Electronic Supplementary Information

Subnanometric Pt clusters supported on MgO-incorporated porous carbon as an efficient metal-base bifunctional catalyst for reductive heterocyclization reactions

Yaping Song,^{a#} Ruifang Xue,^{a#} Li Wang,^a Nan Li,^a Zhijun Fang,^a Yanghe Fu,^{a, b} De-Li Chen,^{a,} ^{b*} Weidong Zhu,^{a, b*} and Fumin Zhang^{a, b*}

^aKey Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, People's Republic of China ^bZhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China [#]These authors contributed equally to this work

*Corresponding Authors:

De-Li Chen: chendl@zjnu.cn; Weidong Zhu: weidongzhu@zjnu.cn; Fumin Zhang: zhangfumin@zjnu.edu.cn

Sample	S_{BET}^{a} (m ² /g)	V _{total} ^b (cm ³ /g)	Pt loading ^c	Mg loading ^c
			(wt%)	(wt%)
Pt/MgO@C	614.4	0.82	0.078	20.57
Pt/MgO	57.6	0.36	0.075	-
Pt/C	851.9	0.49	0.079	-
Pt/Al ₂ O ₃	15.6	0.13	0.095	-
Pt/SiO ₂	238.6	1.52	0.080	-
Pt/C + MgO	532.5	0.46	0.079	-

Table S1 Pt and Mg loadings as well as the textural properties of various catalysts investigated

^{*a*}By BET method. ^{*b*}By *t*-plot method. ^{*c*}By ICP-AES analysis.

Entry	Solvent	Time (h)	Con. (%)	Sel. (%)	TOF ^a (h ⁻¹)
1	Toluene	6	≥99	98.5	240
2	МеОН	8	≥99	95.7	210
3	THF	6	11	83.9	18.3
4 ^b	H ₂ O	10	22	85.9	22
5	EtOH	5.5	≥99	94.8	266.7
6	EtOH/H ₂ O	3	≥99	91.9	285
	(V/V=1:1)				

 Table S2 Catalytic performance of Pt/MgO@C for the reductive heterocyclization of 2

 nitrobenzaldehyde with different solvent

Reaction conditions: catalyst (50 mg, 0.1 mol%), 2-nitrobenzaldehyde (0.2 mmol), solvent (3 mL), 303 K, H₂ (1 bar in balloon). ^aTOF values were calculated as the number of moles of 2,1-benzisoxazole produced by per mole of Pt sites per hour. ^b2-Nitrobenzaldehyde is partially soluble in water.

Entry	Catalyst	Solvent	Temp.	Time	Yield	Ref.
			(K)	(h)	(%)	
1	Pt/MgO@C	Toluene	303	6	98.5	This work
2	BNP (2 equiv)/In (5	MeOH/H ₂ O	323	0.17	93	[S1]
	equiv)	(V/V=1:2)				
3	In (3 equiv)/I ₂ (0.8	MeOH	323	1.5	87	[S2]
	equiv)					
4	SnCl ₂ ·2H ₂ O	EtOAc/MeOH	298	20	86	[S3]
		(V/V=1:1)				
5	Ir60 : G6/SiO ₂	Toluene	303	1	41	[S4]
6	Pt/MgO	Toluene	303	1	94	[85]
7	Pt/c-C	МеОН	303	3	92	[S6]

 Table S3 Comparison of the performance of the reductive heterocyclization of 2

 nitrobenzaldehyde in the literature

Reference

[S1] B. H. Kim, Y. Jin, Y. M. Jun, R. B. Han, W. Baik and B. M. Lee, *Tetrahedron Lett.*, 2000, 41, 2137–2140.

[S2] R. B. Han, K. I. Son, G. H. Ahn, Y. M. Jun, B. M. Lee, Y. Park and B. H. Kim, *Tetrahedron Lett.*, 2006, **47**, 7295–7299.

[S3] J. Chauhan and S. Fletcher, *Tetrahedron Lett.*, 2012, **53**, 4951–4954.

[S4] T. Higaki, H. Kitazawa, S. Yamazoe and T. Tsukuda, Nanoscale, 2016, 8, 11371–11374.

[S5] L. Marti, L. M. Sanchez, M. J. Climent, A. Corma, S. Iborra, G. P. Romanelli and P. Concepcion, ACS Catal., 2017, 7, 8255–8262.

[S6] Y. Y. Wu, Y. F. Zhao, H. Wang, F. T. Zhang, R. P. Li, J. F. Xiang, Z. P. Wang, B. X.
 Han and Z. M. Liu, *Green Chem.*, 2020, 22, 3820–3826.

Figure S1 XRD pattern (a), SEM (b), and N_2 adsorption–desorption isotherms (c) of Mg-MOF-74.

Figure S2 Aberration-corrected HAADF-STEM images of Pt/MgO@C catalyst.

Figure S3 XRD pattern (a), N₂ adsorption–desorption isotherms and the corresponding pore size distribution (inset) (b), TEM (c), and HRTEM images (d) of the Pt/Al₂O₃ catalyst.

Figure S4 XRD pattern (a), N₂ adsorption–desorption isotherms and the corresponding pore size distribution (inset) (b), TEM (c), and HRTEM images (d) of the Pt/SiO₂ catalyst.

Figure S5 XRD pattern (a), N₂ adsorption–desorption isotherms and the corresponding pore size distribution (inset) (b), TEM (c), and HRTEM images (d) of the Pt/C catalyst.

Figure S6 XRD pattern (a), N₂ adsorption–desorption isotherms and the corresponding pore size distribution (inset) (b), TEM (c), and HRTEM images (d) of the Pt/MgO catalyst.

Figure S7 XRD pattern (a), N_2 adsorption-desorption isotherms and the corresponding pore size distribution (inset) (b), TEM (c), and Pt 4f XPS spectra (d) of the spent Pt/MgO@C catalyst.

Figure S8 GC–MS spectrum of reactant, intermediate, and products. Reaction conditions: Pt/MgO@C (50 mg), 2-nitrobenzaldehyde (0.2 mmol), toluene (3 mL), 273 K, 0.5 h, H₂ (1 bar in balloon).

Figure S9 GC–MS spectrum of nitroso compounds. Reaction conditions: Pt/MgO@C (50 mg), 2-nitrobenzaldehyde (0.2 mmol), toluene (3 mL), 273 K, 0.5 h, H₂ (1 bar in balloon).

Figure S10 Stable configurations for the adsorption of 2-nitrobenzaldehyde on $Pt_7/MgO(100)$ as well as their adsorption energies.

Figure S11 Comparison of reaction pathways for the heterocyclization reaction of hydroxylamine to 2,1-benzisoxazole on $Pt_7/MgO(100)$, MgO(100), and Pt(111) surfaces.

Analytical data of the products

2,1-Benzisoxazole [S7]

A yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 9.10 (s, 1H), 7.58 (d, J = 9.1 Hz, 1H), 7.56 (d, J = 8.8 Hz, 1H), 7.26 (dd, J = 9.1, 6.3 Hz, 1H), 6.95 (dd, J = 8.8, 6.4 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 155.95, 154.50, 130.81, 124.28, 119.60, 118.07, 114.80.

3-Methyl-2,1-benzisoxazole [S7]

A yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.51 (d, J = 8.7 Hz, 1H), 7.43 (d, J = 9.1 Hz, 1H), 7.27 (dd, J = 9.1, 6.3 Hz, 1H), 6.92 (dd, J = 8.7, 6.4 Hz, 1H), 2.79 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 165.74, 157.14, 130.86, 122.85, 119.93, 115.71, 114.94, 12.04.

5-Chloro-2,1-benzisoxazole [S8]

A yellow solid. ¹H NMR (600 MHz, CDCl₃) ^δ 9.11 (s, 1H), 7.61 (d, J = 9.4 Hz, 1H), 7.58 (s, 1H), 7.25 (dd, J = 9.4, 1.6 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) ^δ 154.70, 154.17, 132.89, 130.34, 118.54, 117.91, 116.90.

4-Chloro-2,1-benzisoxazole [S9]

A green solid. ¹H NMR (600 MHz, CDCl₃) δ 9.19 (s, 1H), 7.52 (d, J = 9.0 Hz, 1H), 7.21 (t, J = 9.0 Hz, 1H), 6.99 (d, J = 6.9 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 156.68, 154.91, 131.22, 125.38, 123.38, 119.53, 113.90.

[1,3]Dioxolo[4,5-f]-2,1-benzisoxazole [S7]

A yellow solid. ¹H NMR (600 MHz, CDCl₃) δ 8.77 (s, 1H), 6.78 (s, 1H), 6.66 (s, 1H), 5.98 (s, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 155.54, 153.00, 152.16, 147.76, 115.37, 101.90, 92.16, 89.68.

6-Methyl-2,1-benzisoxazole [S7]

An orange oil. ¹H NMR (600 MHz, CDCl₃) δ 9.02 (s, 1H), 7.44 (d, J = 8.9 Hz, 1H), 7.34 (s, 1H), 6.84 (d, J = 8.1 Hz, 1H), 2.39 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 156.85, 153.97, 141.35, 127.98, 119.09, 117.14, 112.51, 22.50.

6-Chloro-2,1-benzisoxazole [S7]

A pale-yellow solid. ¹H NMR (600 MHz, CDCl₃) δ 9.11 (s, 1H), 7.62 (s, 1H), 7.52 (d, J = 9.2 Hz, 1H), 6.95 (dd, J = 9.2, 1.6 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 156.28, 155.22, 137.33, 126.72, 121.12, 116.79, 113.78.

5-Bromo-2,1-benzisoxazole [S10]

An orange solid. ¹H NMR (600 MHz, CDCl₃) δ 9.12 (d, J = 1.1 Hz, 1H), 7.77 (d, J = 2.9 Hz, 1H), 7.54 (ddd, J = 9.5, 4.5, 0.9 Hz, 1H), 7.35 (ddd, J = 9.3, 4.9, 1.6 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 154.57, 154.01, 134.93, 121.53, 119.31, 118.21, 116.88.

4-Bromo-2,1-benzisoxazole [S8]

A pale-yellow solid. ¹H NMR (600 MHz, CDCl₃) δ 9.08 (s, 1H), 7.52-7.50 (m, 1H), 7.13-7.07 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 156.27, 156.23, 131.54, 126.93, 121.05, 114.41, 112.63.

5-Methoxy-2,1-benzisoxazole [S11]

A yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 8.91 (s, 1H), 7.51 (d, J = 9.6 Hz, 1H), 7.01 (dd, J = 9.6, 1.6 Hz, 1H), 6.60 (s, 1H), 3.80 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 156.28, 154.47, 152.37, 128.27, 118.39, 116.62, 92.86, 55.44.

Figure S12 ¹H and ¹³C NMR spectra for 2,1-benzisoxazole.

Figure S13 ¹H and ¹³C NMR spectra for 3-methyl-2,1-benzisoxazole.

Figure S14 ¹H and ¹³C NMR spectra for 5-chloro-2,1-benzisoxazole.

Figure S15 ¹H and ¹³C NMR spectra for 4-chloro-2,1-benzisoxazole.

Figure S16 ¹H and ¹³C NMR spectra for [1,3]dioxolo[4,5-f]-2,1-benzisoxazole.

Figure S17 ¹H and ¹³C NMR spectra for 6-methyl-2,1-benzisoxazole.

Figure S18 ¹H and ¹³C NMR spectra for 6-chloro-2,1-benzisoxazole.

Figure S19 ¹H and ¹³C NMR spectra for 5-bromo-2,1-benzisoxazole.

Figure S20 ¹H and ¹³C NMR spectra for 4-bromo-2,1-benzisoxazole.

Figure S21 ¹H and ¹³C NMR spectra for 5-methoxy-2,1-benzisoxazole.

References

- [S7] S. Hosseini, S. A. Bawel, M. S. Mubarak and D. G. Peters, *ChemElectroChem*, 2018, 6, 4318–4324.
- [S8] H. M. Jin, L. Huang, J. Xie, M. Rudolph, F. Rominger and A. S. K. Hashmi, Angew. Chem. Int. Ed., 2016, 55, 794–797.
- [S9] P. Raju, G. G. Rajeshwaran, M. Nandakumar and A. K. Mohanakrishnan, Eur. J. Org. Chem., 2015, 2015, 3513–3523.
- [S10] Q. Cheng, J.-H. Xie, Y.-C. Weng and S.-L. You, Angew. Chem. Int. Ed., 2019, 58, 5739–5743.
- [S11] R. L. Sahani and R.-S. Liu, Angew. Chem. Int. Ed., 2017, 56, 12736–12740.