100% Atom-economical and highly regio- and stereoselective iodosulfenylation of alkynes: A reagentless and sustainable approach to access (E)- β -iodoalkenyl sulfides and (Z)-tamoxifen

Appanapalli N. V. Satyanarayana, Nilanjana Mukherjee and Tanmay Chatterjee*

Supporting Information

Table of Contents

1. General consideration	S2
1.1 General reagent information	S2
1.2 General analytical information	S2
2. Experimental procedure for the synthesis of tetrasubstituted (<i>E</i>)- β -iodoalkenyl sulfides (3aa – 3da)) . S2
3. Experimental procedure for the synthesis of trisubstituted (<i>E</i>)- β -iodoalkenyl sulfides (5aa – 5eb)	S3
4. Scale up experiment	S3
4.1 Experimental procedure for the synthesis of (E)-(2-iodo-1,2-diphenylvinyl)(phenyl)sulfane (3aa)	S4
5. Synthesis of (Z)-Tamoxifen from 1a and 2a in three steps	S4
6. X-ray crystal structure of 3ai, 3ac, 3aj and 9.	S6
7. Table-S1. Selected crystal data of 3ai, 3ac, 3aj, 9	S8
8. Determination of regiochemistry of iodosulfenylation adduct, 5cc	S9
9. Determination of stereochemistry of iodosulfenylation adduct, 5cf	. S10
10. Table S2. Calculation of EcoScale score for the synthesis (E)-(2-iodo-2-phenylvinyl)(phenyl)sulfane	5
(3aa) from diphenylacetylene (1a) and diphenyl disulfide (2a)	. S13
11. Detection of (2,6-di-tert-butyl-4-methylphenoxy)(p-tolyl)sulfane by LCMS	. S15
12.Detection of (2,6-di-tert-butyl-4-methylphenoxy)(p-tolyl)sulfane by LCMS	S15
13. Analytical Data of the Synthesized Products	. S15
14. Reference:	. S23
13. NMR Spectra (¹ H, ¹³ C) of all products and HPLC data of 3aa and 12	S24

1. General consideration

1.1 General reagent information

All reagents were purchased from BLD pharma, TCI chemicals, Sigma-Aldrich, AVRA, and SRL chemicals, solvents were purchased from Finar chemicals. Flash chromatography was performed using silica gel (100-200 mash)

1.2 General analytical information

The products were characterized by ¹H, ¹³C NMR spectra which were recorded on a Bruker 400 MHz instrument (400 MHz for ¹H NMR, 100 MHz for ¹³C NMR). Copies of ¹H, ¹³C, NMR spectra can be found at the end of the Supporting Information. ¹H NMR experiments are reported in units, parts per million (ppm), and were measured relative to residual chloroform (7.26 ppm) in the deuterated solvent. ¹³C NMR spectra were reported in ppm relative to deuterochloroform (77.00 ppm) and all were obtained with ¹H decoupling. Coupling constants were reported in Hz. Reactions were monitored by thin layer chromatography (TLC) and ¹H NMR of the crude reaction mixture using 1,3,5-trimethoxybenzene as the internal standard. Mass spectral data were obtained on a high resolution mass spectrometer, Agilent MassHunter Qualitative Analysis B.06.00 and also in LCMS-8040 (Shimadzu), HPLC (Shimadzu). Melting points of unknown compounds were recorded on a KRUSS Optronic M3000 apparatus. Single Crystal X-ray data were recorded on Rigaku Oxford Diffraction (XtalLab).

2. Experimental procedure for the synthesis of tetrasubstituted (*E*)- β -iodoalkenyl sulfides (3aa – 3da)

Representative experimental procedure for the synthesis of (*E*)-(2-iodo-1,2diphenylvinyl)(phenyl)sulfane (3aa): 1,2-diphenylethyne 1a (0.0891 g, 0.5 mmol, 1 equiv), 1,2diphenyldisulfane 2a (0.0545 g, 0.25 mmol, 0.5 equiv) and I₂ (0.0635 g, 0.25 mmol) were taken in a round-bottomed flask (RBF) and toluene (1.5 mL) was added to it. The reaction mixture was stirred in an oil bath at 60 °C. The progress of the reaction was monitored by TLC. After the completion of the reaction, the solvent was evaporated under reduced pressure and the crude solid was purified just by washings with ethanol (1 mL X 2) or hexane (5 mL X 2) to afford the pure (E)-(2-iodo-1,2-diphenylvinyl)(phenyl)sulfane **3aa** (0.197 g, 0.478 mmol) as an off-white solid in 96% yield. The purity of the **3aa** was found to be 97.5% as evident by HPLC. But to get pure **3ah**, **3ca**, **3af**, **3ag**, and **3da**, we performed flash chromatography (100-200 silica) using 0-5% EtOAc in hexane as an eluent.

3. Experimental procedure for the synthesis of trisubstituted (*E*)- β -iodoalkenyl sulfides (5aa – 5eb)

Representative experimental procedure for the synthesis of (E)-(2-iodo-2phenylvinyl)(phenyl)sulfane (5aa): Phenylacetylene 1a (0.051 g, 0.5 mmol, 1 equiv), 1,2diphenyldisulfane **2a** (0.0545 g, 0.25 mmol, 0.5 equiv) and I_2 (0.0635 g, 0.25 mmol) were taken in a sealed tube and toluene (1.5 mL) was added to it. The reaction mixture was stirred in an oil bath at 120 °C. The progress of the reaction was monitored by TLC. After the completion of the reaction, the solvent was evaporated under reduced pressure and crude reaction mixture was purified by flash column chromatography (100-200 silica) using hexane as an eluent to afford the pure (E)-(2-iodo-2-phenylvinyl)(phenyl)sulfane **5aa** (0.095 g, 0.28 mmol) as yellow gummy oil in 56% yield.

4. Scale up experiment

4.1 Experimental procedure for the synthesis of (*E*)-(2-iodo-1,2-diphenylvinyl)(phenyl)sulfane (3aa)

1,2-diphenylethyne **1a** (10 g, 56.1 mmol, 1 equiv), 1,2-diphenyldisulfane **2a** (6.12 g, 28.05 mmol, 0.5 equiv) and I₂ (7.12 g, 28.05 mmol, 0.5 equiv) were taken in a round-bottomed flask (RBF) and toluene (170 mL) was added to it. The reaction mixture was stirred in an oil bath at 60 °C. The progress of the reaction was monitored by TLC. The solvent was evaporated under reduced pressure and the crude product was purified by washing with hexane (50 mL X 2) to afford the pure (*E*)-(2-iodo-1,2-diphenylvinyl)(phenyl)sulfane **3aa** (22.3 g, 53.83 mmol) in 96%.

5. Synthesis of (Z)-Tamoxifen from 1a and 2a in three steps

Step 1: 1,2-diphenylethyne **1a** (0.8 g, 4.5 mmol, 1 equiv), 1,2-diphenyldisulfane **2a** (0.49 g, 2.24 mmol, 0.5 equiv) and I_2 (0.571 g, 2.24 mmol, 0.5 equiv) were taken in a round-bottomed flask (RBF) and toluene (13.5 mL) was added to it. The reaction mixture was stirred in an oil bath at 60 °C. The progress of the reaction was monitored by TLC. After the completion of the reaction, the solvent was evaporated under reduced pressure and the crude solid was purified by washing with hexane (15 mL X 2) to afford the pure (*E*)-(2-iodo-1,2-diphenylvinyl)(phenyl)sulfane **3aa** (1.75 g, 4.2 mmol) as an off-white solid in 95% yield.

