Supporting Information

Utilizing Biocatalysis and a Sulfolane-mediated Reductive Acetal Opening to Access Nemtabrutinib from Cyrene

Nadine Kuhl,*a Ben W. H. Turnbull,*a Yining Ji,*b Reed T. Larson, ${ }^{\text {a }}$ Michael Shevlin, ${ }^{\text {a }}$ Christopher K. Prier, ${ }^{\text {a }}$ Cheol K. Chung, ${ }^{\text {a }}$ Richard Desmond, ${ }^{\text {a Erik Guetschow, }}{ }^{\text {b }}$ Cyndi Qixin He, ${ }^{\text {c }}$ Tetsuji Itoh, ${ }^{a}$ Jeffrey T. Kuethe, ${ }^{\text {a }}$ Justin A. Newman, ${ }^{\text {b }}$ Mikhail Reibarkh, ${ }^{\text {b }}$ Nelo R. Rivera, ${ }^{\text {b }}$ Gao Shang, ${ }^{\text {a }}$ Zhixun Wang, ${ }^{a}$ Daniel Zewge, ${ }^{\text {b }}$ David A. Thaisrivongs ${ }^{\text {a }}$
${ }^{a}$ Process Research and Development, Merck \& Co., Inc., Rahway, New Jersey 07065, United States
${ }^{b}$ Analytical Research and Development, Merck \& Co., Inc., Rahway, New Jersey 07065, United States
${ }^{c}$ Computational and Structural Chemistry, Merck \& Co., Inc., Rahway, New Jersey 07065, United States
E-mail: nadine.kuhl@merck.com, ben.turnbull@merck.com, yining.jichen@merck.com

Table of Contents

Contents

1. General Experimental Details 3
2. Biocatalytic Transamination 5
2.1. Reductive Amination of Cyrene ${ }^{\mathrm{TM}}$ 5
2.2. Screening of Transaminase Enzymes 5
2.3. Transaminase Reactions on Gram-Scale. 7
2.4. Characterization of Compound 4 8
2.5. Synthesis and Characterization of $\mathbf{3 a} \cdot \mathbf{T s O H}$ and $\mathbf{3 b} \cdot \mathbf{T s O H}$ 9
2.6. Synthesis of Cyrene Amine Salts 11
2.7. Synthesis of $\mathbf{B n - 3 a}$ and $\mathbf{B n - 3 b}$ 12
3. Reductive Acetal Opening 14
3.1. Reaction Optimization using Bn-3a 14
3.2. Solvent Screening using Bn-3a. 15
3.3. Synthesis and Characterization of Bn-1a and Bn-1b 17
3.4. Screening of Cyrene Amine Salts 20
3.5. Synthesis and Characterization of $\mathbf{1 a} \cdot \mathbf{T s O H}$ 20
4. Mechanistic Experiments 22
4.1. Reaction Profile for the Synthesis of $\mathbf{1 a} \cdot \mathbf{T s O H}$ by ${ }^{1} \mathrm{H}$ NMR Spectroscopy 22
4.2. Identification and Characterization of Diborane by NMR Spectroscopy 23
4.3. Delayed Cyrene Amine Addition Experiment 25
4.3. Dependence of the Induction Period on Water Content 25
4.4 Importance of Sulfolane for Diborane Formation 27
4.5. Reaction Kinetics - Reaction Rate Dependence on Sulfolane 28
4.6. Reductive Acetal Opening with other Sulfones 28
4.7. Reaction with $\mathrm{BF}_{3} \cdot \mathrm{THF}$ 29
5. Computational Studies 30
5.1. Computational Methods 30
5.2. Calculated Activation Free Energy Difference for the Reduction of Cyrene ${ }^{\mathrm{TM}}$ with BH_{4} 30
5.3. Calculated Thermodynamics for the Reaction of Cyrene ${ }^{\mathrm{TM}}$ with Isopropylamine 31
5.4. Calculated Solvent-Sulfolane Displacement Equilibria 31
6. X-Ray Crystallography data for $\mathbf{3 a} \cdot \mathbf{T s O H}$ and $\mathbf{1 a} \cdot \mathbf{T s O H}$ 34
6.1. Crystal Data and Structure Refinement for Compound 3a•TsOH (CCDC 2215969) 34
6.2. Crystal Data and Structure Refinement for Compound $\mathbf{1 a} \cdot \mathbf{T s O H}$ (CCDC 2215968) 36
7. NMR Spectra 38

1. General Experimental Details

Unless otherwise noted, all reactions were performed under N_{2}-atmosphere. Heating of reaction mixtures was performed using a temperature-controlled hotplate equipped with stirring and an active thermocouple. Stirring of reaction mixtures was performed using magnetic stirring, unless noted otherwise. Evaporation and concentration in vacuo steps were performed using variable vacuum via a vacuum-controlled (ca. 40040 mmHg) rotary evaporator. Column chromatography was performed using a Teledyne ISCO CombiFlash \circledR Rf+ chromatography system using prepacked single-use silica packed cartridges (RediSep Rf Gold Normal-Phase Silica, 20-40 micron average particle size, $60 \AA$ average pore size).

Materials.

Reagents were purchased in reagent grade from commercial suppliers and used without further purification, unless otherwise described. Cyrene ${ }^{\mathrm{TM}}$ was purchased from Sigma-Aldrich or Circa Group directly. Sulfolane was purchased from Sigma-Aldrich or Alfa Aesar and used as received. Anhydrous solvents (acetonitrile, anisole, cyclopentyl methyl ether, dichloromethane, 1,4-dioxane, DMSO, and 1,2dichloroethane, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, 1,2-dimethoxyethane) were obtained from Sigma-Aldrich as part of their Sure/Seal ${ }^{\mathrm{TM}}$ bottles product line. NMR kinetic experiments utilized anisole- d_{8} which was purchased from Sigma-Aldrich. $\mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{CD}_{3} \mathrm{OD}$, and DMSO- d_{6} were purchased from Cambridge Isotope Laboratories in sealed ampules and used as received.

Instrumentation.

Nuclear Magnetic Resonance Spectroscopy (NMR). Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) spectra, carbon nuclear magnetic resonance (${ }^{13} \mathrm{C}$ NMR) spectra, and proton-decoupled fluorine nuclear magnetic resonance (${ }^{19} \mathrm{~F}$ NMR) spectra were recorded at $25{ }^{\circ} \mathrm{C}$ on a Bruker 500 MHz AVANCE III HD spectrometer equipped with a SmartProbe. Chemical shifts for proton and carbon are reported in parts per million downfield from tetramethylsilane and are referenced to residual proton resonances of the NMR solvent according to values reported in the literature. ${ }^{1}{ }^{19} \mathrm{~F}$ NMR spectra are not calibrated by an internal reference. Data are represented as follows: chemical shift, multiplicity ($\mathrm{br}=\mathrm{broad}, \mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet $)$, coupling constants (J) quoted in hertz (Hz) and integration.
Analysis of crude reaction mixtures during the reaction optimization for amine 3a and $\mathbf{1 a}$ and $\mathrm{wt} \%$ purity analysis of isolated products was performed by quantitative ${ }^{1} \mathrm{H}$ NMR using the following parameters: $\mathrm{D} 1=60 \mathrm{~s}, \mathrm{NS}=8$, and either maleic acid, $\mathrm{CH}_{2} \mathrm{Br}_{2}$ or 1,3,5-trimethoxybenzene as the internal standard.
Analysis of reaction profiles, and quantification of starting material, product, and byproducts, was done using quantitative ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D} 1=20$ seconds, number of scans $=8$, 10 -degree flip angle), and ${ }^{19}$ F NMR (D1 = 10 seconds, number of scans $=4,10$-degree flip angle) analysis. Octafluoronaphthalene (0.49 equiv) was used as an internal standard for ${ }^{19} \mathrm{~F}$ NMR.

Gas Chromatography (GC). GC-FID analysis was performed using a DB-624 (6\% cyanopropylphenyl/94\% dimethyl polysiloxane) GC column ($20 \mathrm{mx} 0.18 \mathrm{~mm}, 1 \mu \mathrm{~m}$) and operating at an injection port temperature of $220^{\circ} \mathrm{C}$ and an FID detector temperature of $250^{\circ} \mathrm{C}$. The oven temperature was increased at a rate of $20^{\circ} \mathrm{C} /$ minute from $80^{\circ} \mathrm{C}$ at $\mathrm{t}=0$ to $250^{\circ} \mathrm{C}$, and then held for 10 minutes using a constant hydrogen flow of $1 \mathrm{~mL} /$ minute. Typical Retention Times: Compound 3a (4.8 minutes), Compound 3b (4.7 minutes).
UPLC. Analysis of reactions to optimize the reaction conditions to access amine Bn-1a was performed by UPLC analysis using an Agilent 1290 system equipped with a UV detector ($\lambda=210 \mathrm{~nm}$) and an Eclipse

[^0]Plus C 18 column ($50 \mathrm{~mm} \times 2.1 \mathrm{~mm}, 1.8 \mu \mathrm{~m}$) operating at $35^{\circ} \mathrm{C}$ with a flow of $1 \mathrm{~mL} / \mathrm{min}$. The binary eluent mixture of eluent $\mathrm{A}=0.5 \mathrm{mM} \mathrm{Na} \mathrm{Na}_{4} \mathrm{O}_{7}$ in $\mathrm{H}_{2} \mathrm{O}$ and eluent $\mathrm{B}=$ acetonitrile was used with a $1.5-2 \mathrm{~min}$ gradient starting from $95 \% \mathrm{~A}$ and $5 \% \mathrm{~B}$ to $5 \% \mathrm{~A}$ and $95 \% \mathrm{~B}$.
UPLC Method for HRMS. HRMS sample analysis was performed using a Waters Acquity UPLC system interfaced with Thermo Scientific Orbitrap Mass Analyzer and an ESI source temperature set to $263^{\circ} \mathrm{C}$. Samples were dissolved in acetonitrile at a 0.01 mM concentration, and $2 \mu \mathrm{~L}$ injection volumes were used for analysis. The Waters UPLC was equipped with an ACQUITY UPLC ${ }^{\text {TM }}$ CSH Column ($130 \AA$ i̊ pore size, $1.7 \mu \mathrm{~m}$ particle size, 2.1 mm internal diameter, 150 mm length; part number 186005408) operating at a $0.4 \mathrm{~mL} / \mathrm{min}$ flow rate of a binary eluent mixture (eluent A and B , prepared as described below). A column temperature of $45^{\circ} \mathrm{C}$ was used for all analytes. A column temperature of $60^{\circ} \mathrm{C}$ was used for compound 4 . The 5 min method used the following eluent gradient: a gradient from $90 \% \mathrm{~A} / 10 \% \mathrm{~B}$ at $\mathrm{t}=0$ min held until 0.5 min , to $10 \% \mathrm{~A} / 90 \% \mathrm{~B}$ at $\mathrm{t}=1.0 \mathrm{~min}$ held until 4.0 min , and a subsequent gradient to achieve $90 \% \mathrm{~A}$ and $10 \% \mathrm{~B}$ at $\mathrm{t}=4.1 \mathrm{~min}$ and final hold until $\mathrm{t}=5.0 \mathrm{~min}$. Eluent Preparation: $\mathrm{A}=0.1 \% \mathrm{v} / \mathrm{v}$ formic acid in $\mathrm{H}_{2} \mathrm{O}, \mathrm{B}=0.1 \% \mathrm{v} / \mathrm{v}$ formic acid in acetonitrile.

Abbreviations. ATA $=$ Amine Transaminase, $\mathrm{Bn}=$ Benzyl, Boc $=$ tert-butyloxycarbonyl, calc. $=$ calculation, Cyrene ${ }^{\mathrm{TM}}=(1 \mathrm{~S}, 5 \mathrm{R})$-6,8-dioxabicyclo[3.2.1]octan-4-one, $\mathrm{DMSO}=$ dimethyl sulfoxide, $\mathrm{ESI}=$ electrospray ionization, equiv $=$ equivalents, $\mathrm{GC}=$ gas chromatography, $\mathrm{UPLC}=$ ultra-high pressure liquid chromatography, HRMS $=$ high resolution mass spectrometry, PLP $=$ (4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate or pyridoxal-5'-phosphate, $\mathrm{QToF}=$ quadrupole time of flight, $\mathrm{Tf}=$ Trifluoromethanesulfonate, $2-\mathrm{MeTHF}=2$-methyltetrahydrofuran, $\mathrm{THF}=$ tetrahydrofuran, $\mathrm{Ts}=$ para-toluenesulfonate.

Safety. Please note that reaction conditions to form $\mathbf{B n - 1 a}$ and $\mathbf{1 a} \cdot \mathbf{T s O H}$ require handling of $\mathrm{BH}_{3} \cdot$ THF or involve the in-situ generation of H_{2} and diborane gas. H_{2} gas is flammable, $\mathrm{BH}_{3} \cdot \mathrm{THF}$ and diborane are highly reactive, flammable and acutely toxic. Appropriate PPE and engineering controls should be used when performing those reactions. Adequate process safety analysis and equipment selection should be performed prior to scaling-up those reaction conditions. For more information see reference 22 in the manuscript.

