from ethyl 4-bromobutyrate was according to a previous literature.⁶

¹**H** NMR (400 MHz, CDCl₃) δ 7.43 – 7.38 (m, 5H), 7.30 (td, 5H, *J* = 6.9, 1.7 Hz), 7.24 – 7.19 (m, 2H), 6.49 (d, 1H, *J* = 3.0 Hz), 5.91 (dd, 1H, *J* = 3.0, 0.9 Hz), 2.62 (t, 2H, *J* = 7.7 Hz), 2.33 – 2.27 (m, 2H), 1.68 (quint, 2H, *J* = 7.6 Hz), 1.42 – 1.32 (m, 2H), 0.22 (s, 9H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 160.75, 158.39, 147.21, 128.29, 126.94, 126.15, 120.49, 104.87, 78.36, 41.85, 28.56, 28.25, 23.63, -1.38.

See NMR Spectra

HRMS (*m/z*): (EI) calc'd for C₂₄H₃₀O₂Si [M]⁺ 378.2010, found 378.2006

IR (ATR) v_{max}: 3440, 2955, 2932, 2861, 1465, 1249, 1010, 931, 841, 756 cm⁻¹

TLC: $R_f = 0.39$ (1:10 EtOAc/Hexane)

Back to table of starting materials

1-Phenyl-3-(5-(trimethylsilyl)furan-2-yl)propan-1-ol, 3a

The title compound was prepared according to General procedure D from 3-(furan-2-yl)propanal⁷ (300 mg, 2.42 mmol) to give **3a** (21.9 mg, 0.11 mmol, 4.4 %) as a yellowish oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.37 - 7.28 (m, 5H), 6.52 (d, 1H, *J* = 3.0 Hz), 5.99 (d, 1H, *J* = 3.1 Hz), 4.75 - 4.71 (m, 1H), 2.82 - 2.66 (m, 2H), 2.19 - 2.03 (m, 2H), 0.24 (s, 9H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 159.8, 158.6, 144.4, 128.5, 127.7, 125.9, 120.4, 105.1, 73.8, 37.2, 24.6, -1.5.

See NMR Spectra

HRMS (*m/z*): (EI) calc'd for C₁₆H₂₂O₂Si [M]⁺ 274.1383, found 274.1386

IR (ATR) v_{max}: 3370, 3027, 2953, 1253, 845, 724 cm⁻¹

TLC: $R_f = 0.33$ (1:10 EtOAc/Hexane)

Back to table of starting materials 1-(p-Tolyl)-3-(5-(trimethylsilyl)furan-2-yl)propan-1-ol, 3b OH TMS

The title compound was prepared according to General procedure E from 3-(furan-2-yl)propanal⁷ (400 mg, 3.23 mmol) to give **3b** (30 mg, 0.104 mmol, 3.2 %) as a yellowish. oil.

¹**H NMR** (300 MHz, CDCl₃ with 0.05% v/v TMS) δ 7.43 - 7.09 (m, 4H), 6.52 (d, 1H, *J* = 3.1 Hz), 6.00 (d, 1H, *J* = 3.1 Hz), 4.69 (t, 1H, *J* = 6.1 Hz), 2.79 - 2.72 (m, 2H), 2.37 (s, 3H), 2.20 - 2.04 (m, 2H), 0.24 (s, 9H).

¹³C{¹H} NMR (101 MHz, CDCl₃ with 0.05% v/v TMS) δ 160.1, 158.7, 138.4, 128.6, 128.1, 127.3, 126.7, 123.1, 120.5, 105.3, 74.0, 37.3, 24.8, 21.6, -1.4.

See NMR Spectra

HRMS (*m*/*z*): (EI) calc'd for C₁₇H₂₄O₂Si [M]⁺ 288.1540, found 288.1537

IR (ATR) v_{max}: 3364, 3030, 2966, 1720, 1009, 838 cm⁻¹

TLC: $R_f = 0.42$ (1:10 EtOAc/Hexane)

Back to table of starting materials

1-(5-(Trimethylsilyl)furan-2-yl)heptan-3-ol, 3c

The title compound was prepared according to General procedure D from 3-(furan-2-yl)propanal⁷ (400 mg, 3.23 mmol) to give 3c (199.0 mg, 0.781 mmol, 32.3 %) as a yellowish oil.

¹**H NMR** (400 MHz, CDCl₃) δ 6.52 (d, 1H, *J* = 3.1 Hz), 5.98 (d, 1H, *J* = 3.1 Hz), 3.67 - 3.60 (m, 1H), 2.86 - 2.71 (m, 2H), 1.93 - 1.69 (m, 2H), 1.50 - 1.30 (m, 6H), 0.93 - 0.89 (m, 3H), 0.24 (s, 9H).

¹³C{¹H} NMR (101 MHz, CDCl₃ with 0.05% v/v TMS) δ 160.2, 158.5, 120.4, 105.0, 71.3, 37.1, 35.6, 27.8, 24.5, 22.7, 14.0, -1.6.

See NMR Spectra

HRMS (*m/z*): (EI) calc'd for C₁₄H₂₆O₂Si [M]⁺ 254.1696, found 254.1693

IR (ATR) v_{max} : 3361, 2957, 2932, 2858, 1250, 1005, 840, 725 cm⁻¹

TLC: R_f = 0.29 (1:10 EtOAc/Hexane)

<u>Back to table of starting materials</u> 4-Methyl-1-(5-(trimethylsilyl)furan-2-yl)pentan-3-ol, 3d

The title compound was prepared according to General procedure E from 3-(furan-2-yl)propanal⁷ (300 mg, 2.42 mmol) but used 2.5 eq. *n*-BuLi to give **3d** (121.6 mg, 0.51 mmol, 20.9 %) as a yellowish oil.

¹**H NMR** (500 MHz, CDCl₃) δ 6.52 (d, J = 3.0 Hz, 1H), 5.99 (d, J = 3.0 Hz, 1H), 3.41 - 3.37 (m, 1H), 2.89 - 2.83 (m, 1H), 2.77 - 2.71 (m, 1H), 1.90 - 1.83 (m, 1H), 1.73 - 1.65 (m, 2H), 0.92 (d, J = 6.9 Hz, 6H), 0.24 (s, 9H).

¹³C{¹H} NMR (101 MHz, CDCl₃ with 0.05% v/v TMS) δ 160.3, 158.5, 120.4, 105.0, 76.1, 33.6, 32.5, 24.8, 18.7, 17.2, -1.5.

See NMR Spectra

HRMS (m/z): (EI) calc'd for C₁₃H₂₄O₂Si [M]⁺ 240.1540, found 240.1540

IR (ATR) v_{max}: 3354, 3110, 2962, 1594, 1250, 843 cm⁻¹

TLC: $R_f = 0.35$ (1:10 EtOAc/Hexane)

Back to table of starting materials 1-Cyclopentyl-3-(5-(trimethylsilyl)furan-2-yl)propan-1-ol, 3e OH

The title compound was prepared according to General procedure E from 3-(furan-2-yl)propanal⁷ (400 mg, 3.23 mmol) but used 1.3 eq. Grignard reagent and 2.5 eq. *n*-BuLi to give **3e** (55.0 mg, 0.21 mmol, 6.41 %) as a yellowish oil.