Step 2: (*E*)-(2-iodo-1,2-diphenylvinyl)(phenyl)sulfane **3aa** (1.75 g, 4.22 mmol), *N*,*N*-dimethyl-2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenoxy)ethan-1-amine (1.23 g, 4.22mmol, 1.0 equiv) and 1,4-dioxane (16 mL) were taken in a RBF. Then, aqueous potassium carbonate (1.75 g dissolved in 4 mL water) solution was added to the RBF. The reaction mixture was purged with nitrogen gas for 15 min, and then Pd(PPh₃)₄ (0.146 g, 3 mol%) was added to it. The reaction mixture was heated at 90 °C. The progress of the reaction was monitored by TLC. After the completion of the reaction, volatiles were removed under reduced pressure. The crude reaction mixture was extracted with EtOAc (50 mL X 2) and the organic layer was washed with water (30 mL). The organic layer was dried over sodium sulfate and concentrated under reduced pressure to afford the crude product which was purified by flash column chromatography using 1-2% MeOH in DCM as an eluent to afford (*E*)-2-(4-(1,2-diphenyl-2-(phenylthio)vinyl)phenoxy)-*N*,*N*-dimethylethan-1-amine (**11**) (1.56 g, 3.45 mmol) in 82% yield as a yellow solid.

Step 3: In flame dried RBF, (*E*)-2-(4-(1,2-diphenyl-2-(phenylthio)vinyl)phenoxy)-*N*,*N*-dimethylethan-1-amine (1.56 g, 3.45 mmol, 1 equiv) and NiCl₂(dppe) (159 mg, 0.354 mmol, 10 mol%) were taken. EtMgBr (1M in diethyl ether) (17.71 mL, 17.71 mmol, 5 equiv) was added to the RBF under argon atmosphere at room temperature. Then the reaction mixture was refluxed under argon atmosphere. The progress of the reaction was monitored by TLC and LC-MS. After the completion of the reaction, it was quenched with water (50 mL) at 0 °C. The reaction mixture was extracted with EtOAc (50 mL X 2) and the combined organic layers was washed with water (30 mL) which was dried over sodium sulfate. The solvent, ethyl acetate was evaporated under reduced pressure to afford the crude reaction mixture which was purified by column chromatography using 0-2% MeOH in DCM as an eluent to afford the marketed drug, (*Z*)-tamoxifen (0.860 g, 2.4 mmol) in 67% yield (51% overall yield) as a brown solid.

6. X-ray crystal structure of 3ai, 3ac, 3aj and 9.

Figure *S1***.** X-ray crystal structure of **3ai** (thermal ellipsoids shown at 50% probability) including hetero-atom numbering.

Figure S2. X-ray crystal structure of **3ac** (thermal ellipsoids shown at 50% probability) including hetero-atom numbering.

Figure *S3***.** X-ray crystal structure of **3aj** (thermal ellipsoids shown at 50% probability) including hetero-atom numbering. (**Disordered structure due to pedal motion**)

Figure *S4***.** X-ray crystal structure of **9** (thermal ellipsoids shown at 50% probability) including hetero-atom numbering.

7. Table-S1. Selected crystal data of 3ai, 3ac, 3aj, 9

Empirical formula	C ₂₀ H ₂₁ IS	C ₂₇ H ₁₉ I N O S	$C_{21} H_{14} I N S_2$	$C_{28} H_{20} S$	
Formula weight	420.35	534.39	471.35	388.537	
Temperature/K	293	138	220	138	
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic	
Space group	C 1 2/c 1	P 1 21/c 1	I 1 2/a 1	P 1 21/c 1	
a/Å	20.7801(3)	5.52700(10)	17.9022(3)	10.7954(1)	
b/Å	5.8767(1)	10.7795(2)	6.05370(10)	8.6148(1)	
c/Å	29.2394(4)	37.5935(6)	34.1626(6)	22.6825(2)	
α(•)	90	90	90	90	
$\boldsymbol{\beta}(\mathbf{\bullet})$	96.032(1)	92.4910(10)	91.270(2)	92.306(1)	
) (●)	90	90	90	90	
Volume/Å3	3550.90(9)	2237.64(7)	3701.45(11)	2107.77(4)	
Z	16	4	8	4	
μ/mm-1	15.203	12.275	15.715	1.424	
Dx [g cm-3]	1.572	1.586	1.692	1.224	
F(000)	1680.0	1064	1856	819.529	
2Θ range for data collection	4.9660-	4.6680-79.5430	5.1930-79.5250	5.4770-79.0720	
(•)	79.5390				
Index ranges	$-25 \le h \le 26$,	$-6 \le h \le 6$,	$-21 \le h \le 18,$	$-13 \le h \le 13$,	
	$-5 \le k \le 7$, $-33 \le 1 \le 36$	$-13 \le k \le 12$, $-47 < 1 \le 47$	$-4 \le k \le 7$, -31 < 1 < 41	$-8 \le k \le 10$, -23 < 1 < 27	
Reflections measured	6956	4709	8441	7730	
Unique reflections	3754	4700	2205	1453	
D nique reflections	3734	201/0	3393	4455	
Parameters /restraints	199/0	281/0	249/227	262/0	
Goodness-of-fit on F2	1.087	1.093	1.182	1.0214	
$R1 \ [I \ge 2\sigma(I)]$	0.0423	0.0432	0.0449	0.0376	
wR2 (all data)	0.1204	0.1231	0.1002	0.1020	
Largest diff. peak/hole/e Å-3	1.564/-1.403	1.196/-1.122	1.110/-0.997	0.2453/-0.3728	
CCDC	2167118	2223229	2209237	2223443	

Figure *S5*: ¹H-¹³C HMBC Spectrum of **5cc**.

9. Determination of stereochemistry of iodosulfenylation adduct, 5cf.

NOE Difference Spectrum of 5cf.

Figure *S6***:** (A) ¹H-NMR spectrum of **5cf**, (B) NOE difference spectrum, with irradiation at 6.89 ppm, (C) NOE difference spectrum, with irradiation at 1.65 ppm.

The NOE difference spectral analysis clearly revealed that the stereochemistry of the major product is (*E*). The chemical shift of the alkenyl proton in the (*E*) isomer is found deshielded (6.89 ppm) in comparison to that of in the minor isomer, i.e., (Z) isomer (6.72 ppm).

• The comparison of the chemical shift of the alkenyl proton

(i) The chemical shift of alkenyl proton has obvious differences by contrasting two different configurations.

E-5cf (major) v/s Z-5cf (minor) = 6.89 v/s 6.72

(ii) In all other synthesized trisubstituted alkenes, the alkenyl proton of the major isomer was found deshielded than that of the minor isomer which revealed that the major isomer is (E) while the minor isomer is (Z) with respect to our above mentioned analogy.

The same trend of chemical shift of the alkenyl proton is found in the same compounds (**3m**, **3n**) or similar compounds (**3b**, **3o** and **3r**) reported previously by Lu and Yi *et al.* (*Org. Lett.*, 2015, **17**, 3310–3313).¹ The authors isolated the (*E*)- and (*Z*)-isomers for a couple of products (**3r** and **4d**), determined the regiochemistry of a couple of products (**3p** and **4d**) by HMBC and also confirmed the configuration of the major isomer of a couple of products (**3a** and **4a**) by the SCXRD analysis of its synthetically diversified product (**5b** and **6a** respectively). They found an obvious difference of the chemical shift of the carbon attached with iodine (C-I) in the isolated (*E*) and (*Z*) isomers of **3r** and **4d** [The C-I carbon is more shielded in the (*E*) isomer compared to the (*Z*) isomer] and correlated the same analogy to rest of the compounds.¹

• The comparison of the chemical shift of the carbon which directly

links with iodine (C-I)

The same trend of chemical shift of C-I carbon was observed in our synthesized products (**5aa**, **5ad**, **5af**, **5dc**, **3ag** and **3da**) as shown below which certainly supported the fact that the major isomer formed in our reaction is having (*E*) configuration. The signal for the C-I quaternary carbon of the Z-isomer was not detected properly in some cases [**5ac**, **5ae**, **5ba**, **5be**, **5cc**, **5cf** and **5db**) as it was present <10%]

E-5aa (C₁ = δ 89.57) *Z*-5aa (C₁ = δ 98.41)

E-5dc (C₁ = δ 91.32) *Z*-5dc (C₁ = δ 101.49)

E-5ad (C₁ = δ 90.94) *Z*-5ad (C₁ = δ 99.52)

E-5af (C₁ = δ 96.82) *Z*-5af (C₁ = δ 104.23)

E-3ag (C₁ = δ 94.38) *Z*-3ag (C₁ = δ 97.57)

E-3da (C₁ = δ 96.94) *Z*-3da (C₁ = δ 105.07)

10. Table S2. Calculation of EcoScale score for the synthesis (E)-(2-iodo-2-phenylvinyl)(phenyl)sulfane (3aa) from diphenylacetylene (1a) and diphenyl disulfide (2a)

Eco Scale Calculation:

	Eco Scale = 100 - Sum of individual penalties Score on Eco Scale: > 75, Excellent; >50, acceptable; <50, Inadequa	ite
Parameters		Penalty Points
1. Yield:	(100 - % of yield)/2 = (100 - 96)/2 =	2
 Price of re A. Calcul a. 1,2-diph b. 1,2-diph c. lodine 	eaction components (To obtain 10 mmol of end product, 3aa) ation of Penalty Points : ienylethyne = 10.55 mmol = 1.88 g = USD 3.76 ienyldisulfide = 5.275 mmol = 1.15 g = USD 0.598 = 5.275 mmol = 1.34 g = ÙSD 0.71	
Total cost of Thus exper	of synthesis of 3aa = (3.76 + 0.598 + 0.71) = USD 5.068 nsive, since \$10<(total cost of synthesis of 10 mmol of 3aa) < \$50:	0
1,2-dipher	ylethyne	0
1,2-dipher	yldisulfide (N)	5
lodine (T)		5
4. Technical	Setup Setup	0
5. Temperat	ure/ Time	Ū
100 °C, 1	2 h (Heating, > 1h)	3
6. Work up a	and purification :	
a. Remova	al of solvent with bp < 150°C	0
b. Crystall	ization and filtration	1
c. Adding	solvent	0
d. Liquid-L	iquid extraction	0
e. Classica	al Chromatography	0
	Total penalty points:	16

B. Ecoscale calculation:

EcoScale score: (100 - 16) = 84 (>50; it is an acceptable synthesis)

Table S3. Evaluation of green metrics of the previously reportediodosulfenylation of alkynes using molecular iodine.1

	SO ₂ Na					
$Ph \longrightarrow Ph + 1$ 1a (0.25 mmol	+ 0.	5 1 ₂ + 2.0 PPh ₃ H ₂ O (1 120 °C,	→ I mL) Ph 12 h	Ph S-	+ 2.0	Ĵ Ph₃P=O + Nal
1 equiv) (1.	5 equiv) (1.5	equiv) (3.0 equiv)		3aa (86	%)	
Yield of desired p	roduct (3aa) =	86%				
Atom Economy (%) =	Mol. wt. o Mol. wt. of a	f product II reactants x 100 = $\frac{178}{178}$	3.23+178.18 + (428.3 0.5 X 25	33 x100 53.81) + (2 X	262.69) = 42.46 9
Atom Efficiency	(%) = (%yield o	of product x %atom econo	omy) x 100 = (8	6% x 42	2.46%¥ 100 =	36.5%
					(0.215 x 17)	x 100
Carbon	(moles of 3a	a x no. of carbons in 3aa)	x 100		(0.215×17)	<u>× 100</u> - 50 6%
Carbon Efficiency (%) ⁼ (mol	(moles of 3aa es of 1a x carb	a x no. of carbons in 3aa) ons in 1a) + (moles of 2a	x 100 x carbons in 2a	a ') = -	(0.213 x 17) .25 x 14) + (0	375 x 7) = 59.6%
Carbon Efficiency (%) ⁼ (mol	(moles of 3aa es of 1a x carb	a x no. of carbons in 3aa) ons in 1a) + (moles of 2a mass of isolated product	x 100 x carbons in 2a	a') = - (0 0.092	.25 x 14) + (0 2 x 100	.375 x 7)
Carbon Efficiency (%) ⁼ (mol Reaction Mass E	(moles of 3a es of 1a x carb fficiency (%) =	a x no. of carbons in 3aa) ons in 1a) + (moles of 2a mass of isolated product mass of all reactants	$\frac{x \ 100}{x \ carbons \ in \ 2a}$ $\frac{t}{x \ 100} = \frac{1}{0.045}$	a') = - 0.092 + 0.067	.25 x 14) + (0 2 x 100 7 + 0.095 + 0.1	<u>x 100</u> = 59.6% .375 x 7) — = 22.8% 196
Carbon Efficiency (%) ⁼ (mol Reaction Mass E Reactant 1:	(moles of 3a) es of 1a x carb fficiency (%) =	a x no. of carbons in 3aa) ons in 1a) + (moles of 2a ['] mass of isolated product mass of all reactants 2-diphenylethyne (1a)	$\frac{x \ 100}{x \ carbons \ in \ 2a}$ $\frac{t}{x \ 100} = \frac{1}{0.045}$ 0.04	a') = -7 0.092 + 0.067 -5 g	(0.213 x 17) 2.25 x 14) + (0 2 x 100 (+ 0.095 + 0.1 0.25 mmol	- = 22.8% FW 178.23
Carbon Efficiency (%) ⁼ (mol Reaction Mass E Reactant 1: Reactant 2:	(moles of 3a) es of 1a x carb fficiency (%) = 1, sodium 4	a x no. of carbons in 3aa) ons in 1a) + (moles of 2a mass of isolated product mass of all reactants 2-diphenylethyne (1a) -methylbenzenesulfinate	x 100 x carbons in 2a $\frac{1}{2}$ x 100 = $\frac{1}{0.045}$ 0.04 (2a ¹) 0.06	a) (0 0.092 + 0.067 -5 g -5 g	(0.213 x 17) (0.25 x 14) + (0 2 x 100 7 + 0.095 + 0.1 0.25 mmol 0.25 mmol	x 100 .375 x 7)
Carbon Efficiency (%) ⁼ (mol Reaction Mass E Reactant 1: Reactant 2: Reagent 1:	(moles of 3a) es of 1a x carb fficiency (%) = 1, sodium 4	a x no. of carbons in 3aa) ons in 1a) + (moles of 2a' mass of isolated product mass of all reactants 2-diphenylethyne (1a) -methylbenzenesulfinate lodine	$\frac{x \ 100}{x \ carbons \ in \ 2a}$ $\frac{t}{x \ 100} = \frac{1}{0.045}$ 0.045 $(2a^{1}) \qquad 0.06$	a) $=$ $(0)0.092+ 0.067-5 g-5 g-5 g-5 g-5 g$	(0.213 x 17) (0.25 x 14) + (0 2 x 100 (+ 0.095 + 0.1 0.25 mmol 0.375 mmol 0.375 mmol	x 100 .375 x 7)
Carbon Efficiency (%) ⁼ (mol Reaction Mass E Reactant 1: Reactant 2: Reagent 1: Reagent 2:	(moles of 3a es of 1a x carb fficiency (%) = 1, sodium 4	a x no. of carbons in 3aa) ons in 1a) + (moles of 2a ['] mass of isolated product mass of all reactants 2-diphenylethyne (1a) -methylbenzenesulfinate lodine PPh ₃	$\frac{x \ 100}{x \ carbons \ in \ 2a}$ $\frac{t}{x \ 100} = \frac{1}{0.045}$ (2a ¹) (2a	<u> </u>	(0.213 x 17) (25 x 14) + (0 2 x 100 (+ 0.095 + 0.1 0.25 mmol 0.375 mmol 0.375 mmol 0.75 mmol	x 100 .375 x 7) - = 22.8% 196 FW 178.23 FW 178.18 FW 253.81 FW 262.29
Carbon Efficiency (%) ⁼ (mol Reaction Mass E Reactant 1: Reactant 2: Reagent 1: Reagent 2: Solvent:	(moles of 3a es of 1a x carb fficiency (%) = sodium 4	a x no. of carbons in 3aa) ons in 1a) + (moles of 2a mass of isolated product mass of all reactants 2-diphenylethyne (1a) -methylbenzenesulfinate lodine PPh ₃ Water	$\frac{x \ 100}{x \ carbons \ in \ 2a}$ $\frac{t}{x \ 100} = \frac{1}{0.045}$ (2a ¹) 0.06 0.09 0.19 1.0	<u>a</u>) = - (0 0.092 + 0.067 -5 g -7 g -5 g -5 g -6 g -9 g	(0.213 x 17) (0.213 x 17) (25 x 14) + (0 2 x 100 (FW 178.23 FW 178.23 FW 253.81 FW 262.29 FW 18
Carbon Efficiency (%) ⁼ (mol Reaction Mass E Reactant 1: Reagent 1: Reagent 2: Solvent:	(moles of 3a es of 1a x carb fficiency (%) = 1, sodium 4 ====================================	a x no. of carbons in 3aa) ons in 1a) + (moles of 2a mass of isolated product mass of all reactants 2-diphenylethyne (1a) -methylbenzenesulfinate lodine PPh ₃ Water diphenylvinyl)(p-tolyl)sulf	$\frac{x \ 100}{x \ carbons \ in \ 2a}$ $\frac{t}{x \ 100} = \frac{1}{0.045}$ (2a ¹) (2a ¹) (2a ¹) (0.09) (0.19) (0	0.092 + 0.067 5 g 5 g 5 g 6 g 9 g	(0.213 x 17) (25 x 14) + (0 2 x 100 (2 + 0.095 + 0.1 0.25 mmol 0.375 mmol 0.375 mmol 0.375 mmol 55.51 mmol 0.214 mmol	x 100 .375 x 7)
Carbon Efficiency (%) ⁼ (mol Reaction Mass E Reactant 1: Reactant 2: Reagent 1: Reagent 2: Solvent: Product: (F-factortotal v	(moles of 3a es of 1a x carb fficiency (%) = 1, sodium 4 E)-(2-iodo-1,2-0	a x no. of carbons in 3aa) ons in 1a) + (moles of 2a' mass of isolated product mass of all reactants 2-diphenylethyne (1a) -methylbenzenesulfinate lodine PPh ₃ Water diphenylvinyl)(p-tolyl)sulf (0.045 + 0.067 + 0.095 + 0.	$\frac{x \ 100}{x \ carbons \ in \ 2a}$ $\frac{t}{x \ 100} = \frac{1}{0.045}$ $\frac{1}{0.045}$ $\frac{1}$	(0 0.092 + 0.067 5 g 5 g 6 g 9 g 2 g 	(0.213 x 17) (25 x 14) + (0 2 x 100 (2 + 0.095 + 0.1 0.25 mmol 0.375 mmol 0.375 mmol 0.375 mmol 0.75 mmol 55.51 mmol 0.214 mmol	<pre>x 100 .375 x 7) - = 22.8% 196 FW 178.23 FW 178.18 FW 253.81 FW 262.29 FW 18 FW 428.33 FW 428.33</pre>

Table *S4*. Comparison of green metrics of the previous work¹ with this work.

						Ph	Ph + -Ph +	Na0 ² 2b (1.5 equiv) 2b (0.5 equir	s v)	I2 (1.5 e PPh3 (3.0 H2O (0.2 120 °C, 86% (Previous) I2 (1.5 e toluene (0 60 °C, 96% (This w	quiv) equiv) 25 M) 12 h 5 work) quiv) 0.33 M) 12 h 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	h Ph S 3ab	<u>}</u> -	
e	ntry	I ₂ (equiv)	2b/2b') (equiv)	reagent (equiv)	solvent	temp (°C)	yield (%)	byproduct	% atom economy	%atom efficiency	%reaction-mass efficiency	% carbon efficiency	E-factor (g waste/ g po	purification dt)
	1	1.5	2a' (1.5)	PPh ₃ (3)	H ₂ O	120 °C	86	O=PPh ₃	42.46	36.5	22.8	59.6	14.25	workup and column chromatography
ĺ	2	0.5	2a (0.5)	-	toluene	60 °C	96	-	100	96	95.77	95.2	0.24	washing the crude with hexane (column chromatography-free)

11. Detection of (2,6-di-tert-butyl-4-methylphenoxy)(p-tolyl)sulfane by LCMS

12.Detection of (2,6-di-tert-butyl-4-methylphenoxy)(p-tolyl)sulfane by LCMS

13. Analytical Data of the Synthesized Products

 $\begin{array}{c|c} I & Ph \\ \hline Ph & (E)-(2-Iodo-2-phenylvinyl)(phenyl)sulfane (3aa)^1 : White solid (22.3 g, 96\%); ^1H NMR (400 MHz, CDCl₃) & 7.48 (dd, J = 7.3, 1.1 Hz, 2H), 7.39- \end{array}$

7.35 (m, 2H), 7.30 – 7.28 (m, 3H), 7.21 – 7.18 (m, 2H), 7.16 – 7.12 (m, 1H), 7.1 – 7.07 (m, 2H), 7.05 – 7.02 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 144.14, 142.43, 140.93, 133.86, 132.37, 129.68, 128.79, 128.41, 128.27, 127.85, 127.74, 127.33, 98.38. The assignment of the structure was verified with the chemical shift values of both the ¹H and ¹³C NMR with that of the literature.¹

 $(E)-(2-Iodo-1,2-diphenylvinyl)(p-tolyl)sulfane (3ab)^{1}: Light yellow solid (0.204 g, 96%); ¹H NMR (400 MHz, CDCl₃) <math>\delta$ 7.42 (d, J = 7.1 Hz, 2H), 7.32 (t, J = 7.6 Hz, 2H), 7.23 (d, J = 7.4 Hz, 1H), 7.21 – 7.15 (m, 3H), 7.15 – 7.07 (m, 2H), 6.90 (d, J = 8.1 Hz, 2H), 6.79 (d, J = 8.0 Hz, 2H), 2.12 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) 144.14, 142.61, 141.48, 137.51, 132.71, 130.10, 129.62, 129.20, 128.87, 128.25, 128.19, 127.75, 127.72, 97.53, 77.32, 77.00, 76.68, 21.03. The assignment of the structure was verified with the chemical shift values of both the ¹H and ¹³C NMR with that of the literature.¹

(*E*)-N-(2-((2-Iodo-1,2-diphenylvinyl)thio)phenyl)benzamide (3ac): White solid (0.245 g, 92%); mp = 119–121 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.70 (s, 1H), 8.31 (dd, *J* = 8.3, 1.2 Hz, 1H), 7.80 (dd, *J* = 8.3, 1.3 Hz, 2H), 7.67 – 7.58 (m, 1H), 7.54 (t, *J* = 7.5 Hz, 2H), 7.43 – 7.31 (m, 5H), 7.25 – 7.19 (m,

1H), 7.17 – 7.09 (m, 4H), 7.01 – 6.93 (m, 2H), 6.82 (td, J = 7.6, 1.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 165.01, 142.89, 141.86, 140.02, 139.72, 136.81, 134.85, 131.97, 130.81, 128.90, 128.81, 128.71, 128.56, 128.45, 128.05, 128.02, 127.17, 123.66, 120.64, 120.01, 96.94; HRMS (ESI) m/z calcd for C₂₇H₂₀INOS [M+H]⁺: 534.089; found: 534.0387.

(*E*)-(4-Bromophenyl)(2-iodo-1,2-diphenylvinyl)sulfane (3ad): White solid (0.226 g, 92%); ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 7.2 Hz, 2H), 7.45 (m, 2H), 7.38 – 7.34 (m, 3H), 7.33 – 7.27 (m, 3H), 7.24 (d, *J* =

8.4 Hz, 2H), 7.01 (d, *J* = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 144.02, 142.05, 140.04, 133.57, 133.12, 131.54, 129.66, 128.65, 128.37, 128.32, 128.13, 127.92, 121.60, 99.30.

7.38 (dd, J = 8.3, 1.3 Hz, 2H), 7.30 (t, J = 7.6 Hz, 2H), 7.21 (m, 3H), 7.14 (m, 3H), 6.93 (d, J = 1.3 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) merged peaks were present δ 143.95, 142.04, 140.23 , 133.47, 132.36 , 129.61, 128.65, 128.57, 128.33, 128.29, 128.06, 127.87, 98.90; HRMS (ESI) m/z calcd for C₂₀H₁₄CIIS [M]: 447.9549; found: 447.9545.

(*E*)-(2-Iodo-1,2-diphenylvinyl)(4-nitrophenyl)sulfane (3af): Yellow solid (0.215 g, 94%); mp = 123–125 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, *J* = 8.9 Hz, 1H), 7.41 (dd, *J* = 8.2, 1.1 Hz, 1H), 7.34 (d, *J* = 7.9

Hz, 1H), 7.27 (t, *J* = 7.5 Hz, 1H), 7.19 (t, *J* = 7.4 Hz, 2H), 7.17 – 7.10 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) merged peaks were present δ 145.88, 144.28, 144.06, 141.32, 137.18, 129.85, 129.40, 128.62, 128.35, 128.15, 128.05, 123.47, 104.72; HRMS (ESI) m/z calcd for C₂₀H₁₄INO2S [M]: 458.9790; found: 458.9779.

Ph (*E*)-(2-Iodo-1,2-diphenylvinyl)(propyl)sulfane (3ag): Pale yellow solid (0.142 g,74%); mp = 125–127 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.39 (m, 9H), 7.34 – 7.30 (m, 1H), 2.18 (t, *J* = 8 Hz 2H), 1.42 – 1.33 (m, 2H), 0.75 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 144.10, 142.42, 141.54, 129.38, 128.94, 128.52, 128.29, 128.16, 127.99, 94.38, 35.94, 23.04, 13.02; HRMS (ESI) m/z calcd for C₂₀H₁₄INO2S [M]: 458.9790; found: 458.9779; HRMS (ESI) m/z calcd for C₁₇H₁₇IS [M+18]: 398.0201; found: 398.1599.

Ph COOH (*E*)-4-((2-Iodo-1,2-diphenylvinyl)thio)butanoic acid (3ah): Pale yellow solid (0.124 g, 59%) mp = 103-105 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.35 (m, 9H), 7.33 – 7.27 (m, 1H), 2.26 (t, *J* = 7.1 Hz, 2H), 2.22 (t, *J* = 7.4 Hz, 2H), 1.66 (p, *J* = 7.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 178.81, 144.04, 141.94, 140.56, 129.40, 128.76, 128.40, 128.32, 128.23, 128.13, 95.72, 32.96, 32.20, 24.52; HRMS (ESI) m/z calcd for C₁₈H₁₇IO2S [M]: 423.9994; found: 423.9994.

Ph (*E*)-Cyclohexyl(2-iodo-1,2-diphenylvinyl)sulfane (3ai): Off-white solid (0.115 g, 55%); mp = 140–142 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.41 (m, 3H), 7.41 – 7.34 (m, 6H), 7.29 – 7.25 (m, 1H), 2.37 – 2.15 (m, 1H), 1.80 – 1.60 (m, 2H), 1.64 – 1.50 (m, 2H), 1.43 (dd, *J* = 7.8, 3.9 Hz, 1H), 1.31 – 0.91 (m, 5H); ¹³C NMR (**100 MHz, CDCl₃**) δ 144.43, 143.04, 141.28, 129.33, 128.98, 128.53, 128.17, 128.10, 127.84, 96.66, 45.84, 33.10, 25.66, 25.42; HRMS (ESI) m/z calcd for C₂₀H₂₁IS [M]: 420.0409; found: 420.0406.

 $\begin{array}{l} \textbf{(E)-2-((2-Iodo-1,2-diphenylvinyl)thio)thiophene (3aj): Yellow solid (0.202)}\\ \textbf{g, 96\%); mp = 130-132 °C; ^{1}H NMR (400 MHz, CDCl_3) & 7.50 (dd, J = 8.1, 1.1 Hz, 2H), 7.40 (t, J = 7.6 Hz, 2H), 7.35 - 7.28 (m, 2H), 7.23 (t, J = 7.1 Hz, 2H), 7.20 - 7.15 (m, 1H), 7.14 - 7.10 (m, 1H), 7.09 - 7.05 (m, 3H); ^{13}C NMR (100 MHz, CDCl_3) \\ \textbf{Merged peaks were present } & 144.14, 142.42, 140.92, 133.85, 132.36, 129.67, 128.79, 128.41, 128.27, 127.84, 127.73, 127.33, 98.38; HRMS (ESI) m/z calcd for C₁₈H₁₃IS₂ [M+H]⁺: 420.9582; found: 420.9581. \\ \end{array}$

Ph Sh N (E)-2-((2-Iodo-1,2-diphenylvinyl)thio)benzo[d]thiazole (3ak): Whitesolid (0.193 g ,82%); mp = 153-155 °C; ¹H NMR (400 MHz, DMSO-d⁶) $<math>\delta$ 7.89 (d, 8.0 Hz, 1H), 7.63 (d, J = 7.3 Hz, 1H), 7.56 (dd, J = 6.4, 2.9 Hz, 1H), 7.63 (d, J = 7.3 Hz, 1H), 7.56 (dd, J = 6.4, 2.9 Hz, 1H), 7.63 (d, J = 7.3 Hz, 1H), 7.56 (dd, J = 6.4, 2.9 Hz, 1H), 7.63 (d, J = 7.3 Hz, 1H), 7.56 (dd, J = 6.4, 2.9 Hz, 1H), 7.63 (d, J = 7.3 Hz, 1H), 7.56 (dd, J = 6.4, 2.9 Hz, 1H), 7.56 (dd,

1H), 7.40 (m, 11H); ¹³C NMR (100 MHz, DMSO-d⁶) δ 164.52, 153.13, 148.17, 144.67, 142.33, 135.81, 134.27, 131.85, 130.32, 129.25, 129.20, 129.09, 128.92, 128.82, 128.57, 128.18, 126.98, 125.39, 122.28, 122.23, 112.18, 99.70; HRMS (ESI) m/z calcd for C₂₁H₁₄INS₂ [M+H]⁺: 471.9691; found: 471.9691.

(*E*)-(5-Iodooct-4-en-4-yl)(phenyl)sulfane (3ba)²: Yellow liquid (0.164 g, 95%) ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.27 (m, 2H), 7.25 – 7.18 (m, 3H), 2.95 (t, *J* = 8 Hz, 2H), 2.40 (t, *J* = 8 Hz,1H), 1.62 – 1.52 (m, 2H), 0.93 (t, *J* = 7.4 Hz, 2H), 0.88 (t, *J* = 7.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 135.36, 129.22, 128.95, 126.35, 113.06, 45.39, 43.85, 22.85, 21.24, 13.53, 12.85. The assignment of the structure was verified with the chemical shift values of both the ¹H and ¹³C NMR with that of the literature.²

Me (*E*)-(1-Iodo-1-phenylprop-1-en-2-yl)(phenyl)sulfane (3ca)¹: Yellow gummy solid Ph SPh (0.122 g, 70%) ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.29 (m, 4H), 7.25 (dt, *J* = 5.7, 2.3 Hz, 4H), 7.23 – 7.18 (m, 2H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.23, 134.81, 134.62, 130.96, 128.92, 128.64, 128.07, 128.02, 127.10, 99.67, 29.86. The assignment of the structure was verified with the chemical shift values of both the ¹H and ¹³C NMR with that of the literature.¹

Ethyl (*E*)-3-Iodo-3-phenyl-2-(phenylthio)acrylate (3da): Yellow gummy solid (0.10 g, 49%) ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.35 (m, 6H), 7.34 – 7.26 (m, 4H), 4.01 (q, *J* = 7.1 Hz, 2H), 1.08 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.83, 141.79, 134.34, 133.12, 132.52, 128.98, 128.88, 128.41, 128.34, 128.29, 96.98, 61.96, 13.70; HRMS (ESI) m/z calcd for C₁₇H₁₅IO₂S [M+H]⁺: 410.9916; found: 410.9913.

Ph S (*E*)-(2-Iodo-2-phenylvinyl)(phenyl)sulfane (5aa)¹: Yellow gummy (0.095 g, 56%); ¹H NMR (400 MHz, CDCl₃) δ 7.49 (dd, *J* = 8.3, 1.3 Hz, 2H), 7.37

(dd, J = 8.1, 1.2 Hz, 3H), 7.33 (dd, J = 7.2, 0.8 Hz, 2H), 7.31 – 7.25 (m, 3H), 7.12 (s, 1H); ¹³C **NMR (100 MHz, CDCl₃)** δ 140.56, 134.85, 133.17, 129.89, 129.21, 129.03, 128.71, 128.22, 127.41, 89.57. The assignment of the structure was verified with the chemical shift values of both the ¹H and ¹³C NMR with that of the literature.¹

Phochn (*E*)-*N*-(2-((2-Iodo-2-phenylvinyl)thio)phenyl)benzamide (5ac): White solid (0.165 g, 72%); mp = 108–110 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.76 (s, 1H), 8.59 (dd, *J* = 8.3, 1.2 Hz, 1H), 7.82 (dd, *J* = 8.2, 1.2 Hz, 2H), 7.60 – 7.56 (m, 2H), 7.48 (t, *J* = 7.6 Hz, 3H), 7.45 – 7.42 (m, 2H), 7.41 – 7.34 (m, 3H), 7.13 (td, *J* = 7.6, 1.3 Hz, 1H), 6.81 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 165.13, 140.10, 139.22, 134.90, 134.60, 132.32, 132.00, 130.98, 129.05, 128.86, 128.39, 127.06, 124.48, 121.61, 120.88, 91.05; HRMS (ESI) m/z calcd for C₂₁H₁₆INOS [M+H]⁺: 458.0076; found: 458.0078.

(E)-(4-Bromophenyl)(2-iodo-2-phenylvinyl)sulfane¹ (5ad): Yellow solid $(0.120 g, 58%); ¹H NMR (400 MHz, CDCl₃) <math>\delta$ 7.47- 7.43 (m, 4H), 7.40 – 7.34 (m, 2H), 7.33 – 7.28 (m, 1H), 7.23 (d, J = 8.7 Hz, 2H), 7.05 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 140.50, 137.94, 137.65, 133.90, 131.31, 130.43, 129.94, 129.59, 129.47, 128.06, 126.06, 88.52, 21.36, 21.06. The assignment of the structure was verified with the chemical shift values of both the ¹H and ¹³C NMR with that of the literature.¹

(*E*)-(4-Chlorophenyl)(2-iodo-2-phenylvinyl)sulfane (5ae)¹: White solid (0.065 g, 35%); ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, *J* = 7.2 Hz, 2H), 7.37 - 7.31 (m, 3H), 7.28 (dd, *J* = 7.2, 1.4 Hz, 2H), 7.22 (s, 2H), 7.02 (

1H); ¹³C NMR (100 MHz, CDCl₃) δ 140.42, 133.78, 132.28, 131.09, 129.36, 129.21, 128.95, 128.86, 128.26, 90.69.

3H), 7.37 - 7.31 (m, 2H), 7.16 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 146.08, 144.53, 140.16, 129.24, 128.73, 128.32, 128.08, 127.44, 124.17, 96.82. The assignment of the structure was verified with the chemical shift values of both the ¹H and ¹³C NMR with that of the literature.¹

Ethyl (*E*)-2-iodo-3-(phenylthio)acrylate (5ba)³: Yellow gummy solid (0.088 g, EtO_2C SPh 53%); ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 2.1 Hz, 1H), 7.49 (m, J = 4.6, 3.8, 1.6 Hz, 2H), 7.40 – 7.36 (m, 3H), 4.30 (dd, J = 8.1, 4.5 Hz, 2H), 1.37 (dd, J = 7.0, 4.7 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.64, 155.27, 135.54, 131.37, 129.49, 128.73, 86.65, 62.72, 14.20. The assignment of the structure was verified with the chemical shift values of both the ¹H and ¹³C NMR with that of the literature.³

134.00, 132.71, 129.68, 72.81, 62.83, 14.19; HRMS (ESI) m/z calcd for $C_{18}H_{16}INOS [M+H]^+$: 368.9213; found: 368.9211.

(*E*)-*N*-(2-((2-Cyclopropyl-2-iodovinyl)thio)phenyl)benzamide (5cc): White solid (0.101 g, 48%); mp = 130–132 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.88 (s, 1H), 8.57 (dd, *J* = 8.3, 1.2 Hz, 1H), 7.92 (dd, *J* = 8.3, 1.3 Hz, 2H), 7.60 – 7.55 (m, 2H), 7.51 (t, *J* = 7.3 Hz, 2H), 7.44 (td, *J* = 8.2, 1.5 Hz, 1H),

7.12 (td, J = 7.6, 1.4 Hz, 1H), 6.54 (s, 1H), 1.59 (m, 1H), 0.81 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 165.25, 138.95, 134.79, 134.50, 132.03, 130.49, 128.86, 128.77, 127.10, 124.49, 122.00, 120.92, 105.90, 18.28, 9.58; HRMS (ESI) m/z calcd for C₁₈H₁₆INOS [M+H]⁺: 422.0076; found: 422.0075.

(*E*)-(2-Cyclopropyl-2-iodovinyl)(4-nitrophenyl)sulfane(*E*-5cf): Pale yellow solid (0.107 g, 62%); mp: 121-123 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, *J* = 9.0 Hz, 2H), 7.38 (d, *J* = 9.1 Hz, 2H),

6.88 (d, J = 0.8 Hz, 1H), 1.72 – 1.62 (m, 1H), 0.85 (s, 2H), 0.82 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 145.78, 145.62, 126.71, 124.18, 123.65, 116.48, 18.43, 9.95. Anal. calcd. for C₁₁H₁₀INO₂S: C, 38.06; H, 2.90; N, 4.03; S, 9.23; found: C, 38.26; H, 2.70; N, 4.33; S, 9.48.

(*E*)-(2-Iodo-2-(*m*-tolyl)vinyl)(p-tolyl)sulfane (5db): Colorless gummy liquid (0.121 g, 66%); ¹H NMR (400 MHz, CDCl₃) δ 7.29-7.25 (m, 4H), 7.23-7.21 (m, 1H), 7.13-7.08 (m, 3H), 7.05 (s, 1H), 2.37 (s, 3H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 140.57, 138.00,

137.72, 133.96, 131.38, 130.50, 130.01, 129.65, 129.54, 128.12, 126.12, 88.59, 21.43, 21.12.

(*E*)-*N*-(2-((2-Iodo-2-(*m*-tolyl)vinyl)thio)phenyl)benzamide (5dc):
Yellow gummy liquid (0.119 g, 51%); ¹H NMR (400 MHz, CDCl₃)
δ 8.67 (s, 1H), 8.49 (dd, *J* = 8.3, 1.2 Hz, 1H), 7.73 (dd, *J* = 8.3, 1.2 Hz,
2H), 7.51 - 7.45 (m, 2H), 7.38 (t, *J* = 7.6 Hz, 3H), 7.15 (dd, *J* = 7.3,

5.2 Hz, 3H), 7.03 (dd, J = 7.6, 6.2 Hz, 2H), 6.69 (s, 1H), 2.28 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.09, 139.99, 139.16, 138.11, 134.81, 134.57, 131.98, 131.95, 130.88, 129.87, 129.38, 128.80, 128.21, 127.05, 125.85, 124.42, 121.72, 120.87, 91.32, 21.37; HRMS (ESI) m/z calcd for C₂₂H₁₈INOS [M+H]⁺: 472.0232; found: 472.0236.

 $\begin{array}{c} \textbf{(E)-(1-Iodo-2-(phenylsulfinyl)ethene-1,2-diyl)dibenzene} \quad \textbf{(6):} \quad \text{White solid} \\ \textbf{(0.198 g, 92\%); mp = 151-153 °C; } ^{1}\text{H NMR} (\textbf{400 MHz, CDCl}_3) \delta 7.60 (dd, J \\ \textbf{(0.198 g, 92\%); mp = 151-153 °C; } ^{1}\text{H NMR} (\textbf{400 MHz, CDCl}_3) \delta 7.60 (dd, J \\ \textbf{(0.198 g, 92\%); mp = 151-153 °C; } ^{1}\text{H NMR} (\textbf{400 MHz, CDCl}_3) \delta 7.60 (dd, J \\ \textbf{(0.198 g, 92\%); mp = 151-153 °C; } ^{1}\text{H NMR} (\textbf{400 MHz, CDCl}_3) \delta 7.60 (dd, J \\ \textbf{(0.198 g, 92\%); mp = 151-153 °C; } ^{1}\text{H NMR} (\textbf{400 MHz, CDCl}_3) \delta 7.60 (dd, J \\ \textbf{(0.198 g, 92\%); mp = 151-153 °C; } ^{1}\text{H NMR} (\textbf{400 MHz, CDCl}_3) \delta 7.60 (dd, J \\ \textbf{(0.198 g, 92\%); mp = 151-153 °C; } ^{1}\text{H NMR} (\textbf{400 MHz, CDCl}_3) \delta 7.60 (dd, J \\ \textbf{(0.198 g, 92\%); mp = 151-153 °C; } ^{1}\text{H NMR} (\textbf{400 MHz, CDCl}_3) \delta 7.60 (dd, J \\ \textbf{(0.198 g, 92\%); mp = 151-153 °C; } ^{1}\text{H NMR} (\textbf{400 MHz, CDCl}_3) \delta 7.60 (dd, J \\ \textbf{(0.198 g, 92\%); mp = 151-153 °C; } ^{1}\text{H NMR} (\textbf{400 MHz, CDCl}_3) \delta 7.60 (dd, J \\ \textbf{(0.198 g, 92\%); mp = 151-153 °C; } ^{1}\text{H NMR} (\textbf{400 MHz, CDCl}_3) \delta 7.60 (dd, J \\ \textbf{(0.198 g, 92\%); mp = 151-153 °C; } ^{1}\text{H NMR} (\textbf{400 MHz, CDCl}_3) \delta 7.60 (dd, J \\ \textbf{(0.198 g, 92\%); mp = 151-153 °C; } ^{1}\text{H NMR} (\textbf{400 MHz, CDCl}_3) \delta 7.60 (dd, J \\ \textbf{(0.198 g, 92\%); mp = 151-153 °C; } ^{1}\text{H NMR} (\textbf{400 MHz, CDCl}_3) \delta 7.60 (dd, J \\ \textbf{(0.198 g, 92\%); mp = 151-153 °C; } ^{1}\text{H NMR} (\textbf{400 MHz, CDCl}_3) \delta 7.60 (dd, J \\ \textbf{(0.198 g, 92\%); mp = 151-153 °C; } ^{1}\text{H NMR} (\textbf{(0.198 g, 92\%); mp = 151-153 °C; } ^{1}\text{H NMR} (\textbf{(0.198 g, 92\%); mp = 151-153 °C; } ^{1}\text{H NMR} (\textbf{(0.198 g, 92\%); mp = 151-153 °C; } ^{1}\text{H NMR} (\textbf{(0.198 g, 92\%); mp = 151-153 °C; } ^{1}\text{H NMR} (\textbf{(0.198 g, 92\%); mp = 151-153 °C; } ^{1}\text{H NMR} (\textbf{(0.198 g, 92\%); mp = 151-153 °C; } ^{1}\text{H NMR} (\textbf{(0.198 g, 92\%); mp = 151-153 °C; } ^{1}\text{H NM} (\textbf{(0.198 g, 92\%); mp = 151-153 °C; } ^{1}\text{H NM} (\textbf{(0.198 g, 92\%); mp = 151-153 °C; } ^{1}\text{H NM} (\textbf{(0.198 g, 92\%); mp = 151-153 °C; } ^{1}\text{H NM} (\textbf{(0.198 g, 92\%); mp = 151-153 °C; } ^{1}\text{H NM} (\textbf{(0.198 g, 92\%); mp = 151-153 °C; } ^{$

7.4 Hz, 1H), 7.13 (dd, *J* = 8.3, 1.3 Hz, 2H), 6.84 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 152.82, 142.06, 141.43, 134.79, 130.79, 129.87, 129.38, 128.74, 128.71, 128.62, 128.58, 127.61, 124.54, 113.49; HRMS (ESI) m/z calcd for C₂₀H₁₅IOS [M+H]⁺: 430.9970; found: 430.9967.

(*E*)-(1-Iodo-2-(phenylsulfonyl)ethene-1,2-diyl)dibenzene (7)¹: White solid (0.161 g, 72%); ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.45 (m, 1H), 7.40 – 7.31 (m, 10H), 7.31 – 7.26 (m, 2H), 7.17 (dd, *J* = 7.9, 1.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 148.92, 142.33, 139.70, 139.17, 133.18, 130.24, 129.23,

129.03, 128.52, 128.39, 128.34, 127.87, 127.37, 118.34. The assignment of the structure was verified with the chemical shift values of both the ¹H and ¹³C NMR with that of the literature.¹

Phenyl(1,2,2-triphenylvinyl)sulfane (8): Yellow solid (0.162 g, 89%); ¹H NMR (400 MHz, CDCl₃) δ 7.38 (dd, J = 8.2, 1.5 Hz, 2H), 7.34 – 7.25 (m, 5H), 7.18 (dd, J = 8.3, 1.2 Hz, 2H), 7.11 – 7.03 (m, 5H), 7.02 – 6.94 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 146.30, 143.75, 142.45, 139.16, 135.69, 133.96, 131.07, 130.75, 129.63, 129.54, 128.41, 128.12, 127.64, 127.55, 127.26, 126.99, 126.67, 125.73.

(*E*)-(2,4-Diphenylbut-1-en-3-yn-1-yl)(phenyl)sulfane (9): Yellow solid (0.167 g, 86%); ¹H NMR (400 MHz, CDCl₃) δ 7.59 (t, *J* = 8.3 Hz, 4H), 7.33 (t, *J* = 7.4 Hz, 2H), 7.25 (t, *J* = 7.3 Hz, 1H), 7.19 – 7.04 (m, 10H), 7.0-6.9 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.13, 139.19, 138.70,

134.37, 131.26, 131.11, 130.40, 129.10, 128.45, 128.14, 128.13, 128.03, 128.00, 127.86, 127.39, 126.58, 124.86, 123.31, 93.35, 91.09.

(*E*)-2-(4-(1,2-Diphenyl-2-(phenylthio)vinyl)phenoxy)-*N*,*N*-dimethylethan-1-amine (11): Yellow solid (1.56 g, 82%); mp = 112-114 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.37 (dd, *J* = 8.1, 1.6 Hz, 2H), 7.33- 7.3 (m, 4H), 7.29 (m, 1H), 7.17 (d, *J* = 7.1 Hz, 2H), 7.11 – 7.03 (m, 3H), 7.03 – 6.96 (m, 3H), 6.87 (d, *J* = 8.8 Hz, 2H), 6.59 (d, *J* = 8.8 Hz, 2H), 4.03 (t, *J* = 5.5 Hz, 2H), 2.84 (t, *J* = 5.4

Hz, 2H), 2.41 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 157.13, 146.13, 144.00, 139.42, 135.96, 135.18, 132.55, 132.11, 131.03, 129.53, 129.35, 128.39, 128.08, 127.65, 127.23, 126.86, 125.58, 113.61, 64.81, 57.25, 44.78.

(Z)-2-(4-(1,2-Diphenylbut-1-en-1-yl)phenoxy)-*N*,*N*-dimethylethan-1-amine (Z-Tomoxifen) (12)²: Brown solid (0.86 g, 67%); ¹H NMR (400 MHz, CDCl₃) δ 7.26 (t, *J* = 7.2 Hz, 2H), 7.20 – 7.13 (m, 3H), 7.12 – 7.06 (m, 2H), 7.07 – 7.00 (m, 3H), 6.69 (d, *J* = 8.8 Hz, 2H), 6.47 (d, *J* = 8.8 Hz, 2H), 3.89 (t, *J* = 5.6 Hz, 2H), 2.66 (t, *J* = 5.6 Hz, 2H), 2.38 (q, *J* = 7.4 Hz, 2H), 2.26 (s, 3H), 0.84 (t, *J* = 7.4 Hz,

3H); ¹³C NMR (100 MHz, CDCl₃) δ 156.47, 143.73, 142.33, 141.33, 138.14, 135.66, 131.82, 129.63, 129.40, 128.04, 127.82, 126.47, 125.97, 113.31, 65.10, 57.76, 45.29, 28.96, 13.54.

14. Reference:

Ρh

- Lin, Y. M.; Lu, G. P.; Cai, C.; Yi, W. bin. Odorless, One-Pot Regio- and Stereoselective Iodothiolation of Alkynes with Sodium Arenesulfinates under Metal-Free Conditions in Water. *Org Lett* 2015, *17* (13), 3310–3313.
- (2) Taniguchi, N. Copper-Catalyzed Synthesis of β-Haloalkenyl Chalcogenides by Addition of Dichalcogenides to Internal Alkynes and Its Application to Synthesis of (Z)-Tamoxifen. *Tetrahedron* 2009, 65 (14), 2782–2790.
- Lu, L. H.; Ou, G.; Zhao, X.; Wang, Y.; Chen, X.; Liao, W.; Li, S.; Wu, C. Selective Difunctionalization of Electron-Deficient Alkynes: Access to (E)-2-Iodo-3- (Methylthio)Acrylate. *Org Biomol Chem* 2021, *19* (37), 8128–8132.

PeakTable

S86

PDA Ch1 307nm 4nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	1.144	720	259	0.236	0.462				
2	1.442	1703	177	0,558	0,316				
3	2,470	4908	1035	1.608	1,850				
4	2,761	297939	54494	97.599	97.372				
Total		305269	55964	100,000	100.000				

1 PDA Multi 1/236nm 4nm

PDA Ch1230nm 4nm								
Peak#	Ret, Time	Area	Height	Area %	Height %			
1	1,150	1244	390	0.373	4.177			
2	1.384	1711	463	0,512	4,954			
3	1,498	1506	414	0.451	4.427			
4	1,818	2025	504	0,606	5.397			
5	1.934	974	276	0,292	2,956			
6	2.074	1936	586	0.579	6,268			
7	2,184	5145	1247	1,540	13.340			
8	4,803	319498	5465	95.647	58,481			
Total		334039	9346	100,000	100,000			

PeakTable

