Supporting Information

Tandem electrocatalytic aziridination – ring expansion of simple aromatic olefins using ammonia and carbon dioxide

Jef R. Vanhoof, Robin Dirix, Dirk E. De Vos*

*Centre For Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F p.o. box 2454, 3001 Leuven (Belgium). Email: dirk.devos@kuleuven.be

Total number of pages: 27

Total number of Figures: 9

Table of Contents

1)	General information	3
2)	General procedures	3
3)	Control experiments	6
4)	Spectroscopic data	12
5)	References	27

1) General information

All reactions were carried out with commercially available chemicals and materials, unless otherwise noted. Chemicals were used without any further purification. Ring expansions of the N-H aziridines with CO₂ were performed in home-made pressure reactors. Ring expansions of the N-H aziridines with CS₂ were performed in glass vials. ¹H-NMR analyses of the reaction mixtures were conducted with a Bruker Avance 400 spectrometer using a zg30 pulse program (1D ¹H experiment using 30 degree flip angle).

2) General procedures

- 1) Electrocatalytic N-H aziridination: See Reference 1.
- 2) Ring expansion with CO₂: After the completion of the electrocatalytic N-H aziridination (see 1), the reaction mixture was scrubbed with N₂. 160 mg of sodium thiosulphate (2 equiv., optional) was added and the reaction mixture was transferred to a home-made stainless steel pressure reactor. The reactor was purged with nitrogen, after which 15 bar of CO₂ pressure was applied. The reactor was transferred to a heating block at 70°C and was stirred overnight. The resulting mixture was analyzed with ¹H NMR. Pyridine was added as an external standard from a 0.045M solution in CDCl₃ (200 µl of reaction mixture + 300 µl of pyridine solution in CDCl₃).
- 3) **Ring expansion with CS₂:** After the completion of the electrocatalytic N-H aziridination (see 2), the reaction mixture was scrubbed with N_2 and 160 mg of sodium thiosulphate (2)

S3

equiv., optional) were added. The solution was transferred to a glass vial and 15 equivalents of CS_2 was added. The reaction vial was transferred to a heating block at 40°C and was stirred for 10 minutes. The resulting mixture was analyzed with ¹H-NMR. Pyridine was added as an external standard from a 0.045M solution in $CDCl_3$ (200 µl of reaction mixture + 300 µl of pyridine solution in $CDCl_3$).

- 4) Optional adaption: We demonstrated in our previous research that using commercial NH₃ solutions in dioxane or in water also results in good N-H aziridine yields around 80%, preventing the need for a homemade NH₃ solution in dioxane.^[1] We used both commercial solutions in the protocol described herein with the model compound styrene. When performing the ring expansion with CO₂, an overall yield of 74% and 75% was obtained when using the NH₃ commercial solution in dioxane and in water, respectively. Performing the ring expansion with CS₂ resulted in an overall yield of 58% and 56% when using the NH₃ commercial solution in dioxane and in water, respectively.
- 5) Purification: Isolated yields are provided for model compounds 2a and 4a according to the following procedure: After work-up (see Reference 1.), the mixture was purified by column chromatography on silica gel, eluting with 8:2 heptane/ethyl acetate for compound 2a (white solid, R_F = 0.21, 81% overall yield) and 6:4 heptane/ethyl acetate for compound 4a (white solid, R_F = 0.45, 58% overall yield). Copies of the ¹H- and ¹³C-NMR spectra are included.
- 6) **Scale-up**: After performing a gram scale electrocatalytic N-H aziridination reaction (see Reference 1.), the reaction mixture was transferred to a glass-lined Parr reactor (600ml)

S4

together with additional solvent (45 ml dioxane and 5 ml water) in order for optimal mechanical stirring (300 rpm). Then, the reactor is sealed, purged and pressurized with CO₂ until a constant pressure of 15 bar. Afterwards, the reactor is cooled down in an ice bath and the pressure is released. The reaction mixture is analyzed with ¹H-NMR (see 2). Similarly for 5-phenyl-2-thiazolidinethione **4a**, 1.03 ml of CS₂ is added to the reaction mixture after performing the gram-scale electrocatalytic N-H aziridination. The reaction is stirred for 30 minutes at 40 °C. The reaction mixture is analyzed with ¹H-NMR (see 3).