2. Biocatalytic Transamination

2.1. Reductive Amination of Cyrene ${ }^{\text {TM }}$

A 40 mL vial equipped with a stir bar was charged with Cyrene ${ }^{\mathrm{TM}}$ ($500 \mathrm{mg}, 0.4 \mathrm{~mL}, 3.9 \mathrm{mmol}, 1.0$ equiv). A solution of $\mathrm{NH}_{4} \mathrm{OAc}(3.0 \mathrm{~g}, 39.0 \mathrm{mmol}, 10.0$ equiv) in methanol $(8 \mathrm{~mL})$ was added followed by heatactivated $3 \AA$ molecular sieves (MS) (550 mg). Sodium cyanoborohydride ($245 \mathrm{mg}, 3.9 \mathrm{mmol}, 1.0$ equiv) was added and the reaction was stirred at room temperature for 5.5 hours until full conversion was observed by ${ }^{1} \mathrm{H}$ NMR. An aliquot was diluted 4 times with methanol, filtered, and analyzed by GC to determine the product distribution (Scheme S1, Figure S1).

Scheme S1. Reductive amination of Cyrene ${ }^{\mathrm{TM}}$ with $\mathrm{NaBH}_{3} \mathrm{CN}$.

Figure S1. Gas chromatogram (GC) of the reductive amination of Cyrene ${ }^{\mathrm{TM}}$ with $\mathrm{NaBH}_{3} \mathrm{CN}$.

2.2. Screening of Transaminase Enzymes

General Procedure 1. Cyrene ${ }^{\mathrm{TM}}$ ($500 \mathrm{mg}, 0.4 \mathrm{~mL}, 3.9 \mathrm{mmol}, 1.0$ equiv) and (4-formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate (PLP, $10 \mathrm{mg}, 40 \mu \mathrm{~mol}, 1 \mathrm{~mol} \%$) were dissolved in 9.6 mL buffer solution $\left(0.1 \mathrm{M} \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} 10 \cdot \mathrm{H}_{2} \mathrm{O}, 1 \mathrm{M}\right.$ isopropylamine, 2.5 equiv relative to Cyrene ${ }^{\mathrm{TM}}$, pH 9.5) to reach a total volume of about 10 mL and a Cyrene ${ }^{\mathrm{TM}}$ concentration of $50 \mathrm{~g} / \mathrm{L} .500 \mu \mathrm{~L}(25 \mathrm{mg}, 0.39$ mmol, 1.0 equiv of Cyrene ${ }^{\mathrm{TM}}$) of this solution were added to 2.5 mg of transaminase variant (lyophilized cell-free powder, $10 \mathrm{wt} \%$ relative to Cyrene ${ }^{\mathrm{TM}}$) in vials and incubated at $35^{\circ} \mathrm{C}$ with shaking. After 20 hours, $100 \mu \mathrm{~L}$ of each reaction was diluted with $600 \mu \mathrm{~L}$ of 0.5% maleic acid (internal standard) in $\mathrm{D}_{2} \mathrm{O}$ for analysis by quantitative ${ }^{1} \mathrm{H}$ NMR (see Figure S2 for a representative ${ }^{1} \mathrm{H}$ NMR and Table S1 and S2 for results.)

Scheme S2. Biocatalytic transaminase reaction.

Table S1. Screening of Codexis ${ }^{\circledR}$ transaminase enzymes.

Entry	Transaminase Enzyme	Assay Yield [\%]	3a:3b d.r.
$\mathbf{1}$	ATA-007	11	$1: 1$
$\mathbf{2}$	ATA-009	10	$1.1: 1$
$\mathbf{3}$	ATA-013	65	$2.5: 1$
$\mathbf{4}$	ATA-014	74	$2.3: 1$
$\mathbf{5}$	ATA-015	68	$1.8: 1$
$\mathbf{6}$	ATA-016	100	$1.7: 1$
$\mathbf{7}$	ATA-024	100	$1.3: 1$
$\mathbf{8}$	ATA-036	67	$1: 1.6$
$\mathbf{9}$	ATA-234	86	$1: 6.9$
$\mathbf{1 0}$	ATA-273	100	$1: 4.8$
$\mathbf{1 1}$	ATA-303 ${ }^{2}$	95	$1.9: 1$
$\mathbf{1 2}$	ATA-426 $^{\mathbf{3}}$	$\mathbf{5 7}$	$\mathbf{1 7 : 1}$
$\mathbf{1 3}$	CDX-010 $^{\text {CDX-017 }}{ }^{4}$	91	$1.5: 1$
$\mathbf{1 4}$	CDA 2	72	$1.1: 1$

Table S2. ATA-426 enzyme loading study.

Entry $^{\mathbf{a}}$	ATA-426 Loading [wt\%] $^{\text {ATsay Yield [\%] }}$	3a:3b d.r.	
$\mathbf{1}$	$\mathbf{2 0}$	$\mathbf{7 1 \%}$	$\mathbf{1 7 : 1}$
$\mathbf{2}$	15	62%	$18: 1$
$\mathbf{3}$	10	57%	$17: 1$
$\mathbf{4}$	5	42%	$>20: 1$

${ }^{a}$ Reaction conditions according to general protocol 1, above.

[^1]

Figure S2. ${ }^{1} \mathrm{H}$ NMR at 500 MHz in $\mathrm{D}_{2} \mathrm{O}$ of the crude reaction mixture for entry 14 of Table S1. Integration of the singlet at 5.58 ppm was used to calculate the combined assay yield of $\mathbf{3 a}$ and $\mathbf{3 b}$. The diastereomeric ratio was determined via integration of the doublets at 4.15 ppm (3a) and $4.08 \mathrm{ppm}(\mathbf{3 b})$.

2.3. Transaminase Reactions on Gram-Scale

Representative procedure for Entry 7 of Table 1. In a 100 mL Mettler Toledo EasyMax vessel equipped with an overhead stirrer, (4-formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate (PLP) ($41 \mathrm{mg}, 160 \mu \mathrm{~mol}, 0.7 \mathrm{~mol} \%$) was dissolved in $0.1 \mathrm{M} \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ buffer ($60 \mathrm{~mL}, \mathrm{pH} 9.5$) containing isopropylamine ($4.4 \mathrm{~mL}, 51.5 \mathrm{mmol}, 2.2$ equiv). Cyrene ${ }^{\mathrm{TM}}(3.0 \mathrm{~g}, 23.4 \mathrm{mmol}, 1.0$ equiv) and transaminase enzyme ATA-426 ($600 \mathrm{mg}, 20 \mathrm{wt} \%$) were then added at room temperature. The mixture was heated to $45^{\circ} \mathrm{C}$ and agitated for 21 h . During the reaction, vacuum (400-450 mbar) and airflow were applied to remove the acetone generated. The pH was monitored throughout the reaction using a pH probe. The pH was adjusted manually over the course of the reaction to keep the pH above 7.5 (with 5 N aqueous NaOH) yielding a solution of $\mathbf{3 a}(2.76 \mathrm{~g}, 21.4 \mathrm{mmol}, 91 \%$ assay yield, $24: 1 \mathrm{~d}$. r. $)$. The assay yield was determined by diluting an aliquot of the reaction mixture by a factor of 6 using a 0.5% solution of maleic acid (internal standard) in $\mathrm{D}_{2} \mathrm{O}$.

Higher concentrations of the borate buffer, 0.25 M and 0.40 M concentrations were also explored following the reaction conditions above using a $100 \mathrm{~g} / \mathrm{L}$ Cyrene concentration. The assay yields were 95% and 94%, respectively, and a pH adjustment was still required. Using a 0.1 M borate buffer at $100 \mathrm{~g} / \mathrm{L}$ Cyrene yielded 3a in 93% assay yield, see Section 2.5). Therefore, higher buffer concentrations did not provide a significant benefit.

2.4. Characterization of Compound 4

4

1-((1S,5R)-4-hydroxy-6,8-dioxabicyclo[3.2.1]octan-4-yl)propan-2-one (4). A 2.5 M solution of n-butyllithium in hexanes ($62.3 \mathrm{~mL}, 156 \mathrm{mmol}, 0.95$ equiv) was added over 2 h and 15 minutes to a solution of diisopropylamine ($21.8 \mathrm{~mL}, 156 \mathrm{mmol}, 0.95$ equiv) in cyclopentyl methyl ether $(210 \mathrm{~mL})$ in a 500 mL round bottom flask at $0^{\circ} \mathrm{C}$. The resulting solution was stirred for 1 h and then cooled to $-78^{\circ} \mathrm{C}$. Acetone $(10.8 \mathrm{~mL}$, $148 \mathrm{mmol}, 0.9$ equiv) was added slowly to maintain the reaction temperature below $-68^{\circ} \mathrm{C}$ and the resulting mixture was stirred for an additional 2 h at $-78^{\circ} \mathrm{C}$. Cyrene ${ }^{\mathrm{TM}}(16.8 \mathrm{~mL}, 164 \mathrm{mmol}, 1.00$ equiv) in cyclopentyl methyl ether (10 mL) was added and the reaction was allowed to stir overnight at $-78{ }^{\circ} \mathrm{C}$. The reaction was then quenched with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(200 \mathrm{~mL})$ at room temperature. The phases were separated, and the organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to obtain the crude product as an oil. The crude product was purified by column chromatography using hexanes/ethyl acetate to yield compound $\mathbf{4}$, a mixture of two diastereomers, as a pale-yellow oil (8.8 g , $94.5 \mathrm{wt} \%$ purity, $44.7 \mathrm{mmol}, 27 \%$ yield, $1.2: 1$ d.r.). The isolated material contained 4.2 GC area $\%$ Cyrene ${ }^{\mathrm{TM}}$ that could not be separated.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(500 \mathbf{~ M H z}, \mathbf{C D}_{2} \mathbf{C l}_{2}\right) \delta 5.10(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 1 \mathrm{H}), 4.46(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.84-3.79(\mathrm{~m}, 2 \mathrm{H}), 3.76-3.70$ (m, 2H), 3.17 (br s, 2H), $2.85(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~s}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H})$, $2.16(\mathrm{~s}, 3 \mathrm{H}), 2.09-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.57(\mathrm{~m}, 6 \mathrm{H}), 1.55-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.40(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}$) $\delta 210.18(\mathrm{CO}), 209.47(\mathrm{CO}), 104.37(\mathrm{CH}), 103.90(\mathrm{CH}), 73.73(\mathrm{CH}), 73.33$ $(\mathrm{CH}), 72.17\left(\mathrm{C}_{\mathrm{q}}\right), 71.19\left(\mathrm{C}_{\mathrm{q}}\right), 68.32\left(\mathrm{CH}_{2}\right), 67.38\left(\mathrm{CH}_{2}\right), 49.93\left(\mathrm{CH}_{2}\right), 47.43\left(\mathrm{CH}_{2}\right), 32.32\left(\mathrm{CH}_{3}\right), 32.30$ $\left(\mathrm{CH}_{3}\right)$, $29.85\left(\mathrm{CH}_{2}\right)$, $28.40\left(\mathrm{CH}_{2}\right), 27.34\left(\mathrm{CH}_{2}\right), 25.64\left(\mathrm{CH}_{2}\right) \mathrm{ppm}$. HRMS m/z calc. for $\left[\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{O}_{4}\right]\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 187.0965, found: 187.0961 .

2.5. Synthesis and Characterization of $\mathbf{3 a} \cdot \mathbf{T s O H}$ and $\mathbf{3 b} \cdot \mathbf{T s O H}$

3a•HOTs
(1S,4R,5R)-6,8-Dioxabicyclo[3.2.1]octan-4-aminium 4-methylbenzene-1-sulfonate (3a•TsOH). In a 1 L jacketed round bottom flask, (4-formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate (PLP) ($1.0 \mathrm{~g}, 4.0 \mathrm{mmol}, 1.0 \mathrm{~mol} \%$) was dissolved in $0.1 \mathrm{M} \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ buffer (500 mL , pH 9.5) containing 1.56 M isopropylamine ($67 \mathrm{~mL}, 778 \mathrm{mmol}, 2$ equiv). Transaminase enzyme ATA-426 (10 g , $20 \mathrm{wt} \%)$ was then added and dissolved at room temperature. Cyrene ${ }^{\mathrm{TM}}(49.9 \mathrm{~g}, 389 \mathrm{mmol}, 1.0$ equiv) was then added, and the mixture was heated to $33-37^{\circ} \mathrm{C}$ and agitated with overhead stirring for 27 h . During the reaction, vacuum ($400-450 \mathrm{mbar}$) and airflow were applied to remove the acetone generated. The pH was monitored at various points during the reaction using a pH probe and was adjusted if needed to keep the pH between 7.9 and 8.6 (four additions of a total of 17.5 mL of $50 \mathrm{wt} \%$ aqueous NaOH) yielding a solution of 3a ($46.8 \mathrm{~g}, 362 \mathrm{mmol}, 93 \%$ assay yield, 17:1 d.r.). The assay yield was determined by diluting an aliquot of the reaction mixture by a factor of 6 using a 0.5% solution of maleic acid (internal standard) in $\mathrm{D}_{2} \mathrm{O}$.

Figure S3. ${ }^{1} \mathrm{H}$ NMR at 500 MHz in $\mathrm{D}_{2} \mathrm{O}$ of the crude reaction mixture. The * indicates compound 4.