¹**H** NMR (500 MHz, CDCl₃) δ 6.52 (d, 1H, *J* = 3.1 Hz), 5.99 (d, 1H, *J* = 2.9 Hz), 3.45 – 3.39 (m, 1H), 2.90 – 2.72 (m, 2H), 1.95 – 1.59 (m, 8H), 1.38 – 1.17 (m, 3H), 0.24 (s, 9H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 160.4, 158.5, 120.4, 105.0, 75.3, 46.4, 34.4, 29.1, 28.6, 25.7, 25.6, 24.6, -1.6.

See NMR Spectra

HRMS (*m*/*z*): (EI) calc'd for C₁₅H₂₆O₂Si [M]⁺ 266.1696, found 266.1697

IR (ATR) v_{max}: 3370, 2959, 2869, 1253, 1008, 835, 758 cm⁻¹

TLC: $R_f = 0.28$ (1:10 EtOAc/Hexane)

<u>Back to table of starting materials</u> 1-Cyclopentyl-3-(5-(trimethylsilyl)furan-2-yl)propan-1-ol, 3f OH

The title compound was prepared according to General procedure D from 3-(furan-2-yl)propanal⁷ (300 mg, 2.42 mmol) but used 2.5 eq. n-BuLi to give **3f** (40.2 mg, 0.16 mmol, 6.5 %) as a yellowish oil.

¹**H NMR** (300 MHz, CDCl₃) δ 6.52 (d, 1H, J = 3.1 Hz), 5.99 (d, 1H, J = 3.1 Hz), 3.21 (dd, 1H, J = 10.6, 1.8 Hz), 2.92 (ddd, 1H, J = 14.3, 8.6, 4.8 Hz), 2.73 (dt, 1H, J = 15.6, 8.1 Hz), 1.98 - 1.87 (m, 1H), 1.64 - 1.51 (m, 1H), 0.90 (s, 9H), 0.24 (s, 9H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 160.4, 158.5, 120.4, 105.1, 79.1, 34.9, 30.0, 25.6, -1.5. (Quaternary carbon peak was not observed)

See NMR Spectra

HRMS (m/z): (EI) calc'd for C₁₄H₂₆O₂Si [M]⁺ 254.1696, found 254.1693

IR (ATR) v_{max}: 3417, 2956, 2906, 2870, 1763, 1250, 844 cm⁻¹

TLC: $R_f = 0.55$ (1:10 EtOAc/Hexane)

<u>Back to table of starting materials</u> 2-Methyl-5-(5-(trimethylsilyl)furan-2-yl)pent-1-en-3-ol, 3g

The title compound was prepared according to General procedure E from 3-(furan-2-yl)propanal⁷ (300 mg, 2.42 mmol) but used 2.5 eq. n-BuLi to give 3g (53.7 mg, 0.23 mmol, 9.3 %) as a yellowish oil.

¹**H NMR** (500 MHz, CDCl₃) δ 6.51 (d, 1H, J = 3.1 Hz), 5.99 (d, 1H, J = 3.1 Hz), 4.98 - 4.97 (m, 1H), 4.87 - 4.87 (m, 1H), 4.12 - 4.10 (m, 1H), 2.79 - 2.67 (m, 2H), 1.98 - 1.83 (m, 2H), 1.74 (s, 3H), 0.24 (s, 9H).

¹³C{¹H} NMR (101 MHz, CDCl₃) *δ* 174.0, 160.0, 147.2, 120.4, 111.2, 105.0, 75.1, 33.1, 24.4, 17.6, -1.6.

See NMR Spectra

HRMS (m/z): (EI) calc'd for C₁₃H₂₂O₂Si [M]⁺ 238.1383, found 238.1382

IR (ATR) v_{max}: 3354, 3074, 2957, 1591, 1252, 842 cm⁻¹

TLC: R_f = 0.29 (1:10 EtOAc/Hexane)

Back to table of starting materials

1-(5-(Trimethylsilyl)furan-2-yl)hex-5-en-3-ol, 3h

The title compound was prepared according to General procedure E from 3-(furan-2-yl)propanal⁷ (248 mg, 2.00 mmol) but reflux when the first step to give **3h** (60.9 mg, 0.26 mmol, 13 %) as a yellowish oil.

¹**H NMR** (400 MHz, CDCl₃) δ 6.52 (d, 1H, J = 3.1 Hz), 5.99 (d, 1H, J = 3.1 Hz), 5.88 - 5.77 (m, 1H), 5.17 - 5.16 (m, 1H), 5.13 - 5.12 (m, 1H), 3.73 - 3.66 (m, 1H, J = 8.0, 4.3 Hz), 2.88 - 2.72 (m, 2H), 2.36 - 2.15 (m, 2H), 1.91 - 1.74 (m, 2H), 0.24 (s, 9H).

¹³C{¹H} NMR (101 MHz, CDCl₃) *δ* 160.0, 158.5, 134.6, 120.4, 118.3, 105.0, 70.0, 41.9, 35.0, 24.5, -1.6.

See NMR Spectra

HRMS (*m*/*z*): (EI) calc'd for C₁₃H₂₂O₂Si [M]⁺ 238.1383, found 238.1381

IR (ATR) v_{max}: 3357, 2956, 1248, 1008, 837, 755 cm⁻¹

TLC: $R_f = 0.15$ (1:10 EtOAc/Hexane)

<u>Back to table of starting materials</u> (R)-2-Methyl-N-((S)-1-(5-(trimethylsilyl)furan-2-yl)pentan-3-yl)propane-2-sulfinamide, 6

The title compound was prepared according to a modified General procedure E. In the first step,⁸ 6 equiv. of Grignard reagent was added at -50 °C and warmed to rt to stir overnight. In the second step, 6.0 equiv. *n*-BuLi and 4.0 equiv TMSCl were added. Product **6** (112 mg, 0.435 mmol, 99%) was obtained as a yellowish oil.

¹**H** NMR (300 MHz, CDCl₃) δ 6.51 (d, J = 3.0 Hz, 1H), 5.98 – 5.96 (m, 1H), 3.22 – 3.01 (m, 2H), 2.78 – 2.71 (m, 2H), 1.98 – 1.63 (m, 4H), 1.22 (s, 9H), 0.98 – 0.93 (m, 3H), 0.24 (s, 9H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 159.9, 158.6, 120.4, 105.0, 57.7, 55.9, 33.3, 29.2, 24.2, 22.7, 10.1, -1.6.

See NMR Spectra

HRMS (*m/z*): (EI) calc'd for C₁₆H₃₁NO₂SiS [M]⁺ 329.1839, found 329.1839

IR (ATR) v_{max}: 3217, 2957, 1589, 1496, 1363, 1249, 1052, 840 cm⁻¹

TLC: $R_f = 0.20$ (1:1 EtOAc/Hexane)

5. Applications 5.1. Photoflow reaction

Figure S6. Schematic diagram for the photoflow reactor setup.

Starting material **1a** (351 mg, 1 mmol), Na₂-Eosin Y (6.9 mg, 1 mol%), and diphenyl phosphate (25 mg) were added to a vial, to which a pre-treated ethanol (15 mL), pre-treated by gently bubbling with oxygen for an hour, was added. Subsequently, the resulting solution was transferred to a syringe, where it was pumped to the T-mixer, connected to the inlet of the photoreactor, at 6.5 ml/h through a syringe pump. Simultaneously, oxygen was withdrawn from a balloon using a syringe and an O₂ gas flow of 365 μ L/min was maintained to the T-mixer using a syringe pump. The green LEDs were turned on as well as the cooling machine to ensure a consistent reaction temperature. After the reaction mixture were all pumped, the inlet was then connected to and HPLC pump with a flow rate of 0.3 ml/min. The photoflow reactor was allowed to continue to flow until all reaction mixture had been collected in a round bottom flask. After completion, the mixture is concentrated in vacuo and the crude product was purified by filtration over a short pad of silica (KM3 scientific silica gel 45 – 75 µm, diethyl ether) to give **2a** (291 mg, 0.99 mmol, 99%) as a yellow solid.