3) Control experiments

The influence of iodide on the product formation and product distribution was investigated (Figure 1 of main text). After performing 2 standard N-H aziridination reactions with styrene, both mixtures were combined and the salts and solvents were removed following our work-up procedure (see section 2). The concentrated 2-phenylaziridine in some leftover dioxane was diluted again with the dioxane/water mixture. This homogeneous mixture was equally divided over three pressure reactors to which 0, 0.2 or 2 equivalents of Lil were added. Standard conditions for the CO₂ ring expansion were applied and all three mixtures were compared using ¹H-NMR. Since all three mixtures originate from the same starting mixture, the relative ratios of the areas assigned to 2-phenylaziridine and 5-phenyl-2-oxazolidinone can be compared. Note that for these reactions, full conversion of the aziridine (characteristic signals at δ = 1.79 (d, 1H), 2.18 (d, 1H), 3.00 (dd, 1H)) was observed, most likely due to parasitic side reactions (see main text); so for simplicity we also integrated the signal from the leftover styrene for comparison. For each spectrum, the integral of the styrene signal at δ = 5.78 (d, 1H) was calibrated to 1 and the signal for 5-phenyl-2-oxazolidinone at δ = 5.66 (t, 1H) was integrated. It is observed that with increasing amounts of Lil, the amount of 5-phenyl-2-oxazolidinone also increased. Similar experiments with CS₂ (signal at δ = 5.18 (dd, 1H) was used) and LiBr were also performed.

Control experiments with CO₂ and Lil

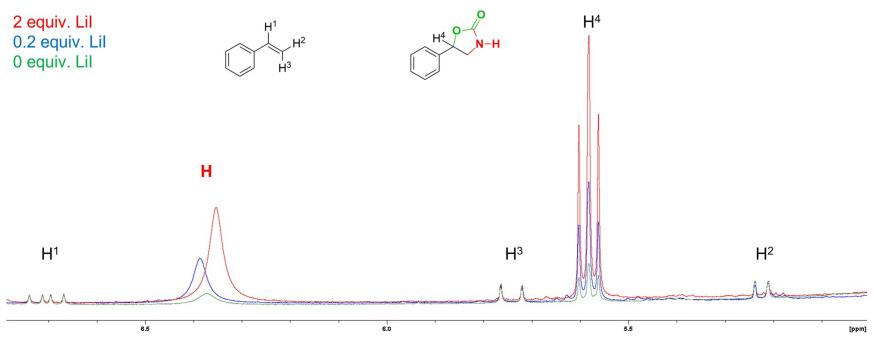


Figure S1: Control experiments with different amounts of LiI for the CO₂ insertion reaction.

Control experiments with $\rm CO_2$ and LiBr

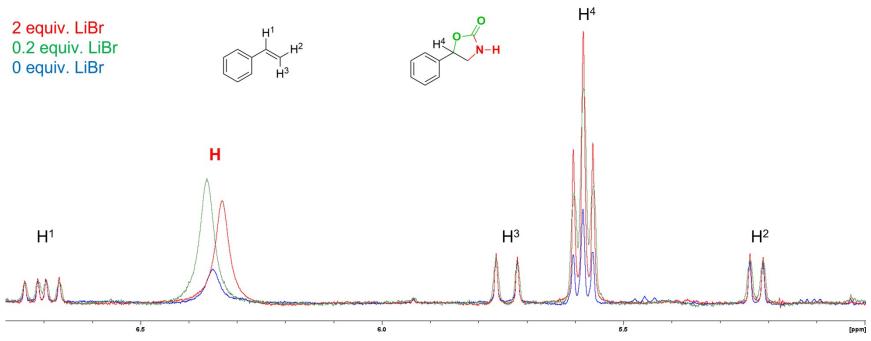


Figure S2: Control experiments with different amounts of LiBr for the CO₂ insertion reaction.

Control experiments with CS₂ and Lil

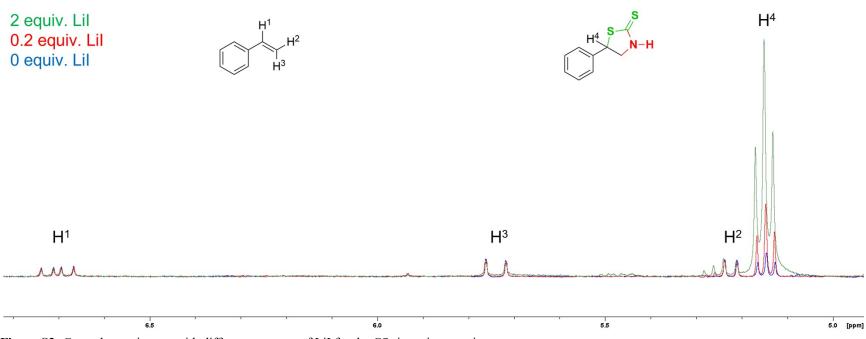


Figure S3: Control experiments with different amounts of LiI for the CS₂ insertion reaction.

