An imidazole-based DES Serving as a "Courier" for the Efficient Coupling of HCl Capture and Conversion under Mild Conditions

Wenjie Xiong^a,[†], Yan Lu^a,[†], Chenzhou Li^a, Jiao Geng^a,^{*}, Youting Wu^a,^{*},

Xingbang Hu^{a,b,*}

^a Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Qixia District, Nanjing 210023, P. R. China

^b Institute of Green Chemistry and Engineering, Nanjing University, Suzhou 215163,

P. R. China

* Corresponding authors

gengjiao@nju.edu.cn (J. Geng); ytwu@nju.edu.cn (Y. Wu); huxb@nju.edu.cn (X. Hu)

[†] W. Xiong and Y. Lu and contributed equally to this work and should be considered as co-first authors.

Keywords: Deep eutectic solvent (DES); Courier; HCl; Mechanism; Capture and Conversion

Number of Pages: 46 Number of Figures: 37 Number of Tables: 3

Index

Table S1. Specifications and sources of chemicals used in this work.

Table S2 Comparison of absorption solubility of HCl in different absorbents.

Table S3 Detailed synthesis parameters of all products in this work.

Fig. S1 Three parallel experiments for the independent measurements of HCl solubility.

Fig. S2 Comparative experiment of styrene oxide with imidazole hydrochloride as catalyst characterized by ¹³C NMR.

Fig. S3 ESI–MS of 1b (a) and 1c (b) in at m/z [M–C1]⁺.

Fig. S4 The infrared spectra before and after the reaction

Fig. S5 The ¹³C NMR detection of mixed HCl–SO₂ gas experiment after the removal of EmimCl/Im by water extraction.

Fig. S6¹³C NMR in different green solvents on HCl conversion.

Fig. S7 Pressure-time kinetic curve for dynamic monitoring with different HCl containing gases.

Fig. S8 The optimized structures obtained by the method of B3LYP/6-311G++(d,p).

Fig. S9 Cyclic performance with styrene oxide as substrate under equivalent catalyst.

Figs. S10-S11 The ¹H NMR and ¹³C NMR of recycled DES and fresh DES.

Figs. S12-S35 NMR spectra of expanded substrates 1a-11a.

Fig. S36. The illustration of HCl solubility unit.

Fig. S37. GC result of the organic phase obtained from the DES aqueous extraction.

Determination of HCl Absorption

Theoretical calculation method

The coordinates of the optimized structures

References

Table S1.

Molecular structure	Chemical name	Abbr. or (number)	CAS number	MW. (g/mol)	Purity (%)	Source
	1–Ethyl–3–methylimidazolium chloride	EmimCl	65039–09–0	146.62	0.98	Macklin
N N ⁺ - Cl ⁻	1–Butyl–3–methylimidazolium chloride	BmimCl	79917–90–1	174.67	0.99	Adamas
N V CI	1–Hexyl–3–methylimidazolium chloride	HmimCl	171058–17–6	202.72	0.99	Adamas
HNNN	Imidazole	Im	288-32-4	68.08	0.99	Macklin
₩ N	1H-benzimidazole	BIm	51-17-2	118.14	0.99	Adamas
	2–Methylbenzimidazole	MeBIm	615–15–6	132.16	0.98	Adamas
- N	1, 2–Dimethylimidazole	DMIm	1739-84-0	96.13	0.98	Adamas

Specifications and sources of chemicals used in this work.

O ►N ►N	1–Acetylimidazole	AceIm	2466-76-4	110.11	0.99	Adamas
	2–Buthylimidazole	BuIm	50790-93-7	124.18	0.98	Adamas
HN H-CI	1H–imidazole hydrochloride	Im-HCl	1467–16–9	104.54	0.99	Macklin
O	Styrene oxide	la	96-09-3	120.15	0.98	Adamas
ov	Glycidyl isopropyl ether	2a	4016-14-2	116.16	0.96	Aladdin
o o	Ethyl 3-phenylglycidate	3a	121-39-1	192.21	0.90	Macklin
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2-hexyl-oxirane	4a	2984-50-1	128.21	0.97	Adamas
so o	1,2–Epoxy–5–hexene	5a	10353-53-4	98.14	0.96	Aladdin
ovor	Tert-butyl glycidyl ether	6a	7665–72–7	130.19	0.96	Aladdin
	Glycidyl phenyl ether	7a	122-60-1	150.17	0.98	Macklin

O	Cyclohexene oxide	8a	286-20-4	98.14	0.98	Aladdin
O	Cyclopentene oxide	9a	285-67-6	84.12	0.98	Adamas
٥	Benzyl glycidyl ether	10a	89616-40-0	164.20	0.97	Macklin
CCC CCC	o–Cresyl glycidyl ether	11a	2210-79-9	164.20	0.90	Aladdin
o Lo	Ethyl acetate	EA	141-78-6	88.11	99	Adamas
_	Petroleum ether	PE	_	_	Boiling range 60–90 °C	Adamas

Pure HCl and the mixed HCl gas were supplied from Nanjing Special Gas Co., Ltd and Shandong Kanbao Co., Ltd., respectively.

### Table S2

Entry	Absorbent	Molar ratio	Mass ratio	Mole fraction	Reference
		(mol/mol)	(g/g)	(%)	
1	EmimCl/Im	3.95	0.672	80	This work
2	[Bmim]Cl ^a	0.68	0.142	40	1
3	[Hmim]Cl ^a	0.69	0.124	41	1
4	[Omim]Cl ^a	0.68	0.108	40	1
5	ImE3 ^b	0.03	0.005	3	2
6	TrizE3 ^b	0.86	0.146	46	2
7	TetzE3 ^b	0.05	0.008	5	2
8	BentrizC4 ^b	1.07	0.220	52	2
9	ChCl–Urea	2.49	0.457	71	3
10	ChCl–Gly	1.61	0.255	62	3
11	ChCl–GA	1.26	0.214	56	3
12	ChCl–EG	1.091	0.395	52	4
13	ChCl–LA	0.90	0.286	47	4
14	ChCl–OA	0.59	0.188	37	4
15	ChCl-MA	0.60	0.179	37	4
16	EmimCl-AA-EG	4.34	0.591	81	5
17	EG	0.72	0.420	42	5
18	EmimCl–EG	2.71	0.476	73	5
19	EmimCl–AA	3.07	0.546	75	5
20	EG–AA	2.71	0.820	73	5
21	Glycerol ^c	0.50	0.199	33	5
22	Tetraglycol ^c	1.40	0.263	58	5
23	PEG-200 °	1.42	0.259	59	5

Comparison of absorption solubility of HCl in different absorbents at 30 °C and 1.0 bar.

 $^{\rm a}$  0.01 bar,  $^{\rm b}$  25 C,  $^{\rm c}$  40 C

### Table S3

Detailed synthesis parameters of all products in this work (isolated yield is in parentheses)

	Molecular	Conversion	Purity	<b>х</b> —́ОН	xCI	Solvent us	sage (g	g)	Solvent	Water	Mass	F·factor
Entry	Woreeulur		(a)	CI	ОН				consumption	consumption	intensity	
	structure	(%)	(%)	(%)	(%)	EmimCl/Im	EA	PE	(2%, g)	(g)	(g/g)	(g/g)
1		99	99	78 (75)	22 (18)	0.1021	45	100	2.9	6	3.1	2.1
2		99	99	10 (9)	90 (87)	0.1063	45	100	2.9	6	3.0	2.0
3		90	99	83 (80)	17(14)	0.1023	45	100	2.9	6	3.4	2.4
4	O ↓──Hex	99	99	27 (23)	73 (69)	0.1033	45	100	2.9	6	3.2	2.2
5	0	99	99	22 (20)	78 (74)	0.1095	45	100	2.9	6	2.9	1.9

6	°~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	99	99	89 (85)	11 (8)	0.1027	45 100	2.9	6	3.1	2.1
7		99	99	-	100 (94)	0.0977	45 100	2.9	6	3.2	2.2
8	O	99	99	100 (95)	-	0.1095	45 100	2.9	6	2.9	1.9
9	O	99	99	100 (95)	-	0.1044	45 100	2.9	6	2.8	1.8
10		99	99	-	100 (94)	0.1041	45 100	2.9	6	3.3	2.3
11		99	99	-	100 (95)	0.0994	45 100	2.9	6	3.3	2.3



Fig. S1 Three parallel experiments for the independent measurements of HCl solubility.



**Fig. S2** Comparative experiment of styrene oxide with imidazole hydrochloride as catalyst characterized by ¹³C NMR



**Fig. S3** ESI–MS of 1b (a) and 1c (b) in at m/z [M–C1]⁺.



Fig. S4. The infrared spectra before and after the reaction



Fig. S5 the ¹³C NMR detection of mixed HCl–SO₂ gas experiment after the removal of

EmimCl/Im by water extraction



Fig. S6. ¹³C NMR in different green solvents on HCl conversion.

(a) product 1b, (b) product 1c, (c) solvent EmimCl/Im, (d) solvent-free, (e) solvent [Emim][BF₄], (f) solvent [Emim][PF₄], and (g) solvent H₂O.



Fig. S7 Pressure-time kinetic curve for dynamic monitoring with different HCl containing gases.



Fig. S8 The optimized structures obtained by the method of B3LYP/6-311G++(d,p)



(blue numbers in Å).

Fig. S9 Cyclic performance with styrene oxide as substrate under equivalent catalyst.



Fig. S10 ¹H NMR of (a) recycled DES and (b) fresh DES.



Fig. S11  13 C NMR of (a) recycled DES, (b) fresh DES, and (c) pure Im·HCl



**Fig. S12** ¹H NMR of 1b.



**Fig. S13** ¹³C NMR of 1b.



**Fig. S14**  1 H NMR of 1c.



**Fig. S15** ¹³C NMR of 1c.



Fig. S16  1 H NMR of 2b+2c.



180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 Fig. S17 ¹³C NMR of 2b+2c.

![](_page_16_Figure_0.jpeg)

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ( Fig. S19 ¹³C NMR of 3a+3b+3c.

![](_page_17_Figure_0.jpeg)

Fig. S20  1 H NMR of 4b+4c.

![](_page_17_Figure_2.jpeg)

![](_page_18_Figure_0.jpeg)

![](_page_18_Figure_1.jpeg)

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 Fig. S23 ¹³C NMR of 5b+5c.

![](_page_19_Figure_0.jpeg)

**Fig. S25** ¹³C NMR of 6b+6c.

![](_page_20_Figure_0.jpeg)

![](_page_20_Figure_1.jpeg)

**Fig. S27** ¹³C NMR of 7b.

![](_page_21_Figure_0.jpeg)

![](_page_21_Figure_1.jpeg)

![](_page_22_Figure_0.jpeg)

![](_page_22_Figure_1.jpeg)

![](_page_23_Figure_0.jpeg)

![](_page_23_Figure_1.jpeg)

**Fig. S33** ¹³C NMR of 10b.

![](_page_24_Figure_0.jpeg)

![](_page_24_Figure_1.jpeg)

![](_page_24_Figure_2.jpeg)

#### **Determination of HCl Absorption**

The whole absorption device consists of a water bath, two pressure sensors and two glass chambers whose volumes 190.45 cm³ ( $V_1$ ) and 41.81 cm³ ( $V_2$ ), respectively. The larger chamber is used to store the HCl, and the smaller chamber is equipped with a magnetic stirrer where the absorption reaction takes place. The temperature of the two chambers is controlled by a water bath with an accuracy of  $\pm 0.1$ K, and the pressure of the two chambers is monitored online by two pressure sensors with an error of  $\pm 0.2\%$ . In a typical run, a known mass ( $\omega$ ) of DES was placed into the smaller chamber. Then the air in the two chambers was drained by a pump (<10Pa). the needle valves in the two chambers are closed, HCl was fed into the larger chamber, the pressure is recorded as P₁ and the small chamber was recorded to be P₀. The needle valve between the two chambers was turned on to let HCl enter from the large chamber to the small chamber. The sign of absorption balance is that the pressure of the two chambers does not change for at least 2 hours. The pressure of the large chamber was denoted as  $P_1$ ', and  $P_2$  for the small chamber. The partial pressure of HCl in the small chamber was  $P_S=P_2-P_0$ , and the absorption amount of HCl was calculated as follows.

$$n (P_s) = \rho_g(P_1, T) V_1 - \rho_g(P_1', T) V_1 - \rho_g(P_s, T) (V_2 - \omega / \rho_{IL})$$

Where  $\rho_g$  (P_i, T) represents the density of HCl in mol/cm³ at P_i (i=1, S) and  $\rho_{IL}$  is the density of the DES in g/cm³ at T. V₁ and V₂ represent the volumes in cm³ of the two chambers. More HCl is then injected into the small chamber to achieve a new equilibrium and to measure solubility at different pressures.

![](_page_26_Figure_0.jpeg)

Fig. S36. The illustration of HCl solubility unit.

GC, gas cylinder; BC, big chamber; SC, small chamber; V1, V2, V3, valves; P, pressure transducer; NI, numerical instrument; PC, personal computer; WB: Water bath.

![](_page_26_Figure_3.jpeg)

Fig. S37. GC result of the organic phase obtained from the DES aqueous extraction.

### **Theoretical calculation method**

All the structures were fully optimized with the DFT method including the dispersion corrections (B3LYP) method using the Empirical Dispersion = GD3BJ keyword [6]. 6-311++g(d,p) basis set was used for all atoms [abbreviation as B3LYP/6311++g(d,p)]. The influence of water solvent was investigated in condensed phase using the Polarizable Continuum Model (PCM) at B3LYP/6-311++g(d,p) method. Energy calculations and Zero–point energy (ZPE) correction have been done by using the same level of theory. The computed stationary points have been characterized as minima or transition states by diagonalizing the Hessian matrix and analyzing the vibrational normal modes. In this way, if the imaginary frequency is not displayed, the stationary point can be classified as minima, and if only one imaginary frequency is obtained, the stationary point can be classified as a transition state (TS). The particular nature of the transition states has been determined by analyzing the motion described by the eigenvector associated with the imaginary frequency. All calculations were performed with the Gaussian 09 suite of programs [7].

#### The coordinates of the optimized structures

	Н	Cl	
Н	0.00000000	0.00000000	-1.21800800
Cl	0.00000000	0.00000000	0.07164800

	1	a	
С	-1.59592800	0.60531500	-0.12283800
С	-2.59249300	-0.07602300	0.72009300
О	-2.48815700	-0.38252300	-0.67972500
С	-0.14675000	0.27041700	-0.07258600
С	0.79411600	1.30328500	-0.02930400
С	2.15628100	1.01617300	0.04616500
С	2.59060000	-0.30814300	0.06874800
С	1.65571400	-1.34324800	0.01428400
С	0.29507800	-1.05688800	-0.05579900
Н	-1.82248200	1.62167300	-0.43456500
Н	-3.49730800	0.44842700	1.01297300
Н	-2.25910600	-0.86604600	1.38702700
Н	0.45928100	2.33471100	-0.05615900
Н	2.87615000	1.82565200	0.08033300
Н	3.64930100	-0.53320900	0.12249600
Н	1.98826200	-2.37485700	0.02318300
Н	-0.42855000	-1.86150700	-0.11006100

EmimCl/Im	

-

С	0.97153300	-0.41668000	-0.87218600
Ν	0.33713700	-1.58885300	-0.96494100
С	1.04435200	-2.53730800	-0.24784700
С	2.12854400	-1.90806900	0.28168400
Ν	2.06334900	-0.58612900	-0.12113200
С	-0.93882000	-1.81232400	-1.64996200
С	3.00220300	0.48772000	0.25603800
С	2.87393900	0.85427900	1.72869700
Н	0.65194800	0.53155300	-1.28276000
Н	0.72075900	-3.56111400	-0.18397100
Н	2.93068600	-2.28183900	0.89284200
Н	-1.18062700	-0.92815000	-2.23359600
Н	-0.84449400	-2.67269600	-2.30979200
Н	-1.71806400	-1.98557100	-0.90933700
Н	2.76431200	1.33937300	-0.37940700
Н	4.00650500	0.13989200	0.01322000
Н	3.58910200	1.64486700	1.96346300
Н	3.08700000	-0.00000600	2.37420800
Н	1.87000200	1.22183000	1.94840400
С	-1.60851200	-0.02083400	1.33287800
Ν	-2.62600700	-0.85105000	1.49550400
С	-3.59433400	-0.42069600	0.60839300

С	-3.14284500	0.67303100	-0.08872800
Ν	-1.87553900	0.91754500	0.38693000
Н	-0.67302700	-0.05596700	1.86875500
Н	-4.54706700	-0.91946400	0.52281600
Н	-3.59144500	1.27929700	-0.85730400
Н	-1.23224700	1.64559900	0.04974000
Cl	0.26221900	2.93924000	-0.89091800
N H H H Cl	-1.87553900 -0.67302700 -4.54706700 -3.59144500 -1.23224700 0.26221900	0.91754500 0.05596700 0.91946400 1.27929700 1.64559900 2.93924000	0.38693000 1.86875500 0.52281600 -0.85730400 0.04974000 -0.89091800