Figure S7. Reaction setup using the photoflow system: (A) full system; (B) photoflow reactor; and (C) "turned on" light source

Photo reactor:	PANCHUM, FLPR-1000
Syringe pump:	LongerPump, LSP01-1A
	KD Scientific, KDS100
HPLC pump:	DIONEX, IP-25 Isocratic Pump
Mixer:	INPAC, U-428
Tube:	PFA, 1/16 (for injection) and 1/8 (after mix)

5.1.1 Calculation of Productivity

 $Productivity = Yield \ \times Flow \ rate \ \times Concentration$

$$= 0.99 \times 0.3 \frac{mL}{min} \times 0.067 \frac{mmol}{mL}$$
$$= 0.02 \frac{mmol}{min}$$

5.1.2 Calculation of Residence Time

Residence time $(t_r) = \frac{Reaction \ scale \ in \ mmol}{Productivity}$ $= \frac{1 \ mmol}{0.02 \ \frac{mmol}{min}}$

$$= 50 min$$

5.2. Solvent-free reaction

5.2.1 Procedure for TLC glass plate setup for irradiation under green LED

1a (15 mg, 0.0428 mmol) and Na₂-Eosin Y (0.3 mg, 1 mol%) were dissolved in ethanol in a sample vial. Then, the solution was loaded on the glass TLC plate. After ethanol volatilized, the reaction was placed into an aluminium coil equipped with the green LED strip. After completion of the reaction, the crude product was purified by flash column chromatography (KM3 scientific silica gel 45 – 75 μ m, diethyl ether) to give 2a (12.1, 0.041, 97%) as a yellow solid.

Figure S8. Reaction setup for TLC glass plate irradiation using green LED.

5.2.2. Procedure of TLC glass plate setup for sunlight exposure

1a (15 mg, 0.0428 mmol) and Na₂-Eosin Y (0.3 mg, 1 mol%) were dissolved with ethanol in sample vial. Then the solution was dropped on glass TLC. After ethanol volatilize, the reaction was under sunlight for 10 h. After completion of the reaction, the crude product was purified by flash column chromatography (KM3 scientific silica gel 45 – 75 μ m, diethyl ether) to give **2a** (11.5 mg, 0.039 mmol, 92%) as a yellow solid.

Figure S9. Reaction setup of TLC glass plate for sunlight exposure.

5.2.3. Procedure of silica coated setup for sunlight exposure

1a (15 mg, 0.0428 mmol), Na₂-Eosin Y (0.3 mg, 1 mol%) and silica (100 mg) were added to a vial. The solvent ethanol was added to the vial, then concentrated in vacuo. The reactants mixture was spread out on a petri dish. The reaction was placed under sunlight for 12 h (2021/08/22 06:30 - 18:30). After completion of the reaction, the crude product was purified by flash column chromatography (KM3 scientific silica gel 45 - 75 μ m, diethyl ether) to give **2a** (12.5 mg, 0.043 mmol, 99%) as a yellow solid.

Figure S10. Reaction setup for solvent-free silica-supported sunlight exposure.

Table S14.	Weather	during	solvent-free	sunlight	irradiation
14010 014.	vi cutifei	uuring	sorvent nee	Summent	maananon

	P	ress	temperature	dew point	RH		v	/D/WS		F	recp	Su	nShine	visibility	UVI	Cloud
觀測時間 (hour)	測站氣壓 (hPa)	海平面氣壓 (hPa)	無溫 (°C)	露點溫度 (°C)	相對溼度 (%)	風速 (m/s)	風向 (360degree)	最大陣風 (m/s)	最大陣風風向 (360degree)	降水量 (mm)	降水時數 (h)	日照時數 (h)	全天空日射量 (MJ/m [*])	能見度 (km)	紫外線指數	總雲量 (0~10)
ObsTime	StnPres	SeaPres	Temperature	Td dew point	RH	WS	WD	WSGust	WDGust	Precp	PrecpHour	SunShine	GloblRad	Visb	UVI	Cloud Amount
01	1007.8	1008.6	26.7	22.8	79	0.5	40	4.3	90	0.0	0.0		0.00		0	
02	1007.3	1008.1	26.3	22.4	79	0.6	110	3.7	80	0.0	0.0		0.00		0	
03	1007.1	1007.9	26.3	21.5	75	1.3	90	3.0	80	0.0	0.0		0.00		0	
04	1007.1	1007.9	26.2	21.9	77	1.9	80	3.3	80	0.0	0.0		0.00		0	
05	1007.0	1007.8	26.2	21.6	76	1.2	90	3.9	80	0.0	0.0		0.00		0	
06	1007.5	1008.3	26.1	21.3	75	0.5	80	2.6	70	0.0	0.0	0.1	0.02		0	
07	1007.9	1008.7	27.0	21.1	70	0.3	320	3.3	80	0.0	0.0	1.0	0.50		0	
08	1008.4	1009.2	29.1	21.6	64	0.8	90	3.0	110	0.0	0.0	1.0	1.39	10.0	1	2.0
09	1008.3	1009.1	30.9	23.6	65	1.8	290	3.6	270	0.0	0.0	1.0	2.18	11.0	4	4.0
10	1008.2	1009.0	30.8	24.7	70	2.3	290	4.3	290	0.0	0.0	1.0	3.03		7	
11	1008.2	1009.0	30.8	25.2	72	2.9	300	5.6	290	0.0	0.0	1.0	3.52	11.0	10	3.0
12	1008.0	1008.8	30.9	25.0	71	2.2	290	6.1	280	0.0	0.0	1.0	3.71		11	
13	1007.7	1008.5	31.0	25.4	72	1.7	280	6.2	290	0.0	0.0	1.0	3.74		11	
14	1006.9	1007.7	31.0	25.6	73	1.0	300	6.3	290	0.0	0.0	1.0	3.28	10.0	9	3.0
15	1006.3	1007.1	31.4	24.6	67	1.6	290	5.0	300	0.0	0.0	1.0	2.98		7	
16	1006.1	1006.9	31.1	25.0	70	2.4	300	5.6	270	0.0	0.0	1.0	2.24		4	
17	1005.5	1006.3	30.8	24.9	71	2.7	290	5.9	300	0.0	0.0	1.0	1.73	10.0	1	5.0
18	1006.0	1006.8	29.9	24.1	71	2.1	280	5.6	300	0.0	0.0	0.5	0.46		0	
19	1006.5	1007.3	29.6	24.3	73	1.0	300	3.5	270	0.0	0.0	0.0	0.04		0	

5.2.4. Silica loaded reaction mixture under normal household light irradiation

1a (1000 mg, 2.85 mmol), Na₂-Eosin Y (19.7 mg, 1 mol%) and silica (2000 mg) were added to a flask. The solvent ethanol was added to the flask, then concentrated in vacuo. The reactants mixture was spread out on a PET box. The reaction was placed under room lamp for 24 h. After completion of the reaction, the crude product was purified by flash column chromatography (KM3 scientific silica gel $45 - 75 \ \mu$ m, diethyl ether) to give **2a** (798.8 mg, 2.73 mmol, 95.8%) as a yellow solid.

Figure S11. Reaction setup for solvent-free silica-supported household light irradiation.

Figure S12. Reaction setup for solvent-free silica-supported lamp irradiation

Room lamp:	TLW, FOE-T8-2-65K-9W
Petri dish diameter:	5.5 (cm)
PP box:	LocknLock, HPL826, 248 X 180 X 93 mm
PET box:	SHUEI SHUN INDUSTRIAL, 336 X 165 X 150 mm

6. Preliminary Mechanism Studies

6.1. Control reactions

Table S15. Control reactions performed

	Eosin Y O ₂ (balloon) DOWEX 50X8-200	R Q L
TMS R R	green LED <11W 1:1 Ethanol-H ₂ O rt, 12 h	OLOX R
Entry	Condition	Yield (%)
1	without light	N.R.
2	without photocatalyst	N.R.
3	without oxygen	N.R.
4	without silyl group	15
5 a	ir bubble (stir for 12 h)	77
6 a	ir bubble (stir for 18 h)	99
7	water as solvent	47

Based on General procedure A, but the reaction conditions were changed accordingly as specified in the table.

6.2. Detection of formed singlet oxygen

9,10-Dimethylanthracene was known as a singlet oxygen trap. According to the General procedure A but added 2.0 eq. 9,10-dimethylanthracene(DMA). The cycloaddition product was 35% yield which was added 1, 3, 5-trimethoxybenzene as internal standard for NMR yield determination. This result clearly verify the formation of singlet oxygen and the NMR spectra correspond with Wang's group.⁹

Scheme S6. Using DMA as singlet oxygen trap

6.3. Light on/off experiment

To investigate what character does the light source play in this reaction, we tried to switch the light on and off to observe how the yield changes.

1a (1.0 eq.), Na₂-Eosin Y (1 mol%) and Dowex 50X8-200 (10 mol%) were added to a test tube, followed by purging with O2 for three times. The solvent (EtOH/H2O = 1/1) was added to the test tube before pretreament of oxygen gently bubbled for 1 h. The reaction was placed into an aluminum coil equipped with green LED strip. The mixture was stirred vigorously under irradiation for different times but total reaction time was fixed for 12 h. After completion of the reaction, the solution was extracted with EtOAc and dried with MgSO4, then concentrated in vacuo. The crude product was purified by flash column chromatography (KM3 scientific silica gel 45 - 75 μ m, diethyl ether) to give oxaspirolactone. And 4.55 μ L of 1, 1, 2, 2-tetrachloroethane was added to the vial as internal standard for NMR yield determination.

Table S16. Light on/off experiment

Entry	Irradiation time (min)	Total reaction time (h)	2a yield (%)
1	10	12	14
2	30	12	56
3	60	12	82
4	180	12	99
5	360	12	99
6	540	12	99
	720	12	99

Figure S13. Yields obtained from varying irradiation time.

6.3. Reaction monitoring

1a (1.0 eq.), Na₂-Eosin Y (1 mol%) and Dowex 50X8-200 (10 mol%) were added to a test tube, followed by purging with O2 for three times. The solvent (EtOH/H2O = 1/1) was added to the test tube, which was pre-treated with oxygen by bubbling gently for 1 h. The reaction was placed into an aluminium coil equipped with green LED strip. The mixture was stirred vigorously under continuous irradiation. After completion of the reaction, the solution was extracted with EtOAc and dried with MgSO4, then concentrated in vacuo. The crude product was purified by flash column chromatography (KM3 scientific silica gel 45 - 75 μ m, diethyl ether) to give oxaspirolactone 2a. Lastly, 4.55 μ L of 1,1,2,2-tetrachloroethane was added to the vial as internal standard for NMR yield determination.

Entry	Lights on (min)	Lights off (min)	1a residual content (%)	2a yield (%)
1	0	0	100	0
2	10	0	72	28
3	30	0	56	37
4	60	0	24	76
5	120	0	13	85
6	180	0	0	94

 Table S17. Lights on/off experiment.

Figure S14. Yields of product and recovery of starting materials in varying reaction times.

6.4. Plausible mechanism

Figure S15. Plausible mechanism for the synthesis of oxaspirolactones.

7. EcoScale and Green Metrics

7.1. EcoScale

7.1.1. EcoScale¹⁰ price calculation (for item 2)

To project the price of compound **1a**, the price was calculated from the prices of the reagents used for its preparation.

Total mmol of compound **1a** needed to prepare 10 mmol of product **2a** = 10 mmol product **2a**/Yield = 10 mmol **2a**/0.99 = $\underline{10.10 \text{ mmol } 2a}$

Descent	Price	MW	Total mmol	Price
Reagent	(USD)/bottle ^a	(g/mol)	of bottle	(USD)/mmol
Ethyl 3-(2-furanyl)propanoate	131.97/25 g	168.19	148.64	0.89
Trimethylsilane chloride	125.53/500 mL	108.64	3958.03	0.03
<i>n</i> -Butyl lithium (2.5 M in hexanes)	428.11/1000 mL	64.06	2500.00	0.17
Phenyl magnesium bromide				
(1 M in THF)	189.91/800 mL	181.31	800.00	0.24
Na ₂ -Eosin Y	74.03/25 g	691.85	36.14	2.05
Dowex 50X8-200 (4.83 mmol/g)	489.26/100 g		483.00	1.01

Table S18. Calculation of Price(USD)/mol for each reagent.

^aPrices are based on the Sigma-Aldrich website, accessed on September 14, 2022.

Price for each reagent needed to prepare 10.10 mmol of compound 1a

Scheme S7. Synthesis of starting materials 1a.

Baagant	Reaction	Viald for 1a	Amount (mmol) in	Price (USD) for
Keagent	Equiv.	1 leiu 101 1a	reaction	the reaction
Ethyl 3-(2-furanyl)propanoate	1.00	0.71	14.23	12.63
Trimethylsilane chloride	3.00	0.71	42.68	1.35
n-Butyl lithium	2.80	0.71	39.83	6.82
Phenyl magnesium bromide	2.50	0.71	35.56	8.44
Total	29.25			

Price for each reagent need to prepare 10 mmol of compound 2a

Scheme S8. Synthesis of oxaspirolactone 2a.

\mathbf{I}

Paagant	Reaction	Viald for 10	Amount (mmol) in	Price (USD) for
Keagent	Equiv.	1 leiu 101 1a	reaction	the reaction
Compound 1a	1.00	0.99	10.10	29.25
Na ₂ -Eosin Y	0.01	0.99	0.10	0.21
Dowex 50-X8	0.10	0.99	1.02	1.03
То	30.49			

Note: Oxygen is excluded in the calculations.

7.1.2. Screenshots of Prices from Sigma-Aldrich Website (accessed September 14, 2022)

Applications V Products V	Services 🗸 🦳 Support 🗸					Account	Quick Order	│ ेे 🛱 Cart 🚺
	W243507 🕨 Sigma-A	ldrich.						
Contra CH3	Ethyl 3-(fur	an-2-yl)	propionate					
All Photos (1)	Synonym(s): Ethyl 3-(2-furyl)propanoate Empirical Formula (Hill Nota C9H ₁₂ O ₃	ition):						
Documents	CAS Number:	10031-90-0	Molecular Weight:	168.19	FEMA N	imber:	2435	
↓ SDS	EC Number:	233-097-5	Council of Europe no.:	2091	MDL nur	nber:	MFCD00036496	
Q COO/COA	PubChem Substance ID:	24901078	Flavis number:	13.022				
E Specification Sheet	SKU	Pack Size	Availability			Price	Quantity	
More Documents >>	W243507-SAMPLE-K		We apologize but fulfillment and are working to minimize these de	delivery of this produ lays as quickly as poss	ct is delayed. We ible.	NT\$1,700.00	- +	0
	W243507-25G-K	25 G	Only 1 left in stock (more on	the way) Details		NT\$4,100.00	- +	0
	W243507-100G-K	100 G	We apologize but fulfillment and are working to minimize these de	delivery of this produ lays as quickly as poss	ct is delayed. We ible.	NT\$7,200.00	- +	0
	W243507-1KG-K	1 KG	We apologize but fulfillment and	delivery of this produ	ct is delayed. We	NT\$65,200.00		0

Figure S16. Screenshot of the Sigma-Alrich website for the price of ethyl 3-(furan-2-yl)propionate.

	V Type in Product N	James Product Nun	hers or CAS Numbers to see suggest	tions		0	æ	
	Type in roudeer	anico, moduce num	inclus, or GHD Humber's to see sugges			Ч.	v	
Applications ~ Products ~	Services ~ Support	tv			Account	v Quic	k Order	ेस्न Cart 🧕
	8.18737 ► Sigma	-Aldrich.						
сі н ₃ ссн ₃		methylsil	ane					
СНа	for synthesis							
All Photos (1)	Synonym(s): Chlorotrimethylsilane, T Linear Formula: (CH3)2SiCl	rimethylchlorosilane, T	rimethylsilyl chloride, TMCS					
Documents	CAS Number:	75-77-4	Molecular Weight:	108.64	MDL number:	MFCD00	000502	
↓ SDS	EC Index Number:	200-900-5						
Q COA/COQ	SKU	Pack Size	Availability		Price	Quantity		
Specification Sheet	8187370100	100 ML	 Estimated to ship on Septemb 	er 28, 2022	NT\$1,700.00	-	+	0
	8187370500	500 ML	 Estimated to ship on Septemb 	er 21, 2022	NT\$3,900.00	-	+	0
	8187379023	23 KG	 Estimated to ship on October 	12,2022	NT\$41,700.00	-	+	0
					Request a Bulk Orde	r /	Add to Carl	

Figure S17. Screenshot of the Sigma-Alrich website for the price of chlorotrimethylsilane.

\leftrightarrow \rightarrow C \oplus sigmaaldrich.com/	TW/en/product/al	ldrich/230707								Ľ 6	2 🖈 🖹 🛊 🖬 🌍
Merck	Products 🗸	Type in Product Na	mes, Product Num	bers, or CAS Nu	mbers to see suggestic	ons.			Q	¢	TW EN ~
Applications ~ Prod	lucts ~ Serv	rices ~ Support \	~					Account ~	Quic	k Order	ੇ⊒ Cart <mark>0</mark>
H ₃ C	Li	230707 ► Sigma-Al n-Butyllith ★★★★ 5.0 (2) 2.5 M in hexanes Synonym(s): n-But, Butyl lithium, Buty Linear Formula:	drich. nium solut Ilithium solution, Lithi	ition							
Documents <u>↓</u> SDS		CH ₃ (CH ₂) ₃ LI CAS Number: MDL number:	109-72-8 MFCD000094	Ma 414 Pu	olecular Weight: bChem Substance ID:	64.06 24853832	Beilstein: NACRES:		1209227 NA.22		
Q COO/COA		SKU	Pack Size	Availability				Price	Quantity		
Specification	on Sheet	230707-100ML	100 ML	 Available 	to ship on September	14, 2022 Details		NT\$3,300.00	-	+	0
More Doct	uments >>	230707-4X25ML	4 X 25 ML	Available	to ship on September	14, 2022 Details		NT\$3,800.00	-	+	0
		230707-1L	1 L	 Available 	to ship on September	14, 2022 Details		NT\$13,300.00	-	+	0
		230707-800ML	800 ML	Available	to ship on September	14, 2022 Details		NT\$14,200.00	-	+	0
		230707-8L	8 L	⊘ Estimate	d to ship on November	14, 2022		NT\$53,200.00	-	+	0
							Reque	st a Bulk Order	A	udd to Car	t

Figure S18. Screenshot of the Sigma-Alrich website for the price of *n*-butyllithium solution.

Products	• Type in Product Nan	nes, er oudet Numb	ers, of CA2	numbers to see suggestion	лт <u>ь</u> .			-4	W	IW EN V
Applications Products	Services ~ Support ~						Account ~	Quic	k Order	ੇ⊒ Cart <mark>0</mark>
	331376 🕨 Sigma-Ald	Irich.								
MgBr	Phenylmag	nesium b	oromi	de solution						
All Photos (1)	1.0 M IN THF Synonym(s): PhMgBr solution Linear Formula: C ₆ H ₅ MgBr									
Documents	CAS Number:	100-58-3		Molecular Weight:	181.31	Beilstein:		3588849		
<u>↓</u> SDS	MDL number:	MFCD000000	38	PubChem Substance ID:	24859956	NACRES:		NA.22		
Q COO/COA	SKU	Pack Size	Availabilit	у			Price	Quantity		
Specification Sheet	331376-50ML	50 ML	🕑 Avail	able to ship on September	14, 2022 Details		NT\$1,900.00	-	+	0
More Documents >>	331376-4X25ML		🕝 Estin	nated to ship on Novembe	r 28, 2022		NT\$2,600.00	-	+	0
	331376-100ML	100 ML	🕝 Avail	able to ship on September	14, 2022 Details		NT\$3,400.00	-	+	0
	331376-800ML	800 ML	Only	4 left in stock (more on th	e way) Details		NT\$5,900.00	-	+	0
						Peques	t a Bulk Orde		dd to Cart	

Figure S19. Screenshot of the Sigma-Alrich website for the price of phenyl magnesium bromide.

← → C a sigmaaldrich.com/TW/en/product/	/sial/e6003					C I	e 🖈 🗎 🕈 🗖 🌍
Products	Type in Product Name	s, Product Numbe	ers, or CAS Numbers to see sugge	tions.		Q	₿TW EN ~
Applications V Products V Ser	rvices ~ Support ~				Account ~	Quick Order	ेस Cart 0
$ \begin{aligned} & = \begin{cases} & \varphi \\ &$	E6003 ► Sigma-Aldric Eosin Y diso ★★★★ (0) Dye content ≥85 % Synonym(s): 2/4.57.7 fetrabornofluoresc Empirical Formula (Hill Notal C204 (alf 4Na2G) C204 (alf 4Na2G) C4S Number: Belistein: PubChem Substance ID: SKU E6003-25G E6003-250G	h. dium sal Ac in disodum salt. Ac ioni: 17372-87-1 3586809 24894349 24894349 25 G 100 G 250 G	It Id Red 87, Bromo acid J. TS, XL, or XX, B Molecular Weight: EC Number: NACRES: Availability Availabile to ship on Septemb Availabile to ship on Septemb Only 6 left in stock (more on	romofluorescela, Bronze Bronz 691.85 241-409-6 NA-47 er 14, 2022 Details er 14, 2022 Details the way) Details	DES, D&CRed No. 22, Eosin yellowids Colour Index Number: MDL number: Price NT\$2,300.00 NT\$6,200.00 NT\$13,300.00 Request a Bulk Orde	45380 MFCD0005040 Quantity - + - + - + Add to Ca	0 0 0

Figure S20. Screenshot of the Sigma-Alrich website for the price of Eosin Y disodium salt.

C isigmaaldrich.com/TW	//en/product/sial/44519				යයෙ 🖿 🕈 🗖
Merck	Products 👻 Type in Produc	Names, Product Numbers, or CAS Num	bers to see suggestions.		Q @ TW EN ~
Applications Produc	ts ~ Services ~ Supp	rt ~		Account ~	Quick Order 🏾 🏹 Cart 🛛
	44519 < Supelo	ь.			
~	Dowex®	50W X8			
	CAS Number:	69011-20-7 мD	number: MFCD00132726	NACRES: S	B.52
All Photos (1)	sku	Pack Size Availability		Price	Quantity
Documents	44519-100G	100 G 🥥 Available t	o ship on September 14, 2022 Details	NT\$15,200.00	- + 0
↓ sds Q coo/coa				Request a Bulk Order	Add to Cart
Specification	Sheet				
RECOMME	NDED PRODUCTS				
No. of	Supelco 44504 Dowex [®] 50W X8	Supelco 44509 Dowex® 50W X8	Supelco 217514 Amberchrom® 5	0WX8	sico 514 www. [®] 50WX8

Figure S21. Screenshot of the Sigma-Alrich website for the price of Dowex 50W X8.

<u>Back to contents</u> 7.1.3. Conversion of prices in New Taiwan Dollar (NTD) to US Dollar (USD)

\leftarrow \rightarrow C \triangleq google	e.com/search?q=convert+ntd+to+usd&oq=convert+ntd+to+&aqs=chrome.0.0i512l2j69i57j0i512l7.4000j1j7&sourceid=chrome&ie=UTF-8	🖻 🖈 🗎 🛊 🖬 🌍 i
Google	Convert ntd to usd X I Convert ntd to usd	◈ ⊞ 🌻
	About 157,000 results (0.38 seconds) 1 New Taiwan dollar equals O.032 United States Dollar Sep 14, 1022 AM UTC Disclamer United States Dollar United States Dollar	
	More about TWD/USD → Feedback https://www.xe.com > currencyconverter > convert > T : 1 1 TWD to USD - Convert Taiwan New Dollars to US Dollars - Xe Convert Taiwan New Dollar to US Dollar; 1 TWD, 0.0323778 USD; 5 TWD, 0.161889 USD; 10 TWD to USD - Convert Taiwan New Dollars to US Dollars + Xe Convert Taiwan New Dollar to US Dollar; 1 TWD, 0.0323778 USD; 5 TWD, 0.161889 USD; 10 TWD, 0.323778 USD; 25 TWD, 0.80944 USD. : https://www.uniconverters.net > currency > twd-to-usd : TWD to USD - USD - USD - USI Converter TWD to USD - Convert Taiwan Pollar 0.032875905 Listient States Pollar - 2	

Figure S22. Conversion for the price of ethyl 3-(furan-2-yl)propionate in NTD to USD.

← → C (m goog	le.com/search?q=convert+ntd+to+usd&oq=convert+ntd+to+&aqs=chrome.0.0i512l2j69i57j0i512l7.4000j1j	78:sourceid=chrome&ie=UTF-8 🖻 🖈 🗖	🌔 i
Google	convert ntd to usd	æ ≡ (
	Q All 🖕 Images 🛇 Maps 🔹 Videos 💷 News 🗄 More Too		
	About 157,000 results (0,38 seconds)		
	1 New Taiwan dollar equals		
	0.032 United States		
	1D 5D 1M 1Y 5Y Max		
	Sep 14, 10:22 AM UTC - Disclamer		
	3900.00 New Taiwan dollar + 0.0325		
	125.53 United States Dollar + 0.0320 0.033 Sun, 14 Aug Aug 24 Sep 4		
	More about TWD/USD →		
	Feedba		
	https://www.xe.com > currencyconverter > convert > T :		
	1 TWD to USD - Convert Taiwan New Dollars to US Dollars - Xe		
	Convert Talwan New Dollar to US Dollar ; 1 TWD, 0.0323778 USD ; 5 TWD, 0.161889 USD ; 10 TWD, 0.323778 USD ; 25 TWD, 0.809446 USD.		
	https://www.unitconverters.net > currency > twd-to-usd		
	Convert TWD to USD - Unit Converter		
	TWD to USD Conversion Table - 1 New Taiwan Dollar, 0 032085905 United States Dollar - 2		

Figure S23. Conversion for the price of chlorotrimethylsilane in NTD to USD.

\leftrightarrow \rightarrow C \triangleq google	. com/search?q=convert+ntd+to+usd&oq=convert+ntd+to+&aqs=chrome.0.0i512l2j69i57j0i512l7.4000j1j7&sourceid=chrome&ie=UTF-8itematical and the second	년 ☆ 🗎 🗯 🖬 🌍 🗄
Google	convert ntd to usd X 🎍 Q	® III ᠹ
	Q All 📮 Images 🛇 Maps 🗊 Videos 💷 News I: More Tools	
	About 157,000 results (0.38 seconds)	
	1 New Taiwan dollar equals	
	0.022 United States	
	Dollar	
	Sep 14, 10.22 AM UTC - Disclaimer	
	13300 New Taiwan dollar ** 0.0025	
	428.11 United States Dollar * 0.0330 0.033 Fit, 19 Aug 4 Sep 4	
	More about TWD/USD → Feedback	
	https://www.xe.com > currencyconverter > convert > T	
	1 TWD TO USU - CONVERT Taliwan New Dollars to US Uollars to US Uollars - Xe Convert Taliwan New Dollar to US Dollar ; 1 TWD, 0.0323778 USD ; 5 TWD, 0.161889 USD ; 10 TWD, 0.323778 USD ; 25 TWD, 0.809446 USD.	
	https://www.unitconverters.net.currency.chudubusd	
	Convert TWD to USD - Unit Converter TVD to USD - Unit Converter TVD to USD Conversion Table - 1 New Televen Dollar 0.032085905 United States Dollar - 2	

Figure S24. Conversion for the price of *n*-butyllithium solution in NTD to USD.

\leftarrow \rightarrow C \triangleq google	com/search?q=convert+ntd+to+usd&oq=convert+ntd+to+&		🖻 🖈 🗎 🌻 🗄
Google	convert ntd to usd	× 🦆 🔍	* # (?)
	Q All 🖕 Images 🛇 Maps 🔹 Videos 🖽 News		
	About 157,000 results (0.38 seconds)		
	1 New Taiwan dollar equals		
	0.032 United States		
	Dollar		
	5900 New Taiwan dollar 👻	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	189.91 United States Dollar V 0.0320	0.033 Wed, 17 Aug	
	More about TWD/US		
	https://www.xe.com > currencyconverter > convert > T		
	1 TWD to USD - Convert Taiwan New Doll Convert Taiwan New Dollar to US Dollar - 1 TWD 0 032377	ars to US Dollars - Xe	
	TWD, 0.323778 USD ; 25 TWD, 0.809446 USD.		
	https://www.unitconverters.net > currency > twd-to-usd		
	Convert TWD to USD - Unit Converter		
	TWD to HSD Conversion Table • 1 New Taiwan Dollar 0.03	2085905 United States Dollar 2	

Figure S25. Conversion for the price of phenyl magnesium bromide in NTD to USD.

\leftarrow \rightarrow C \triangleq google	a.com/search?q=convert+ntd+to+usd&oq=convert+ntd+to+&aqs=chrome.0.0i512l2j69i57j0i512l7.4000j1j7&sourceid=chrome&ie=UTF-&aqs=chrome&ie=chrome&ie=UTF-&aqs=chrome&ie=chrom	e 🛧 🗎 🗯 🖬 🦃 🗄
Google	convert ntd to usd X 4 Q	⊗ ⊞ 🂡
	Q All ⊑ Images O Maps I Videos I News ; More Tools	
	1 New Taiwan dollar equals + Follow	
	0.032 United States	
	1D 5D 1M 1Y 5Y Max	
	Sep 14, 10 22 AM UTC - Disclaimer 0 0335	
	2300 New Taiwan dollar *	
	74.03 United States Dollar 0.0320 0.033 Sun, 14 Aug V Aug 24 Sep 4 Sep 4 Sep 4 Sep 4 Sep 4	
	More about TWD/USD →	
	Feedback	
	https://www.xe.com > currencyconverter > convert > T :	
	1 TWD to USD - Convert Taiwan New Dollars to US Dollars - Xe Convert Taiwan New Dollar to US Dollar - 1 TWD 0.0323778 USD - 5 TWD 0.161889 USD - 10	
	TWD, 0.323778 USD ; 26 TWD, 0.809446 USD.	
	https://www.unitconverters.net > currency > twd-to-usd	
	Convert I WD to USD - Unit Converter TWD to USD Conversion Table - 1 New Taiwan Dollar 0 032085005 United States Dollar - 2	

Figure S26. Conversion for the price of Eosin Y disodium salt in NTD to USD.

\leftarrow \rightarrow C \triangleq google	.com/search?q=convert+ntd+to+usd&oq=convert+ntd+to+&a	qs=chrome.0.0i512l2j69i57j0i512	17.4000j1j7&sourceid=chrome&ie=UTF-8	e s	2 🗎 🗯 🗆	1 🌘 i
Google	convert ntd to usd		پ ۹		¢ III	،
	Q All 🖕 Images 🖓 Maps 🕨 Videos 🖽 News					
	About 157,000 results (0.38 seconds)					
	1 New Taiwan dollar equals		+ Follow			
	0.032 United States	·				- 1
	Dollar					
		0.033 Fri, 2 Se	pt			
	15200 New Taiwan dollar -	\sim				
	489.26 United States Dollar		<u> </u>			
	More about TWD/USD					
	https://www.ve.com - currencyconverter - convert > T 1 TWD to USD - Convert Taiwan New Dollar Convert Taiwan New Dollar to US Dollar : 1 TWD, 0.0323778 TWD, 0.323778 USD ; 25 TWD, 0.809446 USD.	rs to US Dollars - Xe JSD ; 5 TWD, 0.161889 USD ; /				
	https://www.unitconverters.net > currency > twd-to-usd					
	Convert TWD to USD - Unit Converter	185905 United States Dollar - 2				

Figure S27. Conversion for the price of Dowex 50W X8 in NTD to USD.

7.1.4. EcoScale Penalty Point Calculation

Table S21. Penalty Calculation for the synthesis of 2a in batch, flow, and solvent-free conditions.

	Penalty Points		
Parameters	Batch	Flow	Solvent- free
1. Yield: (100-%Yield)/2	0.5	0.5	1.5
 2. Price of reaction components (to obtain 10 mmol of end product) a)Starting material 1a = USD 29.25 b) Na₂-Eosin Y = USD 0.21 c)Dowex 50X8-200 = USD 1.03 Total price = USD 30.49 Thus, inexpensive (<usd 10)<="" li=""> </usd> 	0	0	0
3. Safety Ethanol: F (highly flammable)	5	5	0
4. Technical Setup Unconventional activation technique	2	2	0
5. Temperature/Time Room temperature, <24 h	1	1	1
6. Work-up and Purification Ethyl acetate: adding solvent Liquid-liquid extraction Simple filtration	0 3 0	0 3 0	0 3 0
Total Penalty Points =	11.5	11.5	5.5
B. EcoScale Calculation EcoScale = 100 – Total Penalty Points	88.5 >75 =	88.5	94.5
	- 15 -	excellent sy	ninesis

See Reference 10 for complete list of penalty points.

7.2. Green metrics Path A

Scheme S9. Synthesis of 20 from 2-silylated hydroxyalkylfuran 10.

1. Isolated Yield (%) = 92%
2. E-factor =
$$\frac{14.4 \ mg + 0.47 \ mg + 1.40 \ mg - 9.6 \ mg}{9.6 \ mg} = 0.7$$

3. Atom Economy (%) = $\frac{154.1650 \ g/mol}{212.3640 \ g/mol + 32 \ g/mol (O_2)} \times 100 = 63.1\%$
4. Reaction Mass Efficiency (%) = $\frac{9.6 \ mg}{14.4 \ mg} \times 100 = 66.7\%$
5. Process Mass Intensity = $\frac{14.4 \ mg + 0.47 \ mg + 1.4 \ mg}{9.6 \ mg} = 1.7$

Path B¹¹

Scheme S10. Reported synthesis of 20 from 4-(furan-2-yl)butan-1-ol.

1. Isolated Yield (%) = 71%
2. E-factor =
$$\frac{70 \ mg + 40 \ mg + 98.2 \ mg + 2946 \ mg - 55 \ mg}{55 \ mg} = 56.3$$

3. Atom Economy (%) = $\frac{154.1650 \ g/mol}{140.1820 \ g/mol + 32 \ g/mol \ (O_2)} \times 100 = 89.5\%$
4. Reaction Mass Efficiency (%) = $\frac{55 \ mg}{70 \ mg} \times 100 = 78.6\%$
5. Process Mass Intensity = $\frac{70 \ mg + 40 \ mg + 98.2 \ mg + 2946 \ mg}{55 \ mg} = 57.3$

Scheme S11. Reported synthesis of 20 from 5-(4-hydroxybutyl)furan-2-carbaldehyde.

1. Isolated Yield (%) = 83% 2. E-factor = $\frac{84 mg + 160 mg - 64 mg}{64 mg}$ = 2.8 3. Atom Economy (%) = $\frac{154.1650 g/mol}{168.1920 g/mol + 32 g/mol (O_2)} \times 100$ = 77.0% 4. Reaction Mass Efficiency (%) = $\frac{64 mg}{84 mg} \times 100$ = 76.2% 5. Process Mass Intensity = $\frac{84 mg + 160 mg}{64 mg}$ = 3.8

Path D¹²

Scheme S12. Reported synthesis of 20 from 1-(5-(4-hydroxybutyl)furan-2-yl)ethan-1-one.

1. Isolated Yield (%) = 75% 2. E-factor = $\frac{25 mg + 0.16 mg + 9.57 mg + 6650 mg - 16 mg}{16 mg} = 416.8$ 3. Atom Economy (%) = $\frac{154.1650 g/mol}{182.2190 g/mol + 32 g/mol (O_2)} \times 100 = 72.0\%$ 4. Reaction Mass Efficiency (%) = $\frac{16 mg}{25 mg} \times 100 = 64.0\%$ 5. Process Mass Intensity = $\frac{25 mg + 0.16 mg + 9.57 mg + 6650 mg}{16 mg} = 417.8$ ^[a]Assuming that the excess Me₂S added is in 1.1 equivalence to the starting material.

S94

Scheme S13. Reported two-step synthesis of 20 from 4-(furan-2-yl)butan-1-ol.

1. Isolated Yield (%) = 0.8155×0.7851	1 = 64.0%		
2 E-factor = $\frac{7 g + 8.63 g + 199.5 g - 6.36 g}{4}$	$\frac{6.30 g + 20.9 g + 75.52 g - 4.65 g}{-328} - 328 + 211 - $		
2. $E^{-1}actor = 6.36 g$	4.65 g = 52.0 + 21.1 =		
53.9			
3. Atom Economy (%) = $\frac{156}{140.1820 g/mol + 100}$	$\frac{5.1810 \ g/mol}{+ \ 172.5640 \ g/mol \ (mCPBA)} \times \frac{154.1650 \ g/mol}{156.1810 \ g/mol} \times 100 =$		
49.3%			
4. Reaction Mass Efficiency (%) $= \frac{6.36 g}{7 g} \times \frac{4.65 g}{6.30 g} \times 100 = 67.1\%$			
5. Process Mass Intensity = $\frac{7 g + 8.63 g + 6.36 g}{6.36 g}$	$\frac{199.5 g}{1000} + \frac{6.30 g + 20.9 g + 75.52 g}{4.65 g}$		
= 33.8 +	+ 22.1 = 55.9		

8. References

- (1) S. Engle, Org. Synth., 2019, 96, 455–473.
- (2) C. B. Kelly, M. A. Mercadante, R. J. Wiles, N. E. Leadbeater, Org. Lett., 2013, 15, 2222-2225
- (3) M. Sun, Y. Deng, E. Batyreva, W. Sha, R. G. Salomon, J. Org. Chem., 2002, 67, 3575–3584.
- (4) M. Rehan, S. Maity, L. K. Morya, K. Pal, P. Ghorai, *Angew. Chem. Int. Ed.*, 2016, **55**, 7728–7732.
- (5) D. Drikermann, V. Kerndl, H. Görls, I. Vilotijevic, *Synlett*, 2020, **31**, 1158–1162.
- (6) K. Wei, H.-T. Gao, W.-D. Z. J. Li, Org. Chem., 2004, 69, 5763-5765.
- (7) A. Zúñiga, G. Pazos, P. Besada, Y. Fall, *Tetrahedron Lett.*, 2012, 53, 4293–4295.
- (8) a) L. Nielsen, K. B. Lindsay, J. Faber, N. C. Nielsen, T. Skrydstrup, J. Org. Chem., 2007, 72, 10035–10044.
 b) G. Liu, D. A. Cogan, J. A. Ellman, J. Am. Chem. Soc., 1997, 119, 9913–9914.
- (9) X. Zhang, Y. Han, G. Liu, F. Wang, Chin. Chem. Lett., 2019, 30, 1927–1930.
- (10) K. Van Aken, L. Strekowski, L. Patiny, Beilstein J. Org. Chem., 2006, 2.
- D. Noutsias, I. Alexopoulou, T. Montagnon, G. Vassilikogiannakis, *Green Chem.*, 2012, 14, 601–604.
- (12) M. Tofi, T. Montagnon, T. Georgiou, G. Vassilikogiannakis, *Org. Biomol. Chem.*, 2007, **5**, 772–777.
- (13) J. Robertson, P. Meo, J. W. P. Dallimore, B. M. Doyle, C. Hoarau, Org. Lett., 2004, 6, 3861.

9. NMR Spectra

9.1. Oxaspirolactone substrate scope

¹H NMR (400 MHz, CDCl₃) of **2a**, *See procedure*

COSY (400 MHz, CDCl₃) of 2a

S100

 Back to contents

 ¹H NMR (400 MHz, CDCl₃) of 2f, <u>See procedure</u>

¹³C{¹H} NMR (101 MHz, CDCl₃) of 2f

$^{13}C\{^1H\}$ NMR (101 MHz, CDCl₃) of 2h

 Back to contents

 ¹H NMR (400 MHz, CDCl₃) of 2m, <u>See procedure</u>

¹³C{¹H} NMR (101 MHz, CDCl₃) of 2p

¹H NMR (400 MHz, CDCl₃ with 0.05% v/v TMS) of 4a, See procedure

Back to contents ¹H NMR (500 MHz, CDCl₃) of 4c, *See procedure* HLOROFO MScdcl3 09:00 7.0 F 61.1 6.43 6.00 ₽ 2.10 🕳 14.23 .0 8.5 8.0 4.5 4.0 f1 (ppm) 2.0 1.0 0.0 -0.5 5.5 3.5 3.0 2.5 1.5 0.5 ¹³C{¹H} NMR (101 MHz, CDCl₃) of 4c Z 84.0 27.3 CHLOROFORM-D 77.0 CHLOROFORM-D 76.7 CHLOROFORM-D - 170.2 152.2 152.1 $<_{124.2}^{124.2}$ $<_{123.9}^{114.5}$ $<_{114.4}^{114.5}$ - 14.0 $\begin{array}{c} 36.5\\ 36.5\\ 35.2\\ 34.5\\ 34.5\\ 30.3\\ 30.3\\ 30.3\\ 30.3\\ 22.5\\ 22.6\\ 22.6\\ 22.6\end{array}$ 80 170 160 150 140 130 120 110 100 90 80 fl (ppm) 70 60 50 40 30 20 10 0

 Back to contents

 ¹H NMR (500 MHz, CDCl₃) of 4d, <u>See procedure</u>

¹H NMR (500 MHz, CDCl₃) of 4g, See procedure

 Back to contents

 ¹H NMR (600 MHz, CDCl₃) of 4h, <u>See procedure</u>

COSY (500 MHz, CDCl₃) spectrum of 7

Back to contents

HSQC (500 MHz, CDCl₃) spectrum of 7

HMBC (500 MHz, CDCl₃) spectrum of 7

9.2. Starting material scope

¹H NMR (400 MHz, CDCl₃) of **1a**, *See procedure*

¹H NMR (400 MHz, CDCl₃) of 1m, *See procedure* - 7.26 CHLOROFC TMS όн 1.00<u>∓</u> 4.05H 2.00H **H**00. 4.07- 2.00H 9.00-6.5 6.0 4.0 fl (ppm) 8.0 7.0 5.5 5.0 4.5 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 7.5 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (101 MHz, CDCl_3) of 1m 77.3 CHLOROFORM-D 77.0 CHLOROFORM-D 76.7 CHLOROFORM-D 73.1 - 160.3 - 158.5 - 133.4 - 133.4 - 120.4 - 119.0 - 104.7 - 22.4 ---1.5 OH TMS

90 80 f1 (ppm) 70

50

60

40

30

20

10

0

170

160

150

130

140

120

110

100

S143

Back to contents

Back to contents

¹H NMR (400 MHz, CDCl₃) of **3a**, *See procedure*

HLOROFORM-

S150

 Back to contents

 ¹H NMR (500 MHz, CDCl₃) of 3d, <u>See procedure</u>

Back to contents

¹H NMR (500 MHz, CDCl₃) of 3e, <u>See procedure</u>

Back to contents

¹H NMR (500 MHz, CDCl₃) of **3g**, *See procedure*

Back to contents

¹**H NMR** (300 MHz, CDCl₃) of **6**, <u>See procedure</u>