Control experiments with CS₂ and LiBr

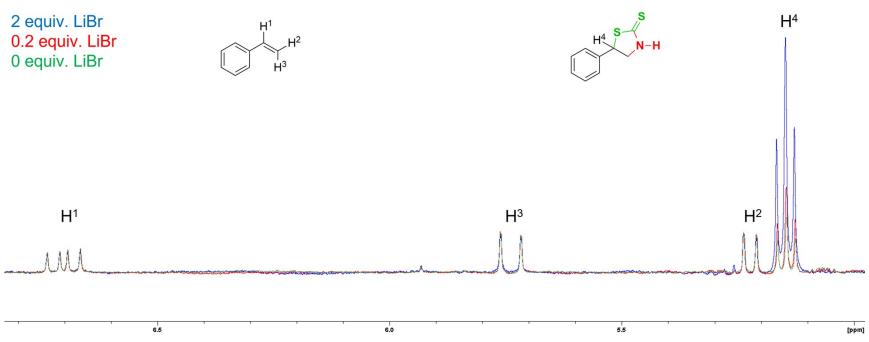


Figure S4: Control experiments with different amounts of LiBr for the CS₂ insertion reaction.

Control experiments with CO₂ and Lil with focus on product distribution

The amount of 5-phenyl-2-oxazolidinone increases to a much larger extent with increasing amount of Lil compared to the 4-phenyl-2-oxazolidinone (signals for H⁴ and **H** compared with signals for H⁵, H⁶ and **H⁸**). Experiments with LiBr and CO₂ gave similar trends but to a lesser extent.

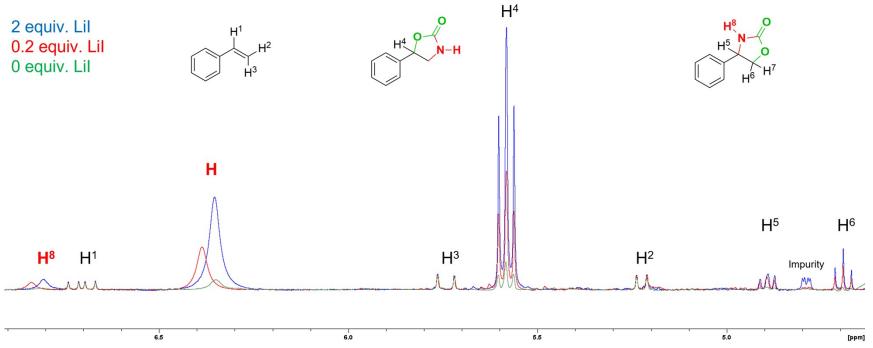
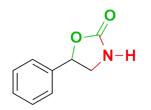
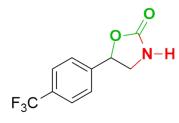
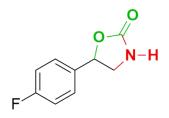



Figure S5: Control experiments with different amounts of LiI for the CO₂ insertion reaction with focus on product distribution of the 5-phenyl-2-oxazolidinone and 4-phenyl-2-oxazolidinone isomers.

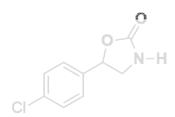
4) Spectroscopic data


Quantification was performed by mixing 200 μ l of crude reaction mixture with 300 μ l 0.0454 M solution of pyridine in CDCl₃. Characteristic signals of both starting materials and products, together with the signal for pyridine at δ = 8.58 (d, 2H), are used. For the model reaction with styrene, quantification was based on the styrene signal at δ = 5.78 (d, 1H) and the 2-oxazolidinone signal at δ = 5.66 (t, 1H). For 2-thiazolidinethiones, the characteristic signal at δ = 5.30 (t, 1H) was used. Similar strategies were used for the other substrates. For 2- and 4-vinylpyridine, a 0.0214 M solution of methyl 3,5-dinitrobenzoate in CDCl₃ was used with a characteristic signal at δ = 9.11 (s, 2H).

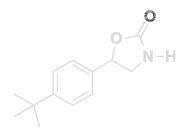
The crude spectra for quantification were compared with literature data to prove the 2oxazolidinones and 2-thiazolidithiones had formed²⁻⁸. The signal of the N-H proton proved difficult to discriminate from other signals, most likely because it is an exchangeable proton and due to H-bonding with both dioxane and especially water, broadening and displacing the peak. According to literature, this proton gives a broad signal at values ranging from δ = 5.75 to δ = 6.68 for the model compound **2a** (5-phenyl-2-oxazolidinone)²⁻⁴. After work-up, the N-H proton signal was found here at δ = 6.34 . However, H-bonding with leftover dioxane can still be responsible for broadening and displacing the signal. For the thiazolidinethiones, a value of the N-H signal at δ = 10.53 is reported for the model compound **4a** (5-phenyl-2-thiazolidinethione, in DMSO-d6)⁴. GC-MS measurements further confirmed the formation of the desired products where the obtained mass corresponded excellently to the calculated mass.