INT1								
С	1.88989200	0.37287100	1.14826200					
Ν	0.84322400	0.23243100	1.96784700					
С	-0.01848600	1.29857900	1.77588500					
С	0.53527300	2.08833300	0.81676900					
Ν	1.72708700	1.49315700	0.44013900					
С	0.66584900	-0.84679600	2.94402300					
С	2.66394500	1.99692700	-0.58452000					
С	2.05715400	1.97083800	-1.98034900					
Н	2.70417900	-0.32152800	1.03535900					
Н	-0.93500300	1.39793200	2.32985700					
Н	0.19087100	3.00824100	0.37881300					
Н	1.38822000	-1.63088400	2.73105200					

Н	0.82630200	-0.45821800	3.94860600
Н	-0.34176400	-1.24660800	2.85357200
Н	3.54608800	1.36140400	-0.53158000
Н	2.94886100	3.00681100	-0.28757500
Н	2.77808300	2.38714800	-2.68657000
Н	1.14734700	2.57200500	-2.03415000
Н	1.83586800	0.94531400	-2.27837600
С	-1.06953900	-0.57033400	-1.03711400
Ν	-2.24476700	-0.79275600	-0.45036000
С	-2.16236200	-1.94157300	0.30707700
С	-0.89188400	-2.41717800	0.16419700
Ν	-0.23271700	-1.54495100	-0.67689900
Н	-0.83810800	0.25258000	-1.68969200
Н	-2.99797200	-2.31334600	0.87273300
Н	-0.40744400	-3.28265200	0.57974000
Н	0.77177100	-1.62092700	-0.96150500
Cl	2.76869500	-1.75015800	-1.33349200
Н	-3.08372900	-0.17028400	-0.53773500
Cl	-4.66295500	1.08473700	-0.66727300

	IN	T2	
С	-2.42288000	0.02288600	1.46644900
Ν	-1.29878200	-0.10959600	2.17987700
С	-0.92212200	-1.44114500	2.17723400
С	-1.84906100	-2.11189800	1.44138700
Ν	-2.77487100	-1.18011600	1.00657900
С	-0.60131800	0.96888400	2.88557500
С	-3.93389300	-1.45166600	0.13343700
С	-3.49788300	-1.85367500	-1.26840100
Н	-2.94568300	0.94080300	1.25208700
Н	-0.02533600	-1.78085100	2.66508700
Н	-1.93164400	-3.15545100	1.19507700
Н	-1.04572000	1.91941600	2.60171500
Н	-0.70266100	0.82496300	3.96012600
Н	0.45100700	0.95592400	2.60923300
Н	-4.51851400	-0.53438100	0.10591200
Н	-4.52462300	-2.23181400	0.61441300
Н	-4.38518900	-2.01464200	-1.88358500
Н	-2.92116900	-2.78043200	-1.25976100
Н	-2.90261600	-1.06011700	-1.72158900
С	0.35477200	1.59315700	-0.34660500
Ν	1.42423500	2.21751500	0.14917200

С	1.09413100	3.52420300	0.44067500
С	-0.21850100	3.68293700	0.10832200
Ν	-0.65283600	2.46738400	-0.37868700
Н	0.30795400	0.56550700	-0.66006300
Н	1.81101000	4.21175800	0.85256400
Н	-0.87017600	4.53577600	0.17362500
Н	-1.62850500	2.26693100	-0.69772200
Cl	-3.60455100	1.98729200	-1.09223900
0	2.08242700	-2.17584200	1.45445700
С	1.57297600	-2.75050500	0.22576500
Н	0.70972600	-3.39167900	0.37820500
С	2.84683200	-3.20348800	0.80192100
Н	3.77919700	-2.86854400	0.35811500
Н	2.37687800	1.81416500	0.30443800
С	1.47912300	-1.85764700	-0.96007600
С	2.49230200	-0.94515300	-1.27799300
С	0.34368800	-1.92357500	-1.77383000
С	2.37647200	-0.13164600	-2.40084700
Н	3.35556800	-0.83814100	-0.63361300
С	0.22638300	-1.10556100	-2.89750400
Н	-0.45145600	-2.61627000	-1.52535500
С	1.24647600	-0.21145700	-3.21724200

Н	3.16333000	0.57746300	-2.62896900
Н	-0.66183600	-1.16326800	-3.51526800
Н	1.15636900	0.42880800	-4.08658200
Н	2.88417700	-4.15394700	1.32590000
Cl	4.33698000	1.44568100	0.77766000

	TS	51	
С	-2.30525400	-1.05056100	1.06804200
Ν	-1.28592900	-0.52769400	1.75908500
С	-0.25605900	-1.45182400	1.81007700
С	-0.67602000	-2.54715400	1.11905000
Ν	-1.95502400	-2.27584500	0.66670600
С	-1.27233900	0.78995300	2.40526300
С	-2.77826900	-3.15419400	-0.18632600
С	-2.24939400	-3.20436600	-1.61405000
Н	-3.25102500	-0.57947500	0.83798900
Н	0.67542000	-1.22182100	2.30331300
Н	-0.18303800	-3.48073000	0.91291700
Н	-1.88355500	1.47842600	1.82619100
Н	-1.66644900	0.70694200	3.41748900

Н	-0.24214100	1.13943200	2.44035500
Н	-3.78964700	-2.75170400	-0.15954900
Н	-2.78142800	-4.14091800	0.27709100
Н	-2.87749100	-3.87409300	-2.20451500
Н	-1.22453800	-3.57916300	-1.64840900
Н	-2.27882400	-2.21377000	-2.07154200
С	-1.58364500	1.49028300	-1.31556400
Ν	-0.76047800	2.50394600	-1.06080700
С	-1.49967600	3.53455700	-0.51918200
С	-2.79938800	3.11951800	-0.45219800
Ν	-2.82616900	1.83770100	-0.95909100
Н	-1.30092400	0.54112000	-1.73693000
Н	-1.04820600	4.46633800	-0.22671700
Н	-3.68726300	3.61092700	-0.09570100
Н	-3.65478900	1.20871400	-0.99531700
Cl	-5.14148900	-0.21379200	-0.76279500
0	1.75030700	2.35122900	-1.26474000
С	2.17340500	0.94104200	0.06243300
Н	1.17939900	0.56334400	0.24990400
С	2.29828000	2.40042400	0.03948000
Н	3.31332900	2.79876300	0.07155500
Н	0.37001900	2.46654000	-1.19314300

С	3.12900800	0.00517300	-0.48915100
С	4.46192300	0.36275700	-0.75305100
С	2.70811000	-1.30987600	-0.75056100
С	5.34688700	-0.57496700	-1.26668000
Н	4.80389300	1.36974200	-0.55259300
С	3.59588800	-2.24673700	-1.26264400
Н	1.68126300	-1.58752700	-0.54449300
С	4.91732100	-1.87988800	-1.52166000
Н	6.37348600	-0.29413100	-1.46806700
Н	3.26282700	-3.25824600	-1.46075100
Н	5.61259700	-2.60856800	-1.92136800
Н	1.67284200	2.91129200	0.77612000
Cl	2.52091900	0.53185900	2.65709900

	TS	52	
С	2.87603400	-0.17349900	-0.89695300
Ν	2.08840500	-0.18938900	-1.97763100
С	2.11375100	-1.45787800	-2.53013400
С	2.94072200	-2.21160900	-1.75547000

Ν	3.40727300	-1.38997600	-0.74553600
С	1.32492000	0.94819800	-2.49770000
С	4.31180400	-1.78518800	0.35264600
С	3.57761500	-2.55799800	1.44006200
Н	3.06862000	0.66039300	-0.23494000
Н	1.55276500	-1.70510600	-3.41397700
Н	3.23727700	-3.24225100	-1.83813300
Н	1.59536600	1.83883300	-1.93652100
Н	1.57373100	1.09468900	-3.54697900
Н	0.25950100	0.75097600	-2.39211500
Н	4.73726100	-0.86414600	0.74846300
Н	5.11223300	-2.37547700	-0.09277700
Н	4.29013100	-2.84972700	2.21381500
Н	3.11378200	-3.46390800	1.04450900
Н	2.80831800	-1.93542100	1.89883600
С	-0.03994500	1.73549100	0.60590400
Ν	-0.95436900	2.31816800	-0.16750800
С	-0.51515100	3.58383800	-0.49500900
С	0.69759600	3.76043000	0.10660200
Ν	0.96914400	2.59321500	0.78890300
Н	-0.09283100	0.74119500	1.01407300
Н	-1.09097400	4.24259000	-1.12071700

Н	1.37635500	4.59464500	0.10861800
Н	1.85278500	2.36715200	1.29147600
Cl	3.69664500	1.68601200	1.92409800
0	-2.98089800	1.18345300	-1.29558900
С	-4.49528200	0.48501600	-0.40989300
Н	-5.26733200	0.75731700	-1.10785200
Н	-4.44617300	1.00951500	0.52929200
С	-3.29206700	-0.15591800	-0.93606800
Н	-3.46990100	-0.78814500	-1.81061500
Н	-1.84737900	1.83392100	-0.56296600
С	-2.29831100	-0.80608000	-0.00755900
С	-2.39126900	-0.71809600	1.38390100
С	-1.20174800	-1.46879600	-0.57062600
С	-1.40178700	-1.27173500	2.19587200
Н	-3.24114800	-0.23031100	1.84276600
С	-0.20964600	-2.01861700	0.23733400
Н	-1.12927700	-1.55476800	-1.64985600
С	-0.30661300	-1.91911800	1.62527700
Н	-1.48773300	-1.19862600	3.27354500
Н	0.63037400	-2.53080700	-0.21490500
Н	0.45920000	-2.35040800	2.25803300
Cl	-5.95927300	-1.18039500	0.52807500

_

	Pr	01	
С	-2.01515000	-0.85557700	1.11230700
Ν	-1.10120700	-0.35226400	1.95000800
С	-0.21658300	-1.35691600	2.30246100
С	-0.61333800	-2.48262300	1.64922000
Ν	-1.73751300	-2.14778100	0.91570600
С	-1.09261800	1.01831100	2.47282000
С	-2.50723000	-3.04531500	0.03134700
С	-1.73658300	-3.39226700	-1.23503900
Н	-2.85319000	-0.33634100	0.66517900
Н	0.61192700	-1.17703600	2.96350600
Н	-0.19492400	-3.47308800	1.63794700
Н	-1.55989700	1.67882700	1.74633500
Н	-1.63664000	1.05441700	3.41591700
Н	-0.06070400	1.32244800	2.63142300
Н	-3.43259400	-2.52002900	-0.20290400
Н	-2.74867200	-3.93658200	0.61076500
Н	-2.35176200	-4.04186800	-1.86034100
Н	-0.80941800	-3.92105900	-1.00681800
Н	-1.50113200	-2.49088700	-1.80427200

С	-1.23186300	1.76724100	-1.54551100
Ν	-0.35740800	2.72036300	-1.25813800
С	-1.04433900	3.64896400	-0.50152000
С	-2.34410900	3.24021900	-0.33930300
Ν	-2.44504100	2.04272400	-1.01176700
Н	-1.03205100	0.87877400	-2.12275800
Н	-0.56600000	4.53857200	-0.12457600
Н	-3.18102300	3.67804700	0.17738400
Н	-3.27332800	1.43098000	-1.05164200
Cl	-4.78743400	-0.08467000	-0.82147800
0	2.37406100	2.45803800	-1.51585200
С	2.16965900	0.96882800	0.38406400
Н	1.08719000	1.06262400	0.41865500
С	2.77095700	2.26479300	-0.17384600
Н	3.86084200	2.21105500	-0.14838200
Н	1.39257200	2.60218600	-1.51445800
С	2.55709000	-0.28280800	-0.34361200
С	3.89884200	-0.64217500	-0.51078700
С	1.56315600	-1.09091900	-0.89796900
С	4.23701300	-1.78800700	-1.22273200
Н	4.68028300	-0.03045500	-0.07540200
С	1.89979300	-2.23532800	-1.61950600

Н	0.52206800	-0.81737000	-0.77321700
С	3.23743600	-2.58648900	-1.78254600
Н	5.27932200	-2.05854500	-1.34426600
Н	1.12040000	-2.84906600	-2.05311100
Н	3.50202300	-3.47648700	-2.34130800
Н	2.45565200	3.09791500	0.46471900
Cl	2.66931400	0.85924500	2.17257700

Pro2					
С	-1.89340200	-1.64622300	0.66707200		
Ν	-0.96128700	-2.59428700	0.80079100		
С	-0.90075400	-3.32511600	-0.37103200		
С	-1.82640900	-2.79766000	-1.21759500		
Ν	-2.43450500	-1.74979600	-0.55063300		
С	-0.11106200	-2.79573400	1.97951100		
С	-3.50885200	-0.89068100	-1.08964400		
С	-3.06469800	-0.14781100	-2.34062400		
Н	-2.17522400	-0.93654100	1.42661200		
Н	-0.21673700	-4.14586900	-0.49467200		
Н	-2.10317300	-3.07733700	-2.21807700		
Н	-0.59025200	-2.32807700	2.83597300		

Н	-0.01165400	-3.86471900	2.15608100
Н	0.86266800	-2.33614500	1.80910800
Н	-3.78042200	-0.18641700	-0.30484400
Н	-4.36836800	-1.53251900	-1.28700600
Н	-3.88646900	0.48194400	-2.68306100
Н	-2.79918400	-0.83429000	-3.14702500
Н	-2.20839000	0.49169700	-2.12661800
С	-0.69352400	1.36680000	0.93719000
Ν	0.06168100	0.82214100	1.88135300
С	-0.73363600	0.74388700	3.00698900
С	-1.97889400	1.25067500	2.72627900
Ν	-1.93290000	1.64377000	1.40754500
Н	-0.38613500	1.56633100	-0.07596700
Н	-0.36585200	0.33599700	3.93484500
Н	-2.86406700	1.36967600	3.32747900
Н	-2.72474800	2.04028700	0.87284700
Cl	-4.49638900	2.65178700	-0.10803900
0	2.37128400	-0.63774300	1.64744300
С	4.27913300	0.56970400	0.91173100
Н	4.80144800	0.14949000	1.76627100
Н	3.92103300	1.56687600	1.15707500
С	3.15717300	-0.37275800	0.48692400

Н	3.61345300	-1.32508700	0.20026900
Н	1.59554500	-0.01586200	1.68997300
С	2.29950000	0.10620000	-0.67104100
С	2.19922800	1.44766400	-1.04449700
С	1.53307500	-0.84110400	-1.35885100
С	1.35207200	1.83442000	-2.08365500
Н	2.77683800	2.20625000	-0.53221600
С	0.68103400	-0.45935200	-2.38964400
Н	1.60754600	-1.88618900	-1.07935600
С	0.58967600	0.88339100	-2.75772700
Н	1.28719100	2.87983400	-2.36182700
Н	0.09339700	-1.20674200	-2.90842500
Н	-0.06932000	1.18473000	-3.56326300
Cl	5.53237300	0.76550800	-0.40345800

### **References:**

- R. He, B. Long, Y. Lu, H. Meng and C. Li, J. Chem. Eng. Data, 2012, 57, 2936-2941.
- Q. Xiao, L. Jiang, Y. Liang, K. Wang, W. Lin, G. Shi, X. Wang, H. Li and C. Wang, ACS Sustainable Chem. Eng., 2022, 10, 2289-2293.
- 3. J. Zhu, H. Shao, L. Feng, Y. Lu, H. Meng and C. Li, J. Mol. Liq., 2021, 341, 116928.
- 4. L. Feng, H. Meng, Y. Lu and C. Li, Sep. Purif. Technol., 2022, 281, 119994.
- Y. Pan, Y. Liu, Z. Tu, X. Zhang, Y. Wu and X. Hu, Chem. Eng. J., 2022, 434, 134707.
- 6. (a) S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456–1465;
  (b) R. Sure, J. Antony, S. Grimme, J. Phys. Chem. B 2014, 118, 3431–3440; (c)
  M. J. Turner, S. Grabowsky, D. Jaytilaka, M. A. Spackman, M. J. Turner, S. Grabowsky, D. Jaytilaka, M. A. Spackman, J. Phys. Chem. Lett. 2014, 55, 4249–4255; (d) Z. Li, K. Su, J. Ren, D. Yang, B. Cheng, C. K. Kim, X. Yao, Z. Li, K. Su, J. Ren, D. Yang, B. Cheng, C. K. Kim, X. Yao, 863–872.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Sc almani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J.

Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V.
G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick,
A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul,
S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I.
Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al Laham, C. Y. Peng, A.
Nanayakkara, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W.
Wong, C. Gonzalez, J. A. Pople, GAUSSIAN 03, Gaussion, Inc., Pittsburgh, PA,
2009.