Supporting Information

Microthermal catalytic aerogenesis of renewable biomass waste using cathode materials from spent lithium-ion batteries towards reversed regulated conversion and recycling of valuable metals

Xiangping Chen^a, Yi Wang^a, Lu Yuan^b, Shubin Wang^{c*}, Shuxuan Yan^d, Hongbo Liu^d, Junhua

Xue*

^a School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi Province, 710021, P.R. China;

^b College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan Province, 410081, P.R. China;

^c State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Guangzhou, Guangdong Province, 510655, P.R. China;

^d Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province, 410083, P.R. China;

^e Nuclear Chemistry & Separation and Purification Technology Laboratory, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian Province, 350002, P.R. China. Corresponding authors:

wang.s.bean@gmail.com (S. Wang) and junhua.xu@fjirsm.ac.cn (J. Xu).

Fig. S1. The pretreatment of spent LIBs for the obtaining the purified cathode materials of NCM.

Fig. S2. Flow-chart for the recycling of valuable metals from spent LIBs.

Fig. S3 Schematic diagram of relationship between the Gibbs free energy and reaction temperature during the reductive roasting process.

Fig. S4. EDS images for (A). cathode material and the roasted products of (B). at 500°C and (C).

700°C under the condition of mass ratio of NCM:BMW=1:0.3.

Fig. S5. Fitting results of "Ginstling-Brounshtein" at various leaching temperature for (a) cobalt,(b) nickel and (c) manganese; and arrhenius plots for leaching of (d) Co, (e)Ni and (f)Mn.

Fig. S6. XRD patterns of the recovered products (a-Li₂CO₃: 550°C) and b-Ni, Co and MnO: 700°C)

Fig. S7. Economic assessments of flow-chart for the recycling process of spent LIBs.

Sample		Component rate (wt.%)							
		Ni	Co	Mn	Li	С	Н	0	Ν
Spent	NCM	30.61	12.54	17.32	1.821	/	/	/	/
	450	26.64	10.89	14.58	1.306				
1:0.3	500	25.47	10.42	14.33	0.999				
	550	27.88	11.43	15.88	1.206				
	600	26.41	10.82	14.88	1.262				
	650	28.56	11.72	16.20	1.405				
	1:0.4	20.47	8.72	12.31	/				
450	1:0.5	20.43	8.67	12.33	/				
	1:0.6	18.44	7.86	11.1	/				
Residue									
(Water	1:0.3	30.74	12.56	17.36	/				
leaching)	450								
Corn	stalk	/	/	/	/	43.16	4.05	43.18	1.04

Table S1. Elementary composition of waste NCM and different samples.

No.	Instrument	Types	Place of origin
1	ICP-OFS	Intrenid II	American Thermofisher
1	101-015	писры п	Company
2	XRD	D8 Advance	German Bruker Company
3	TG-DSC	TGA/DSC3+	Switzerland
4	XPS	AXIS SUPRA	Britain
5	GC	Agilent 7890B	America

Table S2. The detailed information for the analytical instrument.

Sample	Position1	Area1	Position2	Area2	Position3	Area3	Position4	Area4
(°C)	(eV)	(wt%)	(eV)	(wt%)	(eV)	(wt%)	(eV)	(wt%)
NCM	284.8	69.65	285.8	16.29	288.99	14.06	-	-
500	284.8	56.99	286.3	16.28	289.7	23.09	293.1	3.64
550	284.8	51.46	286.0	22.48	289.8	22.07	293.0	3.98
600	284.8	58.75	285.9	10.68	289.7	28.54	292.9	2.03
650	284.8	38.54	285.5	30.6	289.7	26.35	293.0	4.52
700	284.8	53.98	286.4	15.44	289.6	23.27	292.6	7.32

Table S3. Fitting peaks of C1s XPS spectra of NCM powders roasted at different temperature.

Sample	Position1	Area1	Position2	Area2	Position3	Area3	Position4	Area4
(°C)	(eV)	(wt%)	(eV)	(wt%)	(eV)	(wt%)	(eV)	(wt%)
NCM	856.8	45.97	862.92	15.25	874.5	18.54	880.77	20.24
500	854.7	34.97	861.4	15.88	872.3	11.75	878.8	37.4
550	854.8	26.41	860.1	22.25	872.5	8.87	878.2	42.47
600	852.6	32.49	858.5	19.34	870.1	11.77	876.8	36.4
650	852.5	38.77	858.5	16.91	870.3	23.92	877.3	20.4
700	852.3	33.39	858.6	14.09	870.0	5.48	874.8	47.03

Table S4. Fitting peaks of Ni2p XPS spectra of NCM powders roasted at different temperature.

Sample	Position1	Area1	Position2	Area2	Position3	Area3	Position4	Area4
(°C)	(eV)	(wt%)	(eV)	(wt%)	(eV)	(wt%)	(eV)	(wt%)
NCM	780.1	66.58	-	-	795.24	33.42	-	-
500	778.3	39.38	783.5	12	793.6	47.9	-	-
550	778.4	35.48	783.6	13.17	796.6	50.81	-	-
600	778.5	36.35	783.9	13.27	796.99	50.08	-	-
650	778.1	30.69	783.5	21.25	793.9	18.96	801.5	29.1
700	778.2	30.92	784.8	26.76	794.8	24.31	801.5	18.01

Table S5. Fitting peaks of Co2p XPS spectra of NCM powders roasted at different temperature.

Sample	Position1	Area1	Position2	Area2	Position3	Area3
(°C)	(eV)	(wt%)	(eV)	(wt%)	(eV)	(wt%)
NCM	642.3	79.83	-	-	653.8	20.17
500	642.4	61.99	-	-	652.2	39.01
550	642.4	77.39	-	-	653.6	22.61
600	640.3	34.55	643.0	36.23	652.7	34.55
650	640.2	48.55	643.3	22.76	652.4	28.69
700	640.2	55.43	644.3	24.65	652.4	19.93

Table S6. Fitting peaks of Mn2p XPS spectra of NCM powders roasted at different temperature

Reaction	Caculation of $\Delta_r G$	Eq.
H ₂ (g)+NiO=Ni+H ₂ O	$\Delta_r G = -5.03 + 0.008T, \text{ kJ}$	(6)
H ₂ (g)+MnO ₂ =MnO+H ₂ O	$\Delta_r G = -30.5 + 0.003T, \text{ kJ}$	(7)
$H_2(g)+C_0O = C_0+H_2O$	$\Delta_r G = -18.97 + 0.05T, \text{ kJ}$	(8)
$CO(g)+NiO = Ni+CO_2(g)$	$\Delta_r G = -11.03 - 2.65T$, kJ	(9)
CO(g)+MnO ₂ =MnO+CO ₂ (g)	$\Delta_r G = -36.5 - 0.005T$, kJ	(10)
CO(g)+CoO=Co+CO ₂ (g)	$\Delta_r G = -44.09 + 0.02T, \text{ kJ}$	(11)
$CO_2(g)+Li_2O = Li_2CO_3$	$\Delta_r G = -174.74 + 0.13T$, kJ	(12)
C+NiO=Ni+CO(g)	$\Delta_r G = 18.64 - 0.04T$, kJ	(13)
C+NiO=Ni+CO ₂ (g)	$\Delta_r G = 7.60 \text{-} 0.04T, \text{ kJ}$	(14)
C+MnO ₂ =MnO+CO(g)	$\Delta_r G = -6.83 - 0.05T, \text{ kJ}$	(15)
C+MnO ₂ =MnO+CO ₂ (g)	$\Delta_r G = -43.34 - 0.05T$, kJ	(16)
C+CoO = Co+CO(g)	$\Delta_r G = 80.11 \text{-} 0.16T, \text{ kJ}$	(17)
$C+2CoO = 2Co+CO_2(g)$	$\Delta_r G = 36.02 - 0.14T$, kJ	(18)
CH ₄ +3MnO ₂ =3MnO+CO(g)+2H ₂ O	$\Delta_r G = -54.64 - 0.07T, \text{ kJ}$	(19)
CH ₄ +4MnO ₂ =4MnO+CO ₂ (g)+2H ₂ O	$\Delta_r G$ =-91.14-0.07 <i>T</i> , kJ	(20)
CH ₄ +3NiO=3Ni+CO(g)+2H ₂ O	$\Delta_r G = 21.77 - 0.05T$, kJ	(21)
CH ₄ +4NiO=4Ni+CO ₂ (g)+2H ₂ O	$\Delta_r G = 10.74 - 0.05T$, kJ	(22)
CH ₄ +3CoO=3Co+CO(g)+2H ₂ O	$\Delta_r G = 23.28 - 0.04T, \mathrm{kJ}$	(23)

 Table S7 The possible chemical reactions and corresponding Gibbs free energy.

Unit operation	Energy cost (kW.h)	Expenditure (\$)
Pyrolysis roasting	90	-7.03
Water leaching	33	-2.58
Crystallization	22	-1.72
Drying	2.6	-0.2
Acid leaching	3.3	-0.25
Magnetic separation	0.74	-0.06
Total	151.64	-11.84

Table S8. The detailed cost of energy consumption during metal recycling.

Table S9. The detailed cost of chemical reagents and materials during metal recycling.

Substance	Price (\$/kg)	Weight (kg)	Expenditure (\$)
BMW	0.04	0.5	-0.02
H_2SO_4	0.09	0.06	-0.01
Total	-	-	-0.03

Substance	Price (\$/kg)	Weight (kg)	Economic benefit (\$)
Li ₂ CO ₃	30	0.33	9.9
Ni	23.47		
Co	78	0.60	19.38
MnO	14		
MnSO ₄	1.61		
CoSO ₄	14.5	1	6.32
NiSO ₄	5.56		
Total	-	-	35.6

 Table S10. Economic benefits from recycling different components of 1 kg spent LIBs.

Table S11. Related waste control and disposal of 1 kg spent LIBs.

Waste type	Disposal (\$/t)	Weight	Cost (\$)
Waste solid	147.1×10 ⁻³	0.15 kg	-0.02
Waste water	0.412×10 ⁻³	20 L (~20 kg)	-0.01
Waste gas	92.88×10 ⁻³	10.69 kg	-0.99
Total	-	-	-1.02

Methodology	Sample	Equipment	Condition	Product	Ref.
Carbothermal reduction	NCM	Microwave reactor	18 wt.% Carbon; 650°C; 1500 W	MnO	1
	LCO	Vacuum reactor	Graphite: LCO=1:5; 700°C; 45min	Li ₂ CO ₃ ; Co/CoO	2
	*NCM	Tube furnace	Graphite; 700°C; 90 min	Co/CoO; Ni/NiO; Mn/Mn ₃ O ₄ ; Li ₂ O/Li ₂ CO ₃	3
Thermite	NCM	Tube furnace	Aluminum; 520°C; 60min	LiAlO ₂ ; NiO/CoO/MnO	4
reduction	LCO	Tube furnace	Aluminum; 600°C; 60 min	Li ₂ O/LiAlO ₂ ; CoO	5
Sulfating roasting	LCO	Muffle furnace	NaHSO ₄ ·H ₂ O: LCO=1.4:1; 600°C; 30 min	Co ₃ O ₄	6
	NCM	Microwave reactor	24 wt.% Macadamia Shells; 500°C-750°C; 25 min	Li ₂ CO ₃ ; Ni/Co/MnO	7
Biomass reduction	MnO ₂ Ore	Tube furnace	Bamboo scraps: Ore=10:1; 400°C; 10 min	MnO	8
	NCM	Tube furnace	Corn stalk: NCM =0.3:1; 450°C-700°C; 15 min	Li ₂ CO ₃ ; CoO/NiO/MnO; Co/Ni/MnO.	This study

Table S12. A brief comparison of different reduction roasting processes.

Note: LCO- LiCoO₂; NCM- LiNi_xCo_yMn_zO₂; *NCM- a mixture of LiCoO₂, LiMnO₂ and LiNiO₂.

References

- 1. Y. Zhao, B. Liu, L. Zhang and S. Guo, *J Hazard Mater*, 2020, **384**, 121487.
- Y. Tang, H. Xie, B. Zhang, X. Chen, Z. Zhao, J. Qu, P. Xing and H. Yin, *Waste Manag*, 2019, 97, 140-148.
- 3. G. Lombardo, B. Ebin, M. R. St. J. Foreman, B.-M. Steenari and M. Petranikova, ACS Sustainable Chemistry & Engineering, 2019, 7, 13668-13679.
- 4. W. Wang, Y. Zhang, L. Zhang and S. Xu, *Journal of Cleaner Production*, 2020, 249.
- W. Wang, Y. Zhang, X. Liu and S. Xu, ACS Sustainable Chemistry & Engineering, 2019, DOI: 10.1021/acssuschemeng.9b01564.
- 6. D. Wang, X. Zhang, H. Chen and J. Sun, *Minerals Engineering*, 2018, **126**, 28-35.
- 7. Y. Zhao, B. Liu, L. Zhang and S. Guo, *J Hazard Mater*, 2020, **396**, 122740.
- 8. H. Zhang, G. Zhu, H. Yan, T. Li and Y. Zhao, *Metallurgical and Materials Transactions B*, 2013, 44, 889-896.