5-Phenyl-2-oxazolidinone (2a)

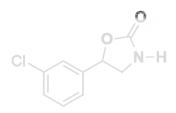
¹H-NMR (400 MHz, CDCl₃) δ 3.57 (t, J = 8.2 Hz, 1H), 4.01 (t, J = 8.6 Hz, 1H), 5.66 (t, J = 8.2 Hz, 1H), 6.34 (s br, 1H), 7.35-7.50 (m, 5H); ¹³C-NMR (400 MHz, CDCl₃) δ 47.9, 76.8, 126.4, 129.2, 140.1, 159.2; GC-MS (EI, 70eV): m/z (rel. int. %): 163 (30), 133 (57), 105 (64), 104 (100), 91 (31), 78 (12), 77 (32), 65 (13), 51 (25), 50 (13).


5-(4-trifluoromethylphenyl)-2-oxazolidinone (2b)

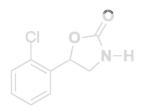
¹H-NMR (400 MHz, CDCl₃) δ 3.43 (t, J = 7.9 Hz, 1H), 3.98 (t, J = 8.7 Hz, 1H), 5.67 (t, J = 7.9 Hz, 1H), 6.47 (s br, 1H), 7.32-7.64 (m, 4H).


5-(4-fluorophenyl)-2-oxazolidinone (2c)

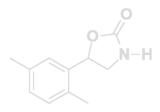
¹H-NMR (400 MHz, CDCl₃) δ 3.50 (t, J = 8.1 Hz, 1H), 3.97 (t, J = 8.7 Hz, 1H), 5.59 (t, J = 8.1 Hz, 1H), 6.54 (s br, 1H), 7.03-7.13 (m, 2H), 7.28-7.41 (m, 2H).


5-(4-chlorophenyl)-2-oxazolidinone (2d)

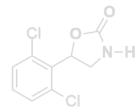
¹H-NMR (400 MHz, CDCl₃) δ 3.41 (t, J = 7.9 Hz, 1H), 3.92 (t, J = 8.7 Hz, 1H), 5.56 (t, J = 7.9 Hz, 1H), 6.42 (s br, 1H), 7.24-7.43 (m, 4H).


5-(4-tert-butylphenyl)-2-oxazolidinone (2e)

¹H-NMR (400 MHz, CDCl₃) δ 1.34 (s, 9H), 3.55 (t, J = 8.2 Hz, 1H), 3.94 (t, J = 8.7 Hz, 1H), 5.69 (t, J = 8.2 Hz, 1H), 6.35 (s br, 1H), 7.24-7.36 (m, 2H), 7.39-7.48 (m, 2H).


5-(3-chlorophenyl)-2-oxazolidinone (2f)

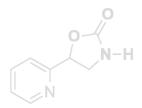
¹H-NMR (400 MHz, CDCl₃) δ 3.43 (t, J = 8.0 Hz, 1H), 3.93 (t, J = 8.7 Hz, 1H), 5.56 (t, J = 8.0 Hz, 1H), 6.42 (s br, 1H), 7.19-7.43 (m, 4H).


5-(2-chlorophenyl)-2-oxazolidinone (2g)

¹H-NMR (400 MHz, CDCl₃) δ 3.36 (dd, J = 8.9, 6.5 Hz, 1H), 4.12 (t, J = 8.9 Hz, 1H), 5.90 (dd, J = 8.9, 6.5 Hz, 1H), 6.43 (s br, 1H), 7.26-7.44 (m, 3H), 7.54-7.62 (m, 1H).

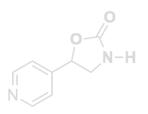
5-(2,5-dimethylphenyl)-2-oxazolidinone (2h)

¹H-NMR (400 MHz, CDCl₃) δ 2.24 (s, 3H), 2.32 (s, 3H), 3.35 (t, J = 8.0 Hz, 1H), 3.94 (t, J = 8.6 Hz, 1H), 5.76 (t, J = 8.0 Hz, 1H), 6.38 (s br, 1H), 7.00-7.09 (m, 2H), 7.24-7.29 (m, 1H).



5-(2,6-dichlorophenyl)-2-oxazolidinone (2i)

¹H-NMR (400 MHz, CDCl₃) δ 3.75 (t, J = 8.7 Hz, 1H), 3.88 (t, J = 8.9 Hz, 1H), 6.37 (t, J = 9.4 Hz, 1H) 6.49 (s br, 1H), 7.28-7.38 (m, 3H).


5-(2,4,6-trimethylphenyl)-2-oxazolidinone (2j)

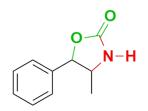
¹H-NMR (400 MHz, CDCl₃) δ 2.24 (s, 3H), 2.25 (s, 3H), 2.34 (s, 3H), 3.47 (t, J = 9.2 Hz, 1H), 3.82 (t, J = 9.2 Hz, 1H), 6.00 (t, J = 9.6 Hz, 1H), 6.41 (s br, 1H), 7.81-7.88 (m, 2H).

5-(2-pyridinyl)-2-oxazolidinone (2k)

¹H-NMR (400 MHz, CDCl₃) δ 3.79 (t, 7.6 Hz, 1H), 4.09 (t, J = 8.8 Hz, 1H), 5.70 (dd, J = 9.2, 6.7 Hz, 1H), 5.98 (s br, 1H), 7.28 (m, 1H), 7.55 (d, J = 7.9 Hz, 1H), 7.77 (t, J = 7.7 Hz, 1H), 8.60 (d, J = 4.5 Hz, 1H).

5-(4-pyridinyl)-2-oxazolidinone (2l)

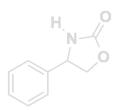
¹H-NMR (400 MHz, CDCl₃) δ 3.42 (t, J = 8.0 Hz, 1H), 4.01 (t, J = 8.4 Hz, 1H), 5.63 (t, J = 8.0 Hz, 1H), 6.44 (s br, 1H), 7.27-7.34 (m, 2H), 8.60-8.67 (m, 2H).


5-(2-naphthyl)-2-oxazolidinone (2m)

¹H-NMR (400 MHz, CDCl₃) δ 3.53 (t, J = 8.1 Hz, 1H), 3.98 (t, J = 8.6 Hz, 1H), 5.73 (t, J = 8.1 Hz, 1H), 5.93 (s br, 1H), 7.38-7.53 (m, 3H), 7-78-7.91 (m, 4H).

О-<u>́ ́</u> √__N−н

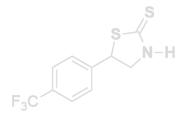
5-methyl-5-phenyl-2-oxazolidinone (2n)


¹H-NMR (400 MHz, CDCl₃) δ 1.77 (s, 3H), 3.41 (d, J = 8.4 Hz, 1H), 3.63 (d, J = 8.2 Hz, 1H), 6.22 (s

br, 1H), 7.23-7.42 (m, 5H).

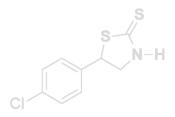
4-methyl-5-phenyl-2-oxazolidinone (2o)

- *Cis*: ¹H-NMR (400 MHz, CDCl₃) δ 0.84 (d, J = 6.5 Hz, 3H), 4.23 (m, 1H), 5.74 (d, J = 8.0 Hz, 1H), 5.79 (s br, 1H), 7.29-7.37 (m, 5H).
- *Trans*: ¹H-NMR (400 MHz, CDCl₃) δ 1.42 (d, J = 6.2 Hz, 3H), 3.86 (m, 1H), 5.06 (d, J = 7.2 Hz, 1H), 5.88 (s br, 1H), 7.35-7.48 (m, 5H).

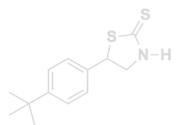


4-phenyl-2-oxazolidinone (3a)

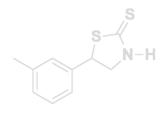
¹H-NMR (400 MHz, CDCl₃) δ 4.23 (t, J = 7.9 Hz, 1H), 4.78 (t, J = 8.7 Hz, 1H), 4.98 (t, J = 7.9 Hz, 1H), 6.78 (s br, 1H), 7.34-7.49 (m, 5H)


5-phenyl-2-thiazolidinethione (4a)

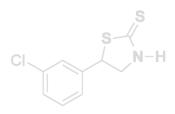
¹H-NMR (400 MHz, DMSO-d6) δ 3.96 (dd, J = 11.3, 7.3 Hz, 1H), 4.27 (dd, J = 11.3, 8.1 Hz, 1H), 5.30 (t, J = 7.7 Hz, 1H), 7.30-7.46 (m, 5H), 10.27 (s br, 1H); ¹³C-NMR (400 MHz, CDCl₃) δ 53.0, 58.6, 127.7, 128.7, 129.4, 140.1, 198.3


5-(4-trifluoromethylphenyl)-2-thiazolidinethione (4b)

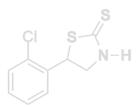
¹H-NMR (400 MHz, DMSO-d6) δ 3.99 (dd, J = 11.4, 6.5 Hz, 1H), 4.32 (dd, J = 11.4, 8.1 Hz, 1H), 5.18 (t, J = 7.2 Hz, 1H), 7.57-7.66 (m, 2H), 7.71-7.81 (m, 2H), 10.34 (s br, 1H).


5-(4-chlorophenyl)-2-thiazolidinethione (4c)

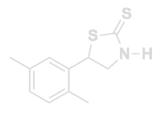
¹H-NMR (400 MHz, DMSO-d6) δ 3.89 (dd, 11.3, 6.8 Hz, 1H), 4.23 (dd, 11.3, 8.6 Hz, 1H), 5.12 (t, J = 7.6 Hz, 1H), 7.27-7.38 (m, 4H), 10.27 (s br, 1H).


5-(4-*tert*-butylphenyl)-2-thiazolidinethione (4d)

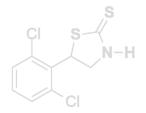
¹H-NMR (400 MHz, DMSO-d6) δ 1.26 (s, 9H), 3.93 (dd, J = 11.3, 7.6 Hz, 1H), 4.19 (dd, J = 11.3, 8.1 Hz, 1H), 5.14 (t, J = 7.8 Hz, 1H), 7.31-7.42 (m, 4H), 10.34 (s br, 1H).


5-(3-methylphenyl)-2-thiazolidinethione (4e)

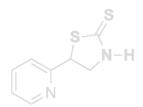
¹H-NMR (400 MHz, DMSO-d6) δ 2.31 (s, 3H), 3.94 (dd, J = 11.6, 7.5 Hz, 1H), 4.20 (dd, J = 11.6, 8.2 Hz, 1H), 5.12 (t, J = 7.8 Hz, 1H), 7.09-7.31 (m, 4H), 10.23 (s br, 1H).


5-(3-chlorophenyl)-2-thiazolidinethione (4f)

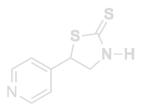
¹H-NMR (400 MHz, DMSO-d6) δ 3.96 (dd, J = 11.6, 6.8 Hz, 1H), 4.24 (dd, J = 11.6, 8.2 Hz, 1H), 5.29 (t, J = 7.4 Hz, 1H), 7.27-7.48 (m, 4H), 10.27 (s br, 1H).


5-(2-chlorophenyl)-2-thiazolidinethione (4g)

¹H-NMR (400 MHz, DMSO-d6) δ 3.99 (dd, J = 11.6, 5.1 Hz, 1H), 4.38 (dd, J = 11.9, 8.3 Hz, 1H), 5.54 (dd, J = 8.3, 5.1 Hz, 1H), 7.23-7.44 (m, 3H), 7.60-7.70 (m, 1H), 10.31 (s br, 1H).


5-(2,5-dimethylphenyl)-2-thiazolidinethione (4h)

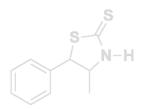
¹H-NMR (400 MHz, DMSO-d6) δ 2.23 (s, 3H), 2.28 (s, 3H), 3.93 (dd, J = 11.3, 7.3 Hz, 1H), 4.19 (dd, J = 11.3, 8.1 Hz, 1H), 5.41 (t, J = 7.7 Hz, 1H), 7.00-7.09 (m, 2H), 7.27-7.30 (m, 1H), 10.26 (s br, 1H).


5-(2,6-dichlorophenyl)-2-thiazolidinethione (4i)

¹H-NMR (400 MHz, DMSO-d6) δ 3.82 (dd, J = 12.5, 4.7 Hz, 1H), 4.14 (dd, J = 12.5, 6.5 Hz, 1H), 6.19 (dd, J = 11.1, 6.4 Hz, 1H), 7.24-7.54 (m, 3H), 10.33 (s br, 1H).

5-(2-pyridinyl)-2-thiazolidinethione (4j)

¹H-NMR (400 MHz, DMSO-d6) δ 4.25 (dd, J = 11.8, 8.1, 1H), 4.29 (dd, J = 11.8, 5.8 Hz, 1H), 5.33 (dd, J = 8.1, 5.8 Hz, 1H), 7.33 (m, 1H), 7.42 (m, 1H), 7.81 (m, 1H), 8.56 (m, 1H), 10.24 (s br, 1H).



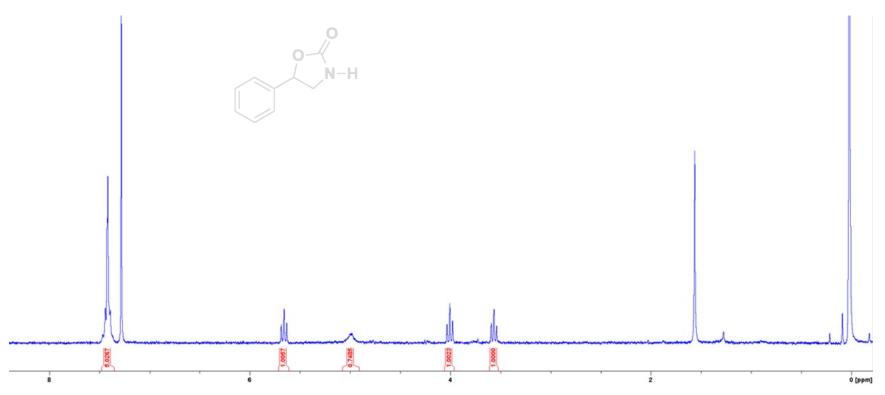
5-(4-pyridinyl)-2-thiazolidinethione (4k)

¹H-NMR (400 MHz, DMSO-d6) δ 3.82 (dd, J = 10.2, 5.1 Hz, 1H), 3.99 (dd, J = 12.6, 5.1 Hz, 1H), 5.27 (dd, J = 8.2, 5.3 Hz, 1H), 7.34-7.49 (m, 2H), 8.49-8.65 (m, 2H), 10.34 (s br, 1H).

5-methyl-5-phenyl-2-thiazolidinethione (4I)

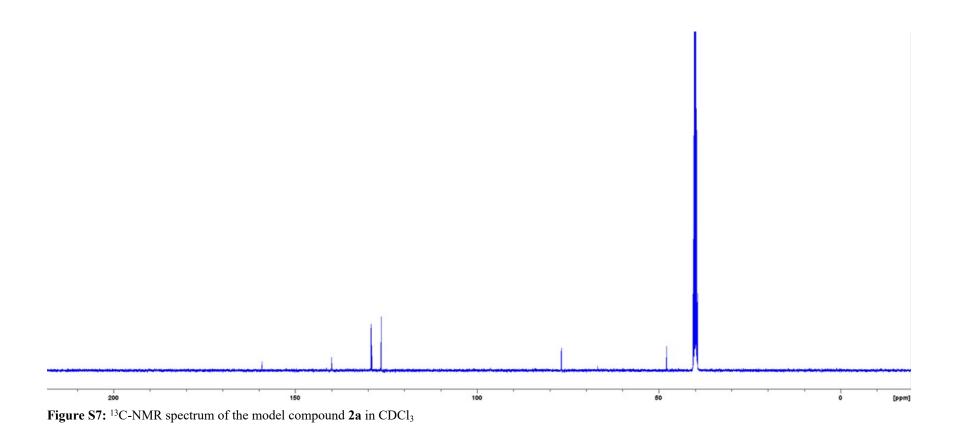
¹H-NMR (400 MHz, DMSO-d6) δ 1.97 (s, 3H), 3.98 (d, J = 11.2 Hz, 1H), 4.20 (d, J = 11.3 Hz, 1H), 7.23-7.50 (m, 5H), 10.28 (s br, 1H).

4-methyl-5-phenyl-2-thiazolidinethione (4m)

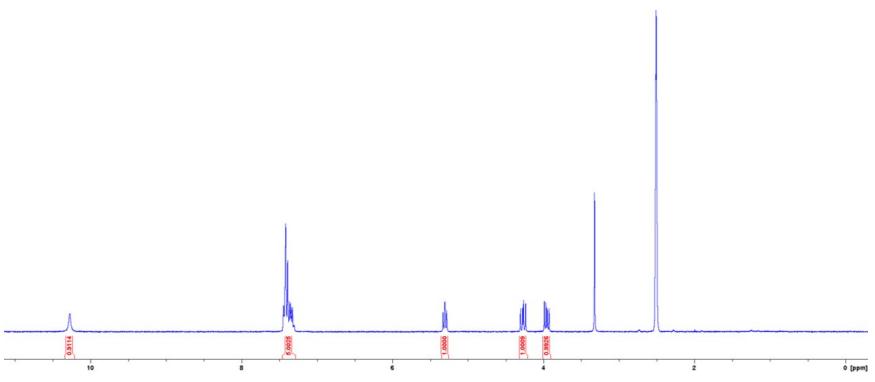

- *Cis*: ¹H-NMR (400 MHz, CDCl₃) δ 1.03 (d, J = 6.7 Hz, 3H), 4.66 (m, 1H), 4.99 (d, J = 7.3 Hz, 1H), 7.23-7.42 (m, 5H), 8.01 (s br, 1H).
- *Trans*: ¹H-NMR (400 MHz, CDCl₃) δ 1.42 (d, J = 6.3 Hz, 3H), 4.36 (m, 1H), 4.74 (d, J = 8.8 Hz, 1H), 7.23-7.42 (m, 5H), 8.01 (s br, 1H).

4-phenyl-2-thiazolidinethione (5a)

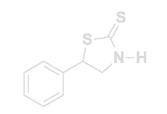
¹H-NMR (400 MHz, DMSO-d6) δ 3.04 (dd, J = 11.1, 6.6 Hz, 1H), 3.71 (dd, J = 11.1, 8.0 HZ, 1H), 4.54 (t, 6.5 Hz, 1H), 7.18-7.32 (m, 5H), 10.45 (s br, 1H).


¹H-NMR spectrum of purified compound 2a

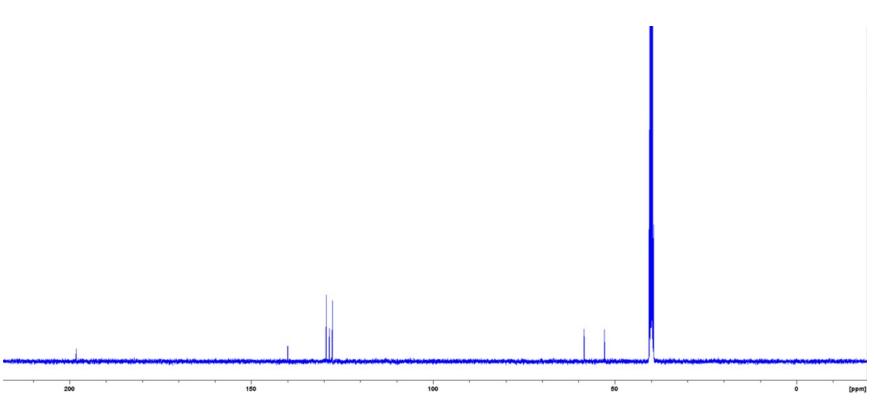
White solid, $R_F = 0.23$, 81% overall yield. The N-H signal at $\delta = 4.99$ does not fully integrate for 1 proton, most likely due to H-bonding with impurity water ($\delta = 1.57$) which is present in the CDCl₃ bottle which might also displace the signal.


Figure S6: ¹H-NMR spectrum of the model compound **2a** in CDCl₃ (δ = 7.29)

¹³C-NMR spectrum of purified compound 2a



¹H-NMR spectrum of purified compound 4a


White solid, $R_F = 0.45$, 58% overall yield. The N-H signal at $\delta = 10.27$ does not fully integrate for 1 proton, most likely due to H-bonding with water ($\delta = 3.33$) which is present in the DMSO-d6 bottle.

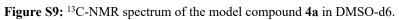


Figure S8: ¹H-NMR spectrum of the model compound **4a** in DMSO-d6 (δ = 2.51).

¹³C-NMR spectrum of purified compound 4a

5) References

- (1) Vanhoof, J.; De Smedt, P.; Krasniqi, B.; Ameloot, R.; Sakellariou, D.; De Vos, D. Direct Electrocatalytic N–H Aziridination of Aromatic Alkenes Using Ammonia. ACS Sustainable Chem. Eng. 2021, 9, 11596-11603. DOI: <u>10.1021/acssuschemeng.1c04473</u>
- (2) Yang, Z-Z.; He, L-N.; Peng, S-Y.; Liu, A-H. Lewis Basic Ionic Liquids-Catalyzed Synthesis of 5-Aryl-2oxazolidinones from Aziridines and CO₂ under Solvent-free Conditions. *Green Chem.* 2010, 12, 1850-1854. DOI: <u>10.1039/C0GC00286K</u>
- (3) Jiang, H-F.; Ye, J-W.; Qi, C-R.; Huang, L-B. Naturally occurring a-amino acid: a simple and inexpensive catalyst for the selective synthesis of 5-aryl-2-oxazolidinones from CO2 and aziridines under solvent-free conditions. *Tetrahedron Lett.* 2010, 51, 928-932. DOI: <u>10.1016/j.tetlet.2009.12.031</u>
- (4) Xie, Y.; Lu, C.; Zhao, B. ; Wang, Q.; Yao, Y. Cycloaddition of Aziridine with CO2/CS2 Catalyzed by Amidato Divalent Lanthanide Complexes. J. Org. Chem. 2019, 84, 1951-1958. DOI: <u>10.1021/acs.joc.8b02924</u>
- (5) Groeper, J. A.; Hitchcock, S. R.; Ferrence, G. M. A scalable and expedient method of preparing diastereomerically and enantiomerically enriched pseudonorephedrine from norephedrine. *Asymmetry*, **2006**, 17, 2884-2889. DOI: <u>10.1016/j.tetasy.2006.11.007</u>
- (6) Stang, E. M.; White, M. C. Total synthesis and study of 6-deoxyerythronolide B by late-stage C–H oxidation. *Nat. Chem.* 2009, 1, 547-551. DOI: <u>10.1038/nchem.351</u>
- (7) Cruz, A.; Padilla-Martínez, I. I.;García- Báez, E. V. Efficient synthesis of *cis*-thiazolidinethiones derived from ephedrines. *Tetrahedron*, **2011**, 22, 394-398. DOI: <u>10.1016/j.tetasy.2011.02.016</u>
- (8) Wullschleger, C. W.; Gertsch, J.; Altmann, K-H. Stereoselective Synthesis of a Monocyclic Peloruside A Analogue. Org. Lett. 2010, 12, 1120-1123. DOI: <u>10.1021/ol100123p</u>