Next, the solution pH was adjusted to 13.4 by adding $50 \mathrm{wt} \%$ aqueous NaOH solution (28 mL). The mixture was cooled to $10-15{ }^{\circ} \mathrm{C}$ and potassium carbonate (83.3 g) was added in 3 portions to the stirring solution maintaining the temperature below $25^{\circ} \mathrm{C} .2-\mathrm{MeTHF}(300 \mathrm{~mL})$ was added, and the resulting mixture was stirred at room temperature overnight to allow for enzyme denaturing. The denatured protein solids were then filtered off. The filter cake was washed with 2-MeTHF ($3 \times 50 \mathrm{~mL}$). The two phases of the filtrate were separated, and the aqueous phase was extracted with 2-MeTHF (75 mL). The combined organic layers were then concentrated under reduced pressure to remove isopropylamine to $<0.5 \mathrm{~mol} \%$ with respect to the Cyrene ${ }^{\mathrm{TM}}$ amine. The resulting crude solution was then diluted with $2-\mathrm{MeTHF}$ to a total volume of 200 mL , and the water content (KF) was adjusted to 3-3.6 wt $\%$ by adding water. A solution of para-toluenesulfonic
acid monohydrate ($73.6 \mathrm{~g}, 387 \mathrm{mmol}$, 0.99 equiv) in 2-MeTHF (150 mL) was added dropwise over 4 h at $40^{\circ} \mathrm{C}$, the resulting slurry was cooled to room temperature and aged for 2 h . The solids were filtered, washed with wet $2-\mathrm{MeTHF}$ ($50 \mathrm{~mL}, \mathrm{KF}=2 \mathrm{wt} \%$) followed by dry 2-MeTHF (50 mL), and then dried overnight at $50^{\circ} \mathrm{C}$ under vacuum with nitrogen sweep to yield $\mathbf{3 a} \cdot \mathbf{T s O H}$ as a white solid $(92.1 \mathrm{~g}, 99.4 \mathrm{wt} \%$ purity, $306 \mathrm{mmol}, 79 \%$ yield, $>20: 1$ d.r.).
${ }^{1}$ H NMR (500 MHz, DMSO-d \boldsymbol{d}_{6}) $\delta 8.02(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 7.57-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.13(\mathrm{~m}, 2 \mathrm{H}), 5.40(\mathrm{~s}, 1 \mathrm{H})$, $4.59-4.58(\mathrm{~m}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.17-2.99(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.14$ $-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.35(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}$, DMSO-d \boldsymbol{d}_{6}) $\delta 145.24$ $\left(\mathrm{C}_{\mathrm{q}}\right), 137.94\left(\mathrm{C}_{\mathrm{q}}\right), 128.17(\mathrm{CH}), 125.47(\mathrm{CH}), 98.61(\mathrm{CH}), 73.07(\mathrm{CH}), 66.99\left(\mathrm{CH}_{2}\right), 47.44(\mathrm{CH}), 23.21$ $\left(\mathrm{CH}_{2}\right), 20.78\left(\mathrm{CH}_{3}\right), 18.59\left(\mathrm{CH}_{2}\right) \mathrm{ppm}$. HRMS m/z calc. for $\left[\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{NO}_{2}\right]\left([\mathrm{M}+\mathrm{H}]^{+}\right): 130.0863$, found: 130.0861 .

The relative and absolute stereochemistry of $\mathbf{3 a} \cdot \mathbf{T s O H}$ was confirmed by X-ray crystallography, see Section 6.1.

Boc-3b
tert-Butyl ((1S,4S,5R)-6,8-Dioxabicyclo[3.2.1]octan-4-yl)carbamate (Boc-3b). In a 1 L 3-necked vessel equipped with an overhead stirrer, (4-formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate (PLP) ($600 \mathrm{mg}, 2.4 \mathrm{mmol}, 1.0 \mathrm{~mol} \%$) was dissolved in $0.1 \mathrm{M} \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ buffer (600 mL , pH 9.5) containing 1.50 M isopropylamine ($50 \mathrm{~mL}, 585 \mathrm{mmol}, 2.5$ equiv). ATA-234 ($4.5 \mathrm{~g}, 15 \mathrm{wt} \%$) was then added and dissolved at room temperature. Cyrene ${ }^{\mathrm{TM}}(30 \mathrm{~g}, 234 \mathrm{mmol}, 1.0$ equiv) was added, and the mixture was heated to $45^{\circ} \mathrm{C}$ and agitated for 22 h . During the reaction, vacuum (400 mbar) and nitrogen flow were applied to remove the acetone generated. The stream was then cooled to room temperature and the pH was adjusted to pH 12 using $50 \mathrm{wt} \%$ aqueous NaOH . To remove isopropylamine, the reaction mixture was distilled at 80 mbar and $48^{\circ} \mathrm{C}$ jacket temperature using an air sweep. During the distillation additional $50 \mathrm{wt} \%$ aqueous NaOH was charged to maintain the pH at 12 . THF (200 mL) was charged, and the distillation was continued until isopropylamine was $<0.5 \mathrm{wt} \%$ by ${ }^{1} \mathrm{H}$ NMR. The remaining aqueous solution was filtered over celite to remove the denatured enzyme yielding an aqueous solution of $\mathbf{3 b}$ ($195 \mathrm{mmol}, 83 \%$ assay yield, 5:1 d.r.).
To the aqueous solution at pH 12 was then added to a solution of di-tert-butyl dicarbonate ($\mathrm{Boc}_{2} \mathrm{O}, 51.1 \mathrm{~g}$, $234 \mathrm{mmol}, 1.0$ equiv.) in THF (70 mL) via syringe pump over 40 min upon which the pH dropped to pH 7.55. The pH was adjusted to pH 12 using $50 \mathrm{wt} \%$ aqueous NaOH and the reaction was stirred at room temperature for 22 h . Methyl tert-butyl ether (500 mL) was then charged, and the mixture was stirred for 30 min . The mixture was filtered using methyl tert-butyl ether, the layers of the filtrate were separated, and the aqueous layer was extracted with methyl tert-butyl ether (300 mL). The combined organic layers were washed with $20 \mathrm{wt} \%$ aqueous NaCl solution (300 mL) and then concentrated. The isolated solid was recrystallized twice from methylcyclohexane to yield Boc-3b as a white solid ($32.3 \mathrm{~g}, 141 \mathrm{mmol}, 60 \%$ yield, 44:1 d.r).
${ }^{1}$ H NMR (500 MHz, DMSO- \boldsymbol{d}_{6}) $\delta 6.71(\mathrm{~d}, J=7.5 \mathrm{~Hz}, \mathrm{NH}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 4.47(\mathrm{~s}, 1 \mathrm{H}), 3.76$ (d, $J=7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.61-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.38-3.34(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.47(\mathrm{~m}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H})$ ppm; ${ }^{13}$ C NMR ($\mathbf{1 2 6} \mathbf{~ M H z}$, DMSO- \boldsymbol{d}_{6}) $\left.\delta 154.95(\mathrm{CO}), 101.06,77.77\left(\mathrm{C}_{\left(\mathrm{CH}_{3}\right)}\right)_{3}\right), 72.12,67.51\left(\mathrm{CH}_{2}\right), 50.59$, $28.18\left(\mathrm{CH}_{3}\right), 27.46\left(\mathrm{CH}_{2}\right), 21.42\left(\mathrm{CH}_{2}\right) \mathrm{ppm}$. HRMS m/z calc. for $\left[\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{NO}_{4}\right]\left([\mathrm{M}+\mathrm{H}]^{+}\right): 230.1387$, found: 230.1383.

($1 S, 4 S, 5 R$)-6,8-Dioxabicyclo[3.2.1]octan-4-aminium 4-methylbenzene-1-sulfonate ($\mathbf{3 b} \cdot \mathbf{T s O H}$). Boc-3b ($31.7 \mathrm{~g}, 138 \mathrm{mmol}, 1.0$ equiv) was dissolved in a solution of paratoluenesulfonic acid monohydrate ($79 \mathrm{~g}, 415 \mathrm{mmol}, 3$ equiv) in 2-MeTHF (159 mL) and the reaction was heated to $35^{\circ} \mathrm{C}$ overnight. The resulting slurry was cooled to room temperature and the solids were filtered, washed with 2-MeTHF (100 mL), and then dried under vacuum yielding $\mathbf{3 b} \cdot \mathbf{T s} \mathbf{O H}$ as a white solid $(35.1 \mathrm{~g}$, $99.2 \mathrm{wt} \%$ purity, $116 \mathrm{mmol}, 84 \%$ yield, >20:1 d.r.).
${ }^{1}$ H NMR (500 MHz, DMSO- $\boldsymbol{d}_{\boldsymbol{6}}$) $\delta 7.91(\mathrm{~s}, 3 \mathrm{H}), 7.48(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.39(\mathrm{~s}$, $1 \mathrm{H}), 4.60(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.91-$ $1.74(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.57(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}$, DMSO- \boldsymbol{d}_{6}) $\delta 145.65\left(\mathrm{C}_{\mathrm{q}}\right), 137.62\left(\mathrm{C}_{\mathrm{q}}\right), 128.04$ $(\mathrm{CH}), 125.46(\mathrm{CH}), 98.88(\mathrm{CH}), 72.39(\mathrm{CH}), 67.84\left(\mathrm{CH}_{2}\right), 49.68(\mathrm{CH}), 26.56\left(\mathrm{CH}_{2}\right), 20.76\left(\mathrm{CH}_{3}\right), 20.66$ $\left(\mathrm{CH}_{2}\right) \mathrm{ppm}$. HRMS m/z calc. for $\left[\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{NO}_{2}\right]\left([\mathrm{M}+\mathrm{H}]^{+}\right): 130.0863$, found: 130.0861 .

2.6. Synthesis of Cyrene Amine Salts

3a•HOTf
(1S,4R,5R)-6,8-Dioxabicyclo[3.2.1]octan-4-aminium trifluoromethanesulfonate ($\mathbf{3} \mathbf{a} \cdot \mathbf{H O T f}$). A $9.86 \mathrm{wt} \%$ solution of $\mathbf{3 a}(78.4 \mathrm{~g}, 59.9 \mathrm{mmol}, 1.0$ equiv.) in 2-MeTHF was charged into a 250 mL round bottom flask and then concentrated under vacuum (100150 mbar) at a heating bath temperature of $40^{\circ} \mathrm{C} .2-\mathrm{MeTHF}(50 \mathrm{~mL})$ was added, and the process was repeated to remove water and isopropylamine. The residue was dissolved in dichloromethane (50 mL) and the resulting solution was cooled in an ice bath. A solution of TfOH ($5.3 \mathrm{~mL}, 59.9 \mathrm{mmol}, 1.0$ equiv) in dichloromethane (70 mL) was added slowly via an addition funnel and the mixture was allowed to warm to room temperature overnight. The resulting slurry was filtered under nitrogen atmosphere and the solid was washed with dichloromethane and dried under vacuum to yield 3a-HOTf as a light yellow solid ($16.5 \mathrm{~g}, 98.3 \mathrm{wt} \%$ purity, $58.2 \mathrm{mmol}, 97 \%$ yield, $>20: 1$ d.r.).
${ }^{1}$ H NMR (500 MHz, DMSO- $\boldsymbol{d}_{\boldsymbol{6}}$) $\delta 7.93\left(\mathrm{~s}, \mathrm{NH}_{3}, 3 \mathrm{H}\right), 5.38(\mathrm{~s}, 1 \mathrm{H}), 4.72-4.48(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.77-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.12(\mathrm{~s}, 1 \mathrm{H}), 2.20-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.38(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;$ ${ }^{19}$ F $\left\{{ }^{1} \mathbf{H}\right\}$ NMR (471 MHz, DMSO- $\boldsymbol{d}_{\boldsymbol{6}}$) $\delta-77.74 \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR (126 MHz, DMSO- $\boldsymbol{d}_{\boldsymbol{6}}$) $\delta 120.67$ (q, $J=$ $322.4 \mathrm{~Hz}, \mathrm{CF}_{3}$), 98.60 (C6), 73.07 (C2), 66.99 (C1), 47.39 (C5), 23.21 (C3), 18.60 (C4) ppm.

(1S,4R,5R)-6,8-Dioxabicyclo[3.2.1]octan-4-aminium hydrochloride (3a•HCI). A 250 mL 3 -neck round bottom equipped with an overhead stirrer was charged with a 1.15 M solution of 3a (20 mL , 23 mmol , 1 equiv) in 2-MeTHF. 2-MeTHF (24 mL) was added, and the solution was heated to $50^{\circ} \mathrm{C}$. HCl in cyclopentyl methyl ether $(7.7 \mathrm{ml}, 23.0 \mathrm{mmol}$, 1.0 equiv) was added at $48^{\circ} \mathrm{C}$ over 1 hour. The resulting slurry was cooled to room temperature and aged overnight. The slurry was filtered and the solid was washed with EtOH ($2 \times 10 \mathrm{~mL}$). After drying under vacuum, $\mathbf{3 a \cdot H C l}$ was obtained as a white crystalline solid ($2.89 \mathrm{~g}, 99.8 \mathrm{wt} \%$ purity, $17.4 \mathrm{mmol}, 76 \%$ yield, $>20: 1$ d.r.).
${ }^{1} \mathbf{H}$ NMR (500 MHz, DMSO-d $\mathbf{d}_{\mathbf{6}}$) $\delta 8.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NH}_{3}, 3 \mathrm{H}\right), 5.45(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-3.87$ (m, 1H), 3.77-3.55 (m, 1H), 3.15-2.92 (m, 1H), 2.19-1.89 (m, 2H), 1.69-1.53 (m, 1H), 1.45-1.42 (m, 1H) ppm; ${ }^{13}$ C NMR ($\mathbf{1 2 6} \mathbf{~ M H z , ~ D M S O - d ~} \mathbf{6}$) δ 98.61, 72.99, 66.95, 47.31, 23.25, 18.55 ppm.

$3 a \cdot H B r$
(1S,4R,5R)-6,8-Dioxabicyclo[3.2.1]octan-4-aminium hydrobromide (3a•HBr). A $9.86 \mathrm{wt} \%$ solution of $\mathbf{3 a}(87.9 \mathrm{~g}, 67.1 \mathrm{mmol}, 1.0$ equiv.) in $2-\mathrm{MeTHF}$ was charged into a 250 mL round bottom flask and then concentrated under vacuum (100-150 mbar) at $40^{\circ} \mathrm{C}$. 2-MeTHF (50 mL) was added, and the process was repeated to remove water and isopropylamine. 2-MeTHF (70 mL) was added followed by a slow addition of aqueous HBr ($9.1 \mathrm{~mL}, 81.0 \mathrm{mmol}$, 1.2 equiv.) over $5-10$ minutes at $40^{\circ} \mathrm{C}$. The biphasic mixture was then concentrated at $40^{\circ} \mathrm{C}, 2-\mathrm{MeTHF}(50 \mathrm{~mL})$ was then added, and the process was repeated to remove excess water. The residue was dissolved in 2-MeTHF (50 mL) and heated to $40^{\circ} \mathrm{C}$. Methanol (5 mL) was added and the solution was allowed to cool to room temperature overnight. The resulting slurry was filtered and washed 2-MeTHF ($2 \times 20 \mathrm{~mL}$). The isolated solid was recrystallized from 2-MeTHF (60 mL) and methanol $(6 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$, followed by a recrystallization in methanol $(25 \mathrm{~mL})$ at $60{ }^{\circ} \mathrm{C}$. 2-MeTHF (10 mL) was added at room temperature to improve the recovery. The resulting solid was filtered, washed with 2-MeTHF $(2 \times 20 \mathrm{~mL})$, and dried under vacuum to yield $\mathbf{3 a} \cdot \mathbf{H B r}$ as a white solid ($7.86 \mathrm{~g}, 100 \mathrm{wt} \%$ purity, 37.4 mmol , 56% yield, $>20: 1$ d.r.).
${ }^{1} \mathbf{H}$ NMR (500 MHz, DMSO- $\left.\boldsymbol{d}_{6}\right) \delta 8.09(\mathrm{~s}, 3 \mathrm{H}), 5.42(\mathrm{~s}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=7.3 \mathrm{~Hz}$, $J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.16-3.03(\mathrm{~m}, 1 \mathrm{H}), 2.19-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.49-$ $1.36(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR (126 MHz, DMSO-d \mathbf{d}_{6}) $\delta 98.52,73.02,67.00,47.36,23.24,18.54 \mathrm{ppm}$.

2.7. Synthesis of Bn-3a and Bn-3b

Bn-3a
(1S,4R,5R)-N-benzyl-6,8-Dioxabicyclo[3.2.1]octan-4-amine (Bn-3a). A 250 mL round bottom flask was charged with $\mathbf{3 a} \cdot \mathbf{T s O H}(6.0 \mathrm{~g}, 19.9 \mathrm{mmol}, 1.0$ equiv.) and methanol $(7 \mathrm{~mL})$. Sodium acetate $\left(3.3 \mathrm{~g}, 39.8 \mathrm{mmol}, 2.0\right.$ equiv) and $\mathrm{MgSO}_{4}(1.2 \mathrm{~g}, 10.0 \mathrm{mmol}$, 0.5 equiv) were added under nitrogen atmosphere. Benzaldehyde ($2.0 \mathrm{~mL}, 19.9 \mathrm{mmol}$, 1.0 equiv) was added and the slurry was stirred at room temperature for 1 hour. Sodium cyanoborohydride $\left(2.5 \mathrm{~g}, 39.8 \mathrm{mmol}, 2.0\right.$ equiv) was added in one portion and the reaction was heated to $50^{\circ} \mathrm{C}$ overnight. The cooled reaction was filtered using ethyl acetate and the filtrated was concentrated under vacuum. The resulting residue was dissolved in ethyl acetate (50 mL), washed with water $(50 \mathrm{~mL})$, and then with a 2 M aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution ($2 \times 25 \mathrm{~mL}$). The organic phase was dried over MgSO_{4}, filtered, and concentrated under vacuum. The crude oil was then purified by column chromatography using dichloromethane $/$ methanol to yield Bn-3a as a colorless oil ($3.79 \mathrm{~g}, 96.7 \mathrm{wt} \%$ purity, $16.73 \mathrm{mmol}, 84 \%$ yield, >20:1 d.r.).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{2}$) $\delta 7.37-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 1 \mathrm{H}), 5.34-5.30$ $(\mathrm{s}, 1 \mathrm{H}), 4.42(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.71$ $(\mathrm{ddd}, J=7.0 \mathrm{~Hz}, J=5.2 \mathrm{~Hz}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.63-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{tt}, J=13.4 \mathrm{~Hz}$, $J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.33(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D}_{2} \mathbf{C l}_{2}\right) \delta 141.55$, $128.80,128.55,127.31,103.39,73.82,67.39,55.44,51.62,25.73,20.02 \mathrm{ppm} . \mathbf{L C M S ~ m} / \mathrm{z}$ calc. for $\left[\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{2}\right]\left([\mathrm{M}+\mathrm{H}]^{+}\right): 220.1$, found: 220.2.

Bn-3áTsOH
(1S,4R,5R)-N-benzyl-6,8-Dioxabicyclo[3.2.1]octan-4-aminium 4-methylbenzene-1sulfonate ($\mathbf{B n - 3 a} \cdot \mathbf{T s O H}$). A 500 mL round bottom flask was charged with $\mathbf{3 a} \cdot \mathbf{T s O H}$ $(10.0 \mathrm{~g}, 33.2 \mathrm{mmol}, 1.0$ equiv.) and methanol (120 mL). Sodium acetate (5.4 g , $66.4 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{MgSO}_{4}(2.0 \mathrm{~g}, 16.6 \mathrm{mmol}, 0.5$ equiv) were added under nitrogen atmosphere. Benzaldehyde ($3.4 \mathrm{~mL}, 33.2 \mathrm{mmol}, 1.0$ equiv) was added and the slurry was stirred
at room temperature for 1.5 hours. Sodium cyanoborohydride ($4.2 \mathrm{~g}, 66.4 \mathrm{mmol}, 2.0$ equiv) was added in one portion and the reaction was heated to $50^{\circ} \mathrm{C}$ overnight. The cooled reaction was filtered using ethyl acetate and the filtrated was concentrated under vacuum. The resulting residue was dissolved in ethyl acetate (100 mL), washed with water (50 mL), and then with a 2 M aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution ($2 \times 50 \mathrm{~mL}$). The organic phase was dried over MgSO_{4}, filtered, and concentrated under vacuum. The crude oil was dissolved in 2-MeTHF (15 mL) and a solution of para-toluenesulfonic acid monohydrate ($6.3 \mathrm{~g}, 33.2 \mathrm{mmol}$, 1.0 equiv) in 2-MeTHF (15 mL) was added at room temperature over 30 minutes using an addition funnel. Additional 2-MeTHF (40 mL) was added via the addition funnel and the resulting slurry was stirred overnight at room temperature. The solid was filtered, washed with 2-MeTHF (20 mL , then 30 mL), and dried under vacuum to yield Bn-3a-TsOH as a white solid ($10.2 \mathrm{~g}, 93.1 \mathrm{wt} \%$ purity, $24.3 \mathrm{mmol}, 73 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d \boldsymbol{d}_{6}) $\delta 8.95$ (br s, $\mathrm{NH}_{2}, 2 \mathrm{H}$), 7.56 - 7.50 (m, 2H), $7.50-7.40(\mathrm{~m}, 5 \mathrm{H}), 7.18$ $7.05(\mathrm{~m}, 2 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J$ $=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.68 (ddd, $J=7.0 \mathrm{~Hz}, J=5.1 \mathrm{~Hz}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.09 (br s, 1H), $2.29(\mathrm{~s}, 3 \mathrm{H}), 2.19-2.06$ $(\mathrm{m}, 1 \mathrm{H}), 2.05-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{dd}, J=13.7 \mathrm{~Hz}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR (126 MHz, DMSO- \boldsymbol{d}_{6}) $\delta 145.77\left(\mathrm{C}_{q}\right), 137.54\left(\mathrm{C}_{\mathrm{q}}\right), 131.61\left(\mathrm{C}_{\mathrm{q}}\right), 130.24(\mathrm{CH}), 129.08(\mathrm{CH}), 128.67(\mathrm{CH})$, $128.01(\mathrm{CH}), 125.47(\mathrm{CH}), 97.55(\mathrm{CH}), 73.16(\mathrm{CH}), 67.20\left(\mathrm{CH}_{2}\right), 53.84(\mathrm{CH}), 48.88\left(\mathrm{CH}_{2}\right), 23.32\left(\mathrm{CH}_{2}\right)$, $20.75\left(\mathrm{CH}_{3}\right), 16.78\left(\mathrm{CH}_{2}\right)$ ppm. LCMS m/z calc. for $\left[\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{2}\right]\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 220.1, found: 220.2. HRMS m / z calc. for $\left[\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{2}\right]\left([\mathrm{M}+\mathrm{H}]^{+}\right): 220.1332$, found: 220.1330.

(1S,4S,5R)-N-benzyl-6,8-Dioxabicyclo[3.2.1]octan-4-aminium 4-methylbenzene-1sulfonate ($\mathbf{B n} \mathbf{- 3 b} \cdot \mathbf{T s O H}$). A 500 mL round bottom flask was charged with $\mathbf{3 b} \cdot \mathbf{T s O H}$ $(10.0 \mathrm{~g}, 33.2 \mathrm{mmol}, 1.0$ equiv.) and methanol (120 mL). Sodium acetate $(5.4 \mathrm{~g}$, $66.4 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{MgSO}_{4}(2.0 \mathrm{~g}, 16.6 \mathrm{mmol}$, 0.5 equiv) were added under nitrogen atmosphere. Benzaldehyde ($3.4 \mathrm{~mL}, 33.2 \mathrm{mmol}, 1.0$ equiv) was added and the slurry was stirred at room temperature for 1 hour. Sodium cyanoborohydride ($4.2 \mathrm{~g}, 66.4 \mathrm{mmol}, 2.0$ equiv) was added in one portion and the reaction was heated to $50^{\circ} \mathrm{C}$ overnight. The cooled reaction was filtered using ethyl acetate and the filtrated was concentrated under vacuum. The resulting residue was dissolved in ethyl acetate (100 mL), washed with water (100 mL), and then with a 2 M aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution ($2 \times 50 \mathrm{~mL}$). The organic phase was dried over MgSO_{4}, filtered, and concentrated under vacuum. The crude oil was dissolved in 2MeTHF (15 mL) and a solution of para-toluenesulfonic acid monohydrate ($6.3 \mathrm{~g}, 33.2 \mathrm{mmol}, 1.0$ equiv) in 2-MeTHF (15 mL) was added at room temperature over 30 minutes using an addition funnel. Additional 2MeTHF (40 mL) was added via the addition funnel and the resulting slurry was stirred overnight at room temperature. The solid was filtered, washed with 2-MeTHF ($2 \times 20 \mathrm{~mL}$), and dried under vacuum to yield $\mathbf{B n}-\mathbf{3 b} \cdot \mathbf{T s O H}$ as a white solid $(11.4 \mathrm{~g}, 93.4 \mathrm{wt} \%$ purity, $27.2 \mathrm{mmol}, 82 \%$ yield $)$.
${ }^{1}$ H NMR (500 MHz, DMSO-d \boldsymbol{d}_{6}) $\delta 8.92\left(\mathrm{~d}, \mathrm{~J}=28.2 \mathrm{~Hz}, \mathrm{NH}_{2}, 2 \mathrm{H}\right.$), $7.55-7.38(\mathrm{~m}, 7 \mathrm{H}), 7.11(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.09-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.64(\mathrm{~m}, 3 \mathrm{H})$ ppm; ${ }^{13}$ C NMR ($\mathbf{1 2 6 ~ M H z}$, DMSO- \boldsymbol{d}_{6}) $\delta 145.76\left(\mathrm{C}_{\mathrm{q}}\right), 137.55\left(\mathrm{C}_{\mathrm{q}}\right), 131.73\left(\mathrm{C}_{\mathrm{q}}\right), 130.09(\mathrm{CH}), 129.04(\mathrm{CH})$, $128.68(\mathrm{CH}), 128.01(\mathrm{CH}), 125.47(\mathrm{CH}), 97.85(\mathrm{CH}), 72.60(\mathrm{CH}), 67.97\left(\mathrm{CH}_{2}\right), 56.13(\mathrm{CH}), 47.79\left(\mathrm{CH}_{2}\right)$, $26.62\left(\mathrm{CH}_{2}\right)$, $20.75\left(\mathrm{CH}_{3}\right), 19.02\left(\mathrm{CH}_{2}\right) \mathrm{ppm}$. LCMS m/z calc. for $\left[\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{2}\right]\left([\mathrm{M}+\mathrm{H}]^{+}\right): 220.1$, found: 220.2. HRMS m/z calc. for $\left[\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{2}\right]\left([\mathrm{M}+\mathrm{H}]^{+}\right): ~ 220.1332$, found: 220.1330 .

3. Reductive Acetal Opening

3.1. Reaction Optimization using Bn-3a

General Procedure 2. A tared 4 mL vial equipped with a stir bar was charged with $\mathbf{B n}-\mathbf{3 a}(50 \mathrm{mg}, 225 \mu \mathrm{~mol}$, 1 equiv.) followed by 0.5 mL of the respective solvent under N_{2} atmosphere. The reductant, either triethylsilane ($108 \mu \mathrm{l}, 674 \mu \mathrm{~mol}, 3$ equiv.) or $\mathrm{BH}_{3} \cdot \mathrm{THF}(1.0 \mathrm{M}, 674 \mu \mathrm{l}, 674 \mu \mathrm{~mol}, 3$ equiv), was added followed by the addition of the Lewis or Bronsted Acid such as $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(57 \mu \mathrm{l}, 449 \mu \mathrm{~mol}, 2$ equiv). The vial was then placed into a heating block and heated to $50^{\circ} \mathrm{C}$ for 18 h before it was carefully quenched with methanol ($200 \mu \mathrm{~L}$) and heated again to $50^{\circ} \mathrm{C}$ for 2 hours. The reactions were analyzed by HPLC after diluting a weighed aliquot ($80 \mu \mathrm{~L}$) into a 50 mL volumetric flask using acetonitrile.

Scheme S3. Acetal opening of Bn-3a. For results, see Table 2.

3.2. Solvent Screening using Bn-3a

Microscale high-throughput experimentation was conducted as previously described ${ }^{5}$ in aluminum 96 -well microtiter plates containing $8 \times 30 \mathrm{~mm}$ glass vial inserts in a nitrogen-purged glovebox with $\mathrm{O}_{2}<10 \mathrm{ppm}$.

Survey of Silanes and Solvents for the Ring Opening of Bn-3a.

To each well in a 96 -well plate, $100 \mu \mathrm{~L}$ of a 0.1 M stock solution of $\mathbf{B n}$ - $\mathbf{3 a}$ free base ($2.19 \mathrm{mg}, 10 \mu \mathrm{~mol}$) in 1,2-dichloroethane (DCE) was added followed by removal of the volatiles under a flow of nitrogen. $100 \mu \mathrm{~L}$ of the desired solvent was added to each well, followed by $60 \mu \mathrm{~mol}$ (6 equiv) of the desired silane ($9.58 \mu \mathrm{~L}$ $\mathrm{Et}_{3} \mathrm{SiH}, 12.29 \mu \mathrm{~L}{ }^{i} \mathrm{Pr}_{3} \mathrm{SiH}, 11.07 \mu \mathrm{~L}(\mathrm{EtO})_{3} \mathrm{SiH}, 9.61 \mu \mathrm{~L}(\mathrm{EtO})_{2} \mathrm{MeSiH}, 8.26 \mu \mathrm{~L}(\mathrm{EtO}) \mathrm{Me}_{2} \mathrm{SiH}, 7.40 \mu \mathrm{~L}$ $\mathrm{PhSiH}_{3}, 10.60 \mu \mathrm{~L}$ TMDSO, or $\left.6.66 \mu \mathrm{~L} \mathrm{Me} 2 \mathrm{SiHCl}\right)$ and $7.40 \mu \mathrm{~L}\left(60 \mu \mathrm{~mol}, 6\right.$ equiv.) of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$. The plate was sealed, stirred using magnetic tumble stirring, and heated to $40^{\circ} \mathrm{C}$ overnight (Figure S4).

AY	MeCN	DMSO	DMA	NMP	sulfolane	PC	DME	DCE	2-MeTHF	CPME	PhCF_{3}	PhMe
$\mathrm{Et}_{3} \mathrm{SiH}$	25.7	0.0	0.0	0.0	93.2	28.0	0.6	3.0	0.3	0.7	1.7	1.2
${ }^{\prime} \mathrm{Pr}_{3} \mathrm{SiH}$	12.4	0.5	0.6	0.6	5.1	6.0	0.6	1.0	0.6	0.4	0.5	0.5
(EtO)3SiH	62.7	0.6	1.3	1.0	50.0	44.7	13.8	0.9	1.1	0.6	0.9	0.6
(EtO)2MeSiH	1.1	0.0	0.7	0.0	1.2	1.0	0.0	0.0	0.0	0.0	0.0	0.0
(EtO) $\mathrm{Me}_{2} \mathrm{SiH}$	37.1	0.0	0.0	0.0	30.2	16.2	0.0	0.5	0.0	0.0	0.3	0.3
PhSiH_{3}	23.5	0.0	0.0	0.0	83.4	13.7	0.4	1.2	0.0	0.0	0.0	0.5
TMDSO	22.3	0.6	1.0	0.3	92.2	8.6	1.5	4.9	0.4	0.4	1.9	3.0
$\mathrm{Me}_{2} \mathrm{SiHCl}$	47.1	0.0	1.8	1.8	32.3	42.3	19.2	2.8	10.6	1.7	3.0	1.4

Product d.r.	MeCN	DMSO	DMA	NMP	sulfolane	PC	DME	DCE	2-MeTHF	CPME	PhCF_{3}	PhMe
$\mathrm{Et}_{3} \mathrm{SiH}$	5				599	22						
${ }^{\prime} \mathrm{Pr}_{3} \mathrm{SiH}$	19				2	2						
$(\mathrm{EtO})_{3} \mathrm{SiH}$	121				14	19	91					
$(\mathrm{EtO})_{2} \mathrm{MeSiH}$												
(EtO) $\mathrm{Me}_{2} \mathrm{SiH}$	92				6	5						
PhSiH_{3}	30				542	88						
TMDSO	51				601	56		22				
$\mathrm{Me}_{2} \mathrm{SiHCl}$	6				7	6	0	1	0	0	1	0

Figure S4. Top: Assay yields (AY) as determined by UPLC analysis against an internal standard for the silane and solvent combination tested. Bottom: Bn-1a:Bn-1b ratio as determined by UPLC analysis. MeCN $=$ acetonitrile, DMA $=N, N$-dimethylacetamide, NMP $=N$-methyl-2-pyrrolidone, $\mathrm{PC}=$ propylene carbonate, $\mathrm{DME}=1,2$-dimethoxyethane, $\mathrm{CPME}=$ cyclopentyl methyl ether, $\mathrm{TMDSO}=1,1,3,3-$ tetramethyldisiloxane.

Survey of Cosolvents for the Ring Opening of Bn-3a•TsOH.

To each well in a 96 -well plate, $100 \mu \mathrm{~L}$ of a well-stirred 0.1 M stock slurry of $\mathbf{3 a} \cdot \mathbf{T s O H}(3.91 \mathrm{mg}, 10 \mu \mathrm{~mol})$ in 1,2-dichloroethane (DCE) was added followed by removal of the volatiles under a flow of nitrogen. 10 , 25,50 , or $75 \mu \mathrm{~L}$ of gently warmed sulfolane was added to the desired wells followed by $90,75,50$, or 25 $\mu \mathrm{L}$ of the desired cosolvents. $9.58 \mu \mathrm{~L}$ ($60 \mu \mathrm{~mol}, 6$ equiv.) of $\mathrm{Et}_{3} \mathrm{SiH}$ or $10.60 \mu \mathrm{~L}$ ($60 \mu \mathrm{~mol}, 6$ equiv.) of

[^2]TMDSO was added to the desired wells, followed by $7.40 \mu \mathrm{~L}$ ($60 \mu \mathrm{~mol}, 6$ equiv.) of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ to each well. The plate was sealed, stirred using magnetic tumble stirring, and heated to $40^{\circ} \mathrm{C}$ overnight (Figure S5).

Figure S5. Top: Assay yields (AY) as determined by UPLC analysis against an internal standard for the sulfolane-solvent mixtures tested. Bottom: Bn-1a:Bn-1b ratio as determined by UPLC analysis. DMA = N, N-dimethylacetamide, NMP $=N$-methyl-2-pyrrolidone, $D M E=1,2$-dimethoxyethane, $\mathrm{CPME}=$ cyclopentyl methyl ether, MTBE $=$ methyl tert-butyl ether, $\mathrm{TMDSO}=1,1,3,3$-tetramethyldisiloxane.

3.3. Synthesis and Characterization of $\mathbf{B n}-1 \mathrm{a}$ and $\mathrm{Bn}-1 \mathrm{lb}$

((2S,5R)-5-(benzylamino)tetrahydro-2H-pyran-2-yl)methanol (Bn-1a). Bn-3a $(1.0 \mathrm{~g}, 4.6 \mathrm{mmol}, 1.0$ equiv) was weight into a 100 mL 2 -neck round bottom flask followed by acetonitrile $(10 \mathrm{~mL})$ and $2,2,2$-trifluoroacetic acid $(1.0 \mathrm{~mL}$, 13.8 mmol , 3.0 equiv). $\mathrm{BH}_{3} \cdot \mathrm{THF}(1.0 \mathrm{M}, 13.8 \mathrm{~mL}, 13.8 \mathrm{mmol}, 3.0$ equiv) was added and the mixture was stirred at room temperature until no gas evolution was observed. The reaction was heated to $50^{\circ} \mathrm{C}$ for 6 h . The reaction was quenched via the dropwise addition of methanol ($1.7 \mathrm{~mL}, 41.5 \mathrm{mmol}, 9.0$ equiv) and then stirred for 45 min before allowing the reaction to cool to room temperature (95% assay yield determined by UPLC). The reaction was concentrated to dryness and the residue was dissolved in ethyl acetate (10 mL). The organic layer was washed with $20 \mathrm{wt} \%$ aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (15 mL) and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The aqueous phases were back extracted with ethyl acetate $(10 \mathrm{~mL})$, the combined organic layers were dried over MgSO_{4} and concentrated under vacuum. The crude oil was purified by column chromatography (dichloromethane/methanol 100/1-9/1) yielding Bn-1a as a colorless oil ($824 \mathrm{mg}, 3.7 \mathrm{mmol}, 81 \%$ yield, $>20: 1$ d.r.).
${ }^{1} \mathbf{H}$ NMR ($500 \mathbf{M H z}, \mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{2}$) $\delta 7.32-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{ddd}, J=10.7 \mathrm{~Hz}, J=4.5 \mathrm{~Hz}$, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=11.4 \mathrm{~Hz}, J=3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.43$ (dd, $J=11.4 \mathrm{~Hz}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$), $3.37-3.32(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{t}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{tt}, J=$ $10.5 \mathrm{~Hz}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.21(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR $\left(\mathbf{1 2 6 ~ M H z}, \mathbf{C D}_{2} \mathbf{C l}_{2}\right) \delta 141.50\left(\mathrm{C}_{\mathrm{q}}\right), 128.87(\mathrm{CH}), 128.53(\mathrm{CH}), 127.41(\mathrm{CH}), 78.56(\mathrm{CH}), 72.97\left(\mathrm{CH}_{2}\right)$, $66.32\left(\mathrm{CH}_{2}\right)$, $53.85(\mathrm{CH}), 51.66\left(\mathrm{CH}_{2}\right), 31.20\left(\mathrm{CH}_{2}\right), 27.24\left(\mathrm{CH}_{2}\right) \mathrm{ppm}$. LCMS m$/ \mathrm{z}$ calc. for $\left[\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}_{2}\right]$ ($\left.[\mathrm{M}+\mathrm{H}]^{+}\right): 222.15$, found: 222.2 .

-TsOH Bn-1a•TsOH
((2S,5R)-5-(benzylamino)tetrahydro-2H-pyran-2-yl)methanol 4methylbenzenesulfonate ($\mathbf{B n} \mathbf{- 1 a} \cdot \mathbf{T s O H}$). A 40 mL vial equipped with a stir bar was charged with $\mathbf{B n - 3 a} \cdot \mathbf{T s O H}(1.89 \mathrm{~g}, 4.49 \mathrm{mmol}, 1.00$ equiv), sulfolane $(4.0 \mathrm{~mL})$, anisole $(6.0 \mathrm{~mL})$ and triethylsilane ($3.6 \mathrm{~mL}, 22.5 \mathrm{mmol}, 5.0$ equiv). $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(1.1 \mathrm{~mL}, 9.0 \mathrm{mmol}, 2.0$ equiv) was added and the reaction was heated to $50^{\circ} \mathrm{C}$ for 18 h . Methanol (4 mL) was added carefully, and the mixture was heated to $50^{\circ} \mathrm{C}$ for 2 h . The mixture was then allowed to cool to room temperature overnight. The resulting slurry was filtered and the solid was washed with 2-MeTHF ($4 \mathrm{~mL}, 6 \mathrm{~mL}$, and 2 mL) and dried under vacuum to yield $\mathbf{B n - 1 a} \cdot \mathbf{T s O H}$ as a white solid ($943 \mathrm{mg}, 2.40 \mathrm{mmol}, 53 \%$ yield, $>20: 1$ d.r.).
${ }^{1}$ H NMR (500 MHz, Methanol $\left.^{2} \boldsymbol{d}_{4}\right) \delta 7.70(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-7.46(\mathrm{~m}, 5 \mathrm{H}), 7.23(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 4.28$ (d, $J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.25$ (ddd, $J=10.6 \mathrm{~Hz}, J=4.5 \mathrm{~Hz}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.21$ (d, $J=12.9$ Hz, 1H), 3.55-3.49 (m, 2H), 3.43-3.39 (m, 2H), 3.31-3.26 (m, 1H), 2.40-2.35 (m, 1H), 2.37 (s, 3H), $1.83(\mathrm{dt}, J=13.6 \mathrm{~Hz}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{qd}, J=12.4 \mathrm{~Hz}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.51-1.43(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathbf{C}$ NMR (126 MHz , Methanol- \boldsymbol{d}_{4}) $\delta 143.60\left(\mathrm{C}_{\mathrm{q}}\right), 141.67\left(\mathrm{C}_{\mathrm{q}}\right), 132.60\left(\mathrm{C}_{\mathrm{q}}\right), 130.91(\mathrm{CH}), 130.80(\mathrm{CH})$, $130.39(\mathrm{CH}), 129.81(\mathrm{CH}), 126.97(\mathrm{CH}), 79.51(\mathrm{CH}), 68.18\left(\mathrm{CH}_{2}\right), 65.54\left(\mathrm{CH}_{2}\right), 54.70(\mathrm{CH}), 50.01\left(\mathrm{CH}_{2}\right)$, $27.22\left(\mathrm{CH}_{2}\right), 27.13\left(\mathrm{CH}_{2}\right), 21.29\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. LCMS m/z calc. for $\left[\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}_{2}\right]\left([\mathrm{M}+\mathrm{H}]^{+}\right): 222.2$, found: 222.2. HRMS m/z calc. for $\left[\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}_{2}\right]\left([\mathrm{M}+\mathrm{H}]^{+}\right): ~ 222.1489$, found: 222.1486.

Figure S6. The relative stereochemistry of $\mathbf{B n - 1 a}$ was assigned by rotating-frame nuclear Overhauser effect spectroscopy (ROESY) NMR in methanol- d_{4} at 500 MHz . The key through-space correlations are highlighted.

((2S,5S)-5-(benzylamino)tetrahydro-2H-pyran-2-yl)methanol (Bn-1b). A 100 mL round bottom flask was charged with $\mathbf{B n - 3 b} \cdot \mathbf{T s O H}(1.2 \mathrm{~g}, 2.9 \mathrm{mmol}$, 1.0 equiv) and methanol (10 mL). A $50 \mathrm{wt} \%$ solution of $\mathrm{NaOH}(0.15 \mathrm{~mL}$, $2.9 \mathrm{mmol}, 1.0$ equiv) was added and the mixture was stirred at room temperature for 1 h . The solution was concentrated to dryness, the residue was suspended in 2MeTHF (10 mL), MgSO_{4} was added, and the obtained slurry was filtered. The filtrate was concentrated to dryness to obtain Bn-3b as a crude oil ($647 \mathrm{mg}, 95.1 \mathrm{wt} \%$ purity, $2.8 \mathrm{mmol}, 98 \%$ yield). Bn-3b (621 mg , $2.8 \mathrm{mmol}, 1.0$ equiv) was dissolved in acetonitrile (6 mL) in a 40 mL vial equipped with a stir bar. 2,2,2trifluoroacetic acid ($0.7 \mathrm{~mL}, 8.5 \mathrm{mmol}, 3.0$ equiv) was added followed by $\mathrm{BH}_{3} \cdot \mathrm{THF}(1.0 \mathrm{M}, 8.5 \mathrm{~mL}$, 3.0 equiv) and the mixture was stirred at room temperature until gas evolution subsided. The reaction was heated to $50^{\circ} \mathrm{C}$ for 23 h . The reaction was quenched via the dropwise addition of methanol (1.0 mL , $24.7 \mathrm{mmol}, 8.7$ equiv) and then stirred for 35 minutes before allowing the reaction to cool to room temperature. The reaction was concentrated to dryness and the residue was dissolved in ethyl acetate $(10 \mathrm{~mL})$. The organic layer was washed with $20 \mathrm{wt} \%$ aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (10 mL) and $\mathrm{H}_{2} \mathrm{O}(6 \mathrm{~mL})$. The aqueous phases were back extracted with ethyl acetate ($3 \times 8 \mathrm{~mL}$), the combined organic layers were dried over MgSO_{4} and concentrated under vacuum. The crude oil was purified twice by column chromatography (dichloromethane/methanol $100 / 0-9 / 1$, then $4 \mathrm{vol} \%$ isopropylamine in dichloromethane) yielding $\mathbf{B n}-1 \mathbf{b}$ as a colorless oil (447 mg , $91.1 \mathrm{wt} \%$ purity, $1.9 \mathrm{mmol}, 66 \%$ yield based on $\mathbf{B n}-\mathbf{3 b},>20: 1$ d.r.).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D}_{2} \mathrm{Cl}_{2}$) $\delta 7.37$ - 7.35 (m, 2H), 7.33 - $7.31(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 1 \mathrm{H}), 3.96$ (dt, J $=11.6 \mathrm{~Hz}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 2 \mathrm{H}), 3.56-3.38(\mathrm{~m}, 4 \mathrm{H}), 2.69-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.99-$
$1.94(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.33(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D}_{2} \mathbf{C l}_{\mathbf{2}}\right) \delta 141.33$, $128.65,128.47,127.14,78.73,70.59,66.24,51.22,51.13,27.06,22.61 \mathrm{ppm}$. HRMS m/z calc. for $\left[\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}_{2}\right]\left([\mathrm{M}+\mathrm{H}]^{+}\right): 222.1489$, found: 222.1469 .

Figure S7. The relative stereochemistry of $\mathbf{B n} \mathbf{- 1 b}$ was assigned by nuclear Overhauser effect spectroscopy (NOESY) NMR in methanol- d_{4} at 500 MHz . The key through-space correlations are highlighted.

3.4. Screening of Cyrene Amine Salts

General Procedure 3. A 4 mL vial equipped with a stir bar was charged with the requisite salt of 3a ($664 \mu \mathrm{~mol}, 1.0$ equiv) and suspended in sulfolane (0.4 mL) and anisole (0.6 mL) under N_{2} atmosphere. Triethylsilane ($318 \mu 1,1.99 \mathrm{mmol}, 3.0$ equiv) and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(168 \mu 1,1.33 \mathrm{mmol}, 2.0$ equiv) were then charged and the vial was placed into a heating block and heated to $50^{\circ} \mathrm{C}$ for 18 h before it was carefully quenched with methanol ($400 \mu \mathrm{~L}$) and heated again to $50^{\circ} \mathrm{C}$ for 2 hours. Maleic acid ($664 \mu \mathrm{~mol}, 1.0$ equiv) was then added as an internal standard and the mixture was analyzed by quantitative ${ }^{1} \mathrm{H}$ NMR in methanold_{4}.

Scheme S4. Salt screen of 3a.

Table S3. Results of 3a salt screen.

		Solvent KF $=\mathbf{3 0 0} \mathbf{p p m}$		Solvent KF=1500 ppm	
Entry	3a Salt	$\mathbf{1 a}[\%]$	$\mathbf{1 a}: \mathbf{1 b}$ d.r.	1a [\%]	1a:1b d.r.
1	None	85	$>20: 1$	78	$>20: 1$
$\mathbf{2}$	TsOH	$\mathbf{9 0}$	$>20: 1$	$\mathbf{9 1}$	$>\mathbf{2 0}: \mathbf{1}$
3	TfOH	64	$>20: 1$	54	$18: 1$
4	HCl	81	$>20: 1$	41	$6: 1$
5	HBr	68	$10: 1$	44	$4: 1$

3.5. Synthesis and Characterization of $1 \mathrm{a} \cdot \mathrm{TsOH}$

-TsOH 1a•TsOH
((2S,5R)-5-(aminotetrahydro-2H-pyran-2-yl)methanol
4methylbenzenesulfonate $(\mathbf{1 a} \cdot \mathbf{T s O H})$. A 100 mL jacketed reactor equipped with an overhead stirrer was charged with $\mathbf{3 a} \cdot \mathbf{T s O H}(6.0 \mathrm{~g}, 19.9 \mathrm{mmol}, 1.0$ equiv.) and suspended in sulfolane (12 mL) and anisole (18 mL) under N_{2} atmosphere. Triethylsilane ($16 \mathrm{~mL}, 100 \mathrm{mmol}, 5$ equiv.) and $\mathrm{BF}_{3} . \mathrm{OEt}_{2}(5.1 \mathrm{~mL}, 39.8 \mathrm{mmol}, 2.0$ equiv) were then charged sequentially and the mixture was heated to $40^{\circ} \mathrm{C}$ for 18 hours. The resulting homogenous solution was quenched with methanol (12 mL) at such a rate to maintain the internal temperature below $45^{\circ} \mathrm{C}$ before the subsequent quenched solution was heated to $60^{\circ} \mathrm{C}$ for ca .2 hours. To this mixture was charged crystalline $\mathbf{1 a} \cdot \mathbf{T s O H}(60 \mathrm{mg}, 1 \mathrm{wt} \%$) and the resulting seed bed was aged for $c a$. 1 hour at $60{ }^{\circ} \mathrm{C}$ before being cooled to $20^{\circ} \mathrm{C}$ over 6 hours and then aged a further 18 hours at this temperature. The slurry was filtered, and the wet cake was washed with a solution of 9:1 $\mathrm{v} / \mathrm{v} 2$ MeTHF:methanol ($2 \times 12 \mathrm{~mL}$). The cake was dried under vacuum with an N_{2} sweep for $c a .18$ hours to provide $\mathbf{1 a} \cdot \mathbf{T s O H}$ as a white solid ($4.55 \mathrm{~g}, 15.0 \mathrm{mmol}, 75 \%$ yield, $>20: 1$ d.r.).
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- \boldsymbol{d}_{6}) $\delta 7.85(\mathrm{~s}, 3 \mathrm{H}), 7.50-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.12(\mathrm{~m}, 2 \mathrm{H}), 4.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 3.96 (ddd, $J=10.7 \mathrm{~Hz}, J=4.4 \mathrm{~Hz}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{dd}, J=11.3 \mathrm{~Hz}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J=$
$11.3 \mathrm{~Hz}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.24-3.19(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{t}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~s}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.06-$ $2.01(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{qd}, J=12.6 \mathrm{~Hz}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.34-1.19(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO-d \boldsymbol{d}_{6}) $\delta 145.37\left(\mathrm{C}_{\mathrm{q}}\right), 137.84\left(\mathrm{C}_{\mathrm{q}}\right), 128.13(\mathrm{CH}), 125.46(\mathrm{CH}), 77.80(\mathrm{CH}), 67.61$ $\left(\mathrm{CH}_{2}\right), 63.84\left(\mathrm{CH}_{2}\right), 46.18(\mathrm{CH}), 27.17\left(\mathrm{CH}_{2}\right), 26.06\left(\mathrm{CH}_{2}\right), 20.77\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. HRMS m/z calc. for $\left[\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{NO}_{2}\right]\left([\mathrm{M}+\mathrm{H}]^{+}\right): 132.1019$, found: 132.1017 .

The relative and absolute stereochemistry was confirmed by X-ray crystallography, see Section 6.2.

4. Mechanistic Experiments

4.1. Reaction Profile for the Synthesis of $1 \mathrm{a} \cdot \mathrm{TsOH}$ by ${ }^{1} \mathrm{H}$ NMR Spectroscopy

General Procedure 4. A 1 mL volumetric flask was charged with $\mathbf{3 a} \cdot \mathbf{T s O H}(65 \mathrm{mg}, 0.216 \mathrm{M}, 1.0$ equiv) and octafluoronaphthalene ($30 \mathrm{mg}, 0.4$ equiv), 0.4 mL of a $2: 3\left(\mathrm{v}: \mathrm{v}\right.$) mixture of sulfolane:anisole- d_{8} was added followed by addition of $\mathrm{Et}_{3} \mathrm{SiH}(106 \mu \mathrm{~L}, 3$ equiv). Another 0.2 mL of the solvent mixture was added, followed by $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ ($55 \mu \mathrm{~L}$, 2 equiv). The mixture was diluted up to the 1 mL mark of the volumetric flask using the 2:3 (v:v) sulfolane:anisole- d_{8} mixture. The solution became homogenous after agitation. A 0.6 mL aliquot from this solution was transferred into a 5 mm NMR tube. The NMR tube was capped and sealed using Parafilm M, where the cap and tube meet. The sample was brought out of the N_{2}-filled glovebox for NMR analysis.

Scheme S5. Acetal Opening of $\mathbf{3 a} \cdot \mathbf{T s O H}$.

$3 \mathrm{a} \cdot \mathrm{TsOH}$

$50^{\circ} \mathrm{C}$

Figure S8. Following general procedure 4, temporal concentration profiles monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy for the reaction in Scheme S 5 were recorded. $[\mathbf{3 a} \cdot \mathbf{T s O H}]_{0}=0.216 \mathrm{M}, \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (2 equiv, 0.431 M), $\mathrm{Et}_{3} \mathrm{SiH}$ (3 equiv, 0.656 M), $2: 3(\mathrm{v} / \mathrm{v})$ sulfolane:anisole- d_{8}, and $50^{\circ} \mathrm{C}$.

Figure S9. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the end of the reaction mixture in Scheme S 5 . $[\mathbf{3 a} \cdot \mathbf{T s O H}]_{0}=$ $0.216 \mathrm{M}, \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(2$ equiv, 0.431 M$), \mathrm{Et}_{3} \mathrm{SiH}(3$ equiv, 0.656 M$), 2: 3(\mathrm{v} / \mathrm{v})$ sulfolane:anisole- d_{8} and $50{ }^{\circ} \mathrm{C}$. Octafluoronaphthalene (0.49 equiv) was used as an internal standard (IS) for ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR. The singlet at ca. -176 ppm is identified as $\mathrm{Et}_{3} \mathrm{SiF}$ by ${ }^{19} \mathrm{~F}-{ }^{1} \mathrm{H}$ NMR spectroscopy, with $J_{\text {Si-F }}=288 \mathrm{~Hz}$ (d) and $J_{\text {Si-H }}=6.4 \mathrm{~Hz}$ (hept). The chemical shifts match with commercially available $\mathrm{Et}_{3} \mathrm{SiF}$ (CAS: 358-43-0).

4.2. Identification and Characterization of Diborane by NMR Spectroscopy

Figure S10. Following general procedure 4, temporal concentration profiles monitored by ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy for the reaction in Scheme S 5 were recorded. $[\mathbf{3 a} \cdot \mathbf{T s O H}]_{0}=0.216 \mathrm{M}, \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (2 equiv, 0.431 M), $\mathrm{Et}_{3} \mathrm{SiH}$ (3 equiv, 0.656 M), 2:3 (v/v) sulfolane:anisole- d_{8}, and $50^{\circ} \mathrm{C}$. A known solution of NaBH_{4} in methanol- d_{4} in a capillary was used as an internal standard (IS) for ${ }^{11}$ B NMR. Note: Quantification of boron species is semiquantitative due to a non-flat baseline caused by the probe and tube glass background signal.

All diborane NMR structure elucidation experiments have been performed on a Bruker 600 MHz instrument equipped with a 5 mm Prodigy broadband cryoprobe (LN_{2}-cooled) and an Avance III HD console. All NMR spectra have been acquired at $3^{\circ} \mathrm{C}$ of a sample generated as per general procedure 4 but without substrate $\mathbf{3 a} \cdot \mathbf{T s O H}$. Band-selective ${ }^{1} \mathrm{H}$ decoupling in ${ }^{11} \mathrm{~B}$ spectra has been achieved using a low-power (0.001 W) single-frequency continuous-wave (cw) irradiation.

Figure S11. A. ${ }^{1} \mathrm{H}$ spectrum without ${ }^{11} \mathrm{~B}$ decoupling; resonances at $3.64 \mathrm{ppm}(1: 1: 1: 1$ quartet with $J=$ 132.9 Hz) and -0.73 ppm (very broad peak) are detected. B. ${ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ spectrum; both resonances at 3.64 ppm and -0.73 ppm become singlets.

Figure S12. ${ }^{11}$ B NMR spectra recorded with and without ${ }^{1} \mathrm{H}$ decoupling. A. ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum; the boron resonance of interest is a singlet. \mathbf{B}. ${ }^{11} \mathrm{~B}$ spectrum without ${ }^{1} \mathrm{H}$ decoupling; the boron resonance is a tt with $J_{\mathrm{HB}}=132.5 \mathrm{~Hz}$ and 45.4 Hz . C. ${ }^{11} \mathrm{~B}$ spectrum with band-selective ${ }^{1} \mathrm{H}$ decoupling at -0.73 ppm ; the boron resonance is a triplet with $J_{\mathrm{HB}}=132.5 \mathrm{~Hz}$. D. ${ }^{11} \mathrm{~B}$ spectrum with band-selective ${ }^{1} \mathrm{H}$ decoupling at 3.64 ppm ; the boron resonance is a triplet with $J_{\mathrm{HB}}=45.4 \mathrm{~Hz}$.

Based on the ${ }^{1} \mathrm{H}$ and ${ }^{11} \mathrm{~B}$ peak multiplicity analysis in Figures S 11 and S 12 , as well as the corresponding ${ }^{1} \mathrm{H}$ and ${ }^{11} \mathrm{~B}$ chemical shifts, it was concluded that J_{HB} coupling constants and chemical shifts match those reported in reference 27 of the manuscript for the $\mathrm{B}_{2} \mathrm{H}_{6}$ diborane molecule.

4.3. Delayed Cyrene Amine Addition Experiment

$420 \mu \mathrm{~L}$ of $2: 3(\mathrm{v} / \mathrm{v})$ sulfolane $/$ anisole $-d_{8}, \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(27.3 \mu \mathrm{~L})$, and $\mathrm{Et}_{3} \mathrm{SiH}(52 \mu \mathrm{~L})$ were added to an NMR tube. The solution was heated at $50^{\circ} \mathrm{C}$ and the reaction progress was monitored by NMR spectroscopy over time. Once the formation of $\mathrm{B}_{2} \mathrm{H}_{6}$ was detected by ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (with a characteristic signal around 17 ppm), 3a•TsOH (46.4 mg) was immediately added. The subsequent NMR monitoring revealed immediate product formation.

Figure S13. Reaction profiles monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy for the reductive acetal opening of $\mathbf{3 a} \cdot \mathbf{T s O H}$, with a delayed addition of $\mathbf{3 a \cdot} \cdot \mathbf{T s O H} .[\mathbf{3 a} \cdot \mathbf{T s O H}]=0.216 \mathrm{M},\left[\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}\right]=0.431 \mathrm{M},\left[\mathrm{Et}_{3} \mathrm{SiH}\right]=$ $0.656 \mathrm{M}, 2: 3(\mathrm{v} / \mathrm{v})$ sulfolane:anisole $-d_{8}, 50^{\circ} \mathrm{C}$.

4.3. Dependence of the Induction Period on Water Content

We found that the duration of the induction period increased with increased water content in the reaction mixture (Figure S14A). With the observation of H_{2} generation during the induction period, we thus concluded that residual water is quenched during the induction period via the release of H_{2} before an increase in diborane concentration can be observed. A linear correlation between the water content and the $\mathrm{Et}_{3} \mathrm{SiF}$ concentration at the end of the induction period further suggested that an intermediate species generated from $\mathrm{Et}_{3} \mathrm{SiH}$ and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ is the active species reacting with residual water.

General procedure 4 was followed by adding the corresponding additional amount of water: no additional water (460 ppm), 0.1 equiv (974 ppm water), and 0.2 equiv (1529 ppm).

Figure S14. A. $\mathrm{Et}_{3} \mathrm{SiF}$ and $\mathrm{B}_{2} \mathrm{H}_{6}$ concentration profiles monitored by ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy for the reaction of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.431 \mathrm{M})$ with $\mathrm{Et}_{3} \mathrm{SiH}(0.656 \mathrm{M})$ to probe the water effect $(0$, 0.1 and 0.2 equiv). B. Linear correlation between water equivalents and the concentration of $\mathrm{Et}_{3} \mathrm{SiH}$ at the end of the induction period. Octafluoronaphthalene (0.49 equiv) was used as an internal standard for ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR.

4.4 Importance of Sulfolane for Diborane Formation

Sulfolane appears essential for the productive reaction between $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ and $\mathrm{Et}_{3} \mathrm{SiH}$ to form diborane, which is required for the reductive acetal opening. Strong coordinating solvents such as THF, dioxane and DMSO were shown to suppress the benefit of sulfolane in the acetal opening reaction (Table S4).

Table S4. Solvent effects of the acetal opening of $\mathbf{3 a} \cdot \mathbf{T s O H}$ (see Scheme S5).

Entry	Solvent	$\mathbf{B}_{\mathbf{2}} \mathbf{H}_{\mathbf{6}}$ Formation	$\mathbf{E t}_{\mathbf{3}} \mathbf{S i F}$ Formation	$\mathbf{1 a}$ Formation
1	Anisole	No	No	No
2	Anisole:Sulfolane	Yes	Yes	Yes
3	DCM:Sulfolane	Yes	Yes	Yes
4	DCM	No	No	No
5	THF	No	No	No
6	THF:Sulfolane	No	No	No
7	Dioxane:Sulfolane	No	No	No
8	DMSO	No	No	No
9	DMSO:Sulfolane	No	No	No

${ }^{a}$ Experiments were performed following general procedure 4 using the solvent systems listed.

In non-coordinating solvents such as anisole and dichloromethane, the addition of sulfolane is crucial for reactivity. The formation of $\mathrm{B}_{2} \mathrm{H}_{6}$ from $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ and $\mathrm{Et}_{3} \mathrm{SiH}$ was not feasible in pure anisole and only occurred upon addition of sulfolane.

Delayed Sulfolane Addition Procedure: To a 1 mL volumetric flask was added $\mathrm{Et}_{3} \mathrm{SiH}(106 \mu \mathrm{~L}, 1.5$ equiv), 0.4 mL of anisole- d_{8} was added, followed by $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(55 \mu \mathrm{~L}, 1$ equiv). The mixture was diluted up to 1 mL mark of the volumetric flask using anisole- d_{8}. A 0.5 mL aliquot from this solution was transferred into a 5 mm NMR tube. The NMR tube was capped and sealed using Parafilm M, where the cap and tube meet. The sample was brought out of the N_{2}-filled glovebox for NMR analysis at $50^{\circ} \mathrm{C}$. No diborane formation was observed until upon the later sulfolane addition (0.1 mL).

Figure S15. Temporal concentration profiles monitored by ${ }^{1} \mathrm{H}$ and ${ }^{119} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy for the reaction of $\mathrm{BF}_{3} . \mathrm{OEt}_{2}(0.431 \mathrm{M})$ with $\mathrm{Et}_{3} \mathrm{SiH}(0.656 \mathrm{M})$ in anisole- d_{8} with a late addition of sulfolane.

4.5. Reaction Kinetics - Reaction Rate Dependence on Sulfolane

The ratio between anisole and sulfolane dictates the homogeneity of the final reaction mixture. A high ratio of sulfolane seems to lead to biphasic mixtures due to the low solubility of $\mathrm{Et}_{3} \mathrm{SiH}$ in the mixture.

Table S5. Effect of the solvent ratio on the homogeneity of the reaction mixture.

Entry	Anisole (mL)	Sulfolane (mL)	Notes
1	0.2	0.8	Biphasic (low solubility of Et ${ }_{3} \mathrm{SiH}$)
2	0.4	0.6	Biphasic (low solubility of $\mathrm{Et}_{3} \mathrm{SiH}$)
3	0.6	0.4	homogeneous
4	0.8	0.2	homogeneous
5	0.9	0.1	homogeneous
6	1	0	low solubility of $\mathbf{3 a} \cdot \mathbf{T s O H}$

For homogeneous mixtures (anisole:sulfolane $0.6: 0.4,0.8: 0.2$, and $0.9: 0.1 ; \mathrm{v}: \mathrm{v}$), the acetal opening reaction was performed following general procedure 4 (Scheme S5). The solvent ratio was shown to significantly impact the length of the induction period and the overall conversion rate of $\mathbf{3 a} \cdot \mathbf{T s} \mathbf{O H}$. The induction period increased significantly for lower sulfolane concentrations while the reaction rate for $\mathrm{Et}_{3} \mathrm{SiF}$ formation as well as the conversion of $\mathbf{3 a} \cdot \mathbf{T s O H}$ decreased. These results further corroborate the important role of sulfolane to initiate the formation of diborane and $\mathrm{Et}_{3} \mathrm{SiF}$.

Figure S16. Temporal concentration profiles monitored by ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy for the reaction in Scheme S 5 using different ratios of anisole- d_{8} :sulfolane ($0.6: 0.4,0.8: 0.2$, and $0.9: 0.1 ; \mathrm{v}: \mathrm{v}$). $[\mathbf{3 a} \cdot \mathbf{T s O H}]_{0}=0.216 \mathrm{M}, \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (2 equiv), $\mathrm{Et}_{3} \mathrm{SiH}$ (3 equiv), and $50^{\circ} \mathrm{C}$.

4.6. Reductive Acetal Opening with other Sulfones

General Procedure 6. A 4 mL vial equipped with a stir bar was charged with $\mathbf{3 a} \cdot \mathbf{T s O H}(200 \mathrm{mg}, 664 \mu \mathrm{~mol}$, 1 equiv.) and suspended in the reaction solvent (0.6 mL) under N_{2} atmosphere and the respective sulfone ($4.2 \mathrm{mmol}, 6.3$ equiv) was added followed by triethylsilane ($0.32 \mathrm{~mL}, 1.99 \mathrm{mmol}, 3.00$ equiv) and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ $(0.17 \mathrm{~mL}, 1.33 \mathrm{mmol}, 2.00$ equiv). The reaction vials were then placed into a heating block and heated to $50^{\circ} \mathrm{C}$ for 18 h before it was carefully quenched with methanol $(0.4 \mathrm{~mL})$ and heated again to $50^{\circ} \mathrm{C}$ for 2 hours. $\mathrm{CH}_{2} \mathrm{Br}_{2}(46 \mu \mathrm{~L}, 664 \mu \mathrm{~mol}, 1$ equiv) was then added as an internal standard and the mixture was analyzed by quantitative ${ }^{1} \mathrm{H}$ NMR in methanol $-d_{4}$.

Scheme S6. Acetal opening of $\mathbf{3 a} \cdot \mathbf{T s} \mathbf{O H}$ with different sulfones.

Table S6. Acetal opening of $\mathbf{3 a} \cdot \mathbf{T s O H}$ with different sulfones.

Entry	Sulfone	Solvent	1a [\%]
$\mathbf{1}$	sulfolane	anisole	93
$\mathbf{2}$	${ }^{i} \mathrm{PrSO}_{2} \mathrm{Me}$	anisole	92
$\mathbf{3}$	${ }^{i} \mathrm{Pr}_{2} \mathrm{SO}_{2}{ }^{6}$	anisole	87
$\mathbf{4}$	$\mathrm{Ph}_{2} \mathrm{SO}_{2}{ }^{\text {a }}$	1,2-dichloroethane	20
$\mathbf{5}$	$\mathrm{Tol}_{2} \mathrm{SO}_{2}{ }^{\text {a }}$	1,2-dichloroethane	47

${ }^{a}$ Reactions were performed on a $100 \mathrm{mg}(332 \mu \mathrm{~mol})$ scale.

4.7. Reaction with $\mathrm{BF}_{3} \cdot \mathrm{THF}$

When $\mathrm{BF}_{3} \cdot \mathrm{THF}$ was used instead of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$, the induction period was found to be about 1.7 days long. 90% conversion of $\mathbf{3 a} \cdot \mathbf{T s O H}$ was eventually observed after heating at $50^{\circ} \mathrm{C}$ for 8 days.

Figure S17. Following general procedure 4, temporal concentration profiles were monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy for the reaction in Scheme S 5 using $\mathrm{BF}_{3} \cdot \mathrm{THF}$. $[\mathbf{3} \mathbf{a} \cdot \mathbf{T s O H}]_{0}=0.216 \mathrm{M}, \mathrm{BF}_{3} \cdot \mathrm{THF}$ (2 equiv, 0.431 M), $\mathrm{Et}_{3} \mathrm{SiH}$ (3 equiv, 0.656 M), $2: 3(\mathrm{v} / \mathrm{v})$ sulfolane:anisole- d_{8}, and $50^{\circ} \mathrm{C}$.

[^3]
5. Computational Studies

5.1. Computational Methods

All density functional theory (DFT) calculations were performed using Gaussian 16^{7}. Geometry optimizations and frequency calculations were performed at the M06-2X/6-31+G(d,p) level of theory ${ }^{8,9}$, with the SMD model ${ }^{10}$ to account for solvation effects. Normal vibrational mode analysis confirmed the optimized structures are minima or transition structures. Transition structures are verified by intrinsic reaction coordinate (IRC) calculations. Truhlar's quasiharmonic correction was used to compute molecular entropies to reduce the error caused by the breakdown of the harmonic oscillator approximation, by setting all positive frequencies that are less than $100 \mathrm{~cm}^{-1}$ to $100 \mathrm{~cm}^{-1} .{ }^{11} \mathrm{M} 06-2 \mathrm{X} / 6-311+\mathrm{G}(\mathrm{d}, \mathrm{p})$ single-point energies were computed on the M06-2X-optimized structures. MacroModel ${ }^{12}$ was used to perform conformational searches with the OPLS3e force field. ${ }^{13} 3 \mathrm{D}$ renderings of stationary points were generated using CYLview 1.0^{14} and PyMOL 2.3^{15}.

5.2. Calculated Activation Free Energy Difference for the Reduction of Cyrene ${ }^{\mathbf{T M}}$ with $\mathrm{BH}_{4}{ }^{-}$

Figure S18. Reaction of Cyrene ${ }^{\mathrm{TM}}$ with BH_{4}^{-}.

[^4]
5.3. Calculated Thermodynamics for the Reaction of Cyrene ${ }^{\text {TM }}$ with Isopropylamine

Scheme S7. Calculated thermodynamics for the transamination reaction of Cyrene ${ }^{\mathrm{TM}}$.

5.4. Calculated Solvent-Sulfolane Displacement Equilibria

Figure S19. A. Computed enthalpies and free energies of reaction with BF_{3}. M06-2X/6$311+\mathrm{G}(\mathrm{d}, \mathrm{p}) / \mathrm{SMD}($ anisole) // M06-2X/6-31+G(d,p)/SMD(anisole). Energies are in $\mathrm{kcal} / \mathrm{mol}$.

To understand the solvation effects of this reaction, we computed the reaction equilibria between sulfolane, and each coordinating solvent screened experimentally to BF_{3} (Figure S 19 A). The results show that anisole is the easiest to displace by sulfolane, with a strong energy preference of $4.4 \mathrm{kcal} / \mathrm{mol}$ favoring the sulfolane $-\mathrm{BF}_{3}$ complex. This contrasts with the DMSO equilibrium, which has a $\Delta \mathrm{G}$ of $13.7 \mathrm{kcal} / \mathrm{mol}$ preferring coordination to DMSO. This trend is consistent with the experimental solvent screen (Table S4), where anisole and dichloromethane are the only solvents in which $\mathrm{B}_{2} \mathrm{H}_{6}$ forms in the presence of sulfolane.

Cartesian Coordinates

Sulfolane			H	-0.10003	2.22046	-0.09293	
S	0.76706	0.00000	0.00000	H	-0.44829	1.40742	1.46593
C	-0.44348	1.29841	0.37868	H	-1.83968	0.91965	-1.23028
C	-1.77018	0.75399	-0.14979	H	-2.61017	1.26439	0.32614
C	-1.77017	-0.75400	0.14979	H	-2.61016	-1.26442	-0.32611
C	-0.44347	-1.29840	-0.37872	H	-1.83962	-0.91967	1.23029
O	1.51797	0.35081	-1.21516	H	-0.10000	-2.22046	0.09284
O	1.51791	-0.35082	1.21520	H	-0.44830	-1.40735	-1.46598

BF_{3}-sulfolane				C	-2.74773	-1.10356	-0.25007
B	-1.87323	-0.22466	0.01353	C	-1.39893	-1.29958	0.04378
F	-2.09313	-0.32970	1.37240	C	-0.61616	-0.18372	0.28864
F	-1.22686	-1.35636	-0.47836	C	-1.10693	1.11283	0.25543
F	-2.99269	0.10897	-0.69713	C	-2.45819	1.28980	-0.03992
O	-0.88506	0.97275	-0.19673	H	-4.32513	0.33471	-0.52174
S	0.63689	0.85005	-0.05710	H	-3.38204	-1.96052	-0.45169
O	1.27673	2.15743	0.00049	H	-0.95484	-2.28916	0.07314
C	1.31749	-0.18598	-1.37431	H	-0.45150	1.95761	0.44082
C	1.87541	-1.41917	-0.65215	H	-2.86824	2.29364	-0.07917
C	2.26660	-0.98919	0.77299	H	2.15435	-0.47355	2.07792
C	1.08060	-0.20148	1.33323		ioxane		
H	2.09643	0.43328	-1.82713	B	1.66239	-0.00000	-0.03870
H	0.52477	-0.39039	-2.09504	F	1.88971	0.00008	1.32074
H	2.73469	-1.80756	-1.20138	F	2.08032	1.15114	-0.65731
H	1.10810	-2.19502	-0.60940	F	2.08033	-1.15121	-0.65718
H	3.16178	-0.35896	0.75528	C	-2.02651	1.16276	-0.24322
H	2.46938	-1.85130	1.41064	C	-0.59879	1.20681	0.25355
H	0.22196	-0.83936	1.55745	C	-0.59881	-1.20683	0.25355
H	1.29885	0.45903	2.17471	C	-2.02652	-1.16275	-0.24322
BF_{3}-anisole				H	-2.04188	1.19481	-1.34229
B	1.83807	0.04672	-0.51972	H	-2.56777	2.02780	0.14579
F	1.98426	1.40425	-0.35460	H	-0.54543	1.21297	1.34686
F	1.27690	-0.31215	-1.71220	H	-0.04817	2.04840	-0.16487
F	2.96324	-0.66062	-0.18396	H	-0.04821	-2.04843	-0.16488
O	0.75390	-0.40948	0.58402	H	-0.54545	-1.21299	1.34686
C	1.12130	-0.14912	1.97031	H	-2.04189	-1.19479	-1.34229
H	0.45815	-0.74261	2.59860	H	-2.56780	-2.02778	0.14578
H	1.01900	0.91685	2.17797	O	0.08113	-0.00001	-0.21614
C	-3.27517	0.18702	-0.29027	O	-2.68798	0.00001	0.22143

BF ${ }_{3}$-DMSO				H	-3.53404	-0.85920	0.44728
B	-1.44999	-0.03794	0.03579	H	-3.01945	0.21385	-0.86385
F	-1.70607	-1.02137	-0.91394	H	-2.47214	-1.47988	-0.83356
F	-1.42029	1.22269	-0.57179	C	0.42534	2.35912	0.36350
F	-2.32458	-0.09018	1.09882	H	-0.04325	2.29338	1.34943
O	-0.06316	-0.28586	0.62847	H	0.38543	3.40192	0.03573
S	1.13596	-0.05767	-0.38895	H	1.47311	2.06440	0.44911
C	2.32578	-1.23523	0.23915	H	-1.33424	1.83189	-0.80269
C	1.84910	1.47931	0.19090		HF		
H	3.26808	-1.07335	-0.29002	B	1.35424	0.00651	0.04125
H	1.93983	-2.23246	0.02185	F	1.29236	-0.25056	1.39986
H	2.02119	1.40923	1.26674	F	1.86619	1.25208	-0.23911
H	1.13401	2.26999	-0.04167	F	1.94791	-1.01614	-0.66141
H	2.44354	-1.08561	1.31406	O	-0.12472	0.05159	-0.46938
H	2.78239	1.64673	-0.35261	C	-0.91196	-1.19006	-0.34465
$\mathbf{B F}_{3}$-Et $\mathbf{2}_{2} \mathbf{O} \mathbf{1}$				C	-2.17851	-0.75266	0.36871
B	0.94755	-0.69851	-0.02473	C	-0.92901	1.21749	-0.06734
F	1.82909	-0.20855	-0.95932	H	-0.30517	-1.91123	0.20194
F	0.59725	-2.01499	-0.22712	H	-1.08931	-1.53740	-1.36371
F	1.35017	-0.46130	1.27536	H	-3.02242	-1.39444	0.11025
O	-0.38103	0.11043	-0.25097	H	-2.02995	-0.78041	1.45232
C	-1.50469	-0.22706	0.62189	H	-0.61721	1.49787	0.94207
C	-0.30031	1.51273	-0.65795	H	-0.70229	2.01323	-0.77489
H	-1.69027	0.63900	1.26220	C	-2.35042	0.69189	-0.10911
H	-1.16191	-1.05521	1.24218	H	-2.73803	0.71844	-1.13198
H	0.20636	1.50232	-1.62230	H	-3.00775	1.28039	0.53311
C	-2.70162	-0.60808	-0.21616				

6. X-Ray Crystallography data for $\mathbf{3 a} \cdot \mathbf{T s O H}$ and $1 \mathrm{a} \cdot \mathbf{T s O H}$

6.1. Crystal Data and Structure Refinement for Compound 3a•TsOH (CCDC 2215969)

A single crystal, grown from a water and 2-MeTHF solution, was selected for single crystal X-ray data analysis. The crystal was a colorless rod with dimensions of $0.15 \mathrm{~mm} \times 0.09 \mathrm{~mm} \times 0.09 \mathrm{~mm}$. Data collection was performed on a Bruker Apex II system at 293 K . The unit cell was determined to be orthorhombic in space group $\mathrm{P} 2{ }_{1} 2_{1} 2_{1}$. The structure contained one molecule of para-toluenesulfonic acid and one molecule of $\mathbf{3 a}$ in the crystallographic asymmetric unit.

The absolute configuration was established by anomalous-dispersion effects in diffraction measurements on the crystal and confirmed that the stereochemistry was as shown.
Crystallographic data is summarized in Table S 8 . Figure S 20 shows a thermal ellipsoid representation of Compound 3a•TsOH with thermal ellipsoids set at the 30% probability level. Significant disorder was observed for the oxygens of para-toluenesulfonic acid. Coordinates, refinement details, and structure factors have been deposited with the Cambridge Crystallographic Data Centre (CCDC 2215969).

Figure S20. Thermal ellipsoid representation of Compound $\mathbf{3 a} \cdot \mathbf{T s O H}$ with thermal ellipsoids set at the 30% probability level. Disorder in the para-toluenesulfonic acid was removed for clarity.

Table S7. Crystal data and structure refinement for Compound 3a•TsOH [CCDC 2215969].

Identification code	mdp019
Empirical formula	$\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{5} \mathrm{~S}$
Formula weight	301.35
Temperature	293(2) K
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54178)$
Crystal system	orthorhombic
Space group	$\mathrm{P} 2_{12} 2_{1}{ }_{1}$
Unit Cell Dimensions	$a=6.1009(3) \AA \quad \alpha=90^{\circ}$
	$\mathrm{b}=12.5179(6) \AA \quad \beta=90^{\circ}$
	$\mathrm{c}=19.3009(11) \AA \quad \gamma=90^{\circ}$
Volume	1474.02(13) $\left(\AA^{3}\right)$
Z	4
Density	$1.358\left(\mathrm{~g} / \mathrm{cm}^{3}\right)$
Absorption coefficient	$2.129 \mathrm{~mm}^{-1}$
F(000)	640.0
Crystal size	$0.15 \times 0.09 \times 0.09 \mathrm{~mm}^{3}$
2Θ range for data collection	8.418° to 133.232°
Index ranges	$-5 \leq h \leq 7,-14 \leq \mathrm{k} \leq 14,-22 \leq 1 \leq 22$
Reflections collected	9588
Independent reflections	$2602\left[\mathrm{R}_{\text {int }}=0.0306, \mathrm{R}_{\text {sigma }}=0.0291\right]$
Completeness to $\Theta=66.616^{\circ}$	0.999
Absorption correction	multi-scan
Max. and min. transmission	0.7528 and 0.6754
Refinement Method	Full-matrix least-squares on F^{2}
Data/restraints/parameters	2602/0/211
Goodness-of-fit on $\mathbf{F}^{\mathbf{2}}$	1.077
Final R indexes [$\mathrm{I}>=\mathbf{2} \boldsymbol{\sigma}$ (I)]	$\mathrm{R}_{1}=0.0431, \mathrm{wR}_{2}=0.1072$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0479, \mathrm{wR}_{2}=0.1108$
Flack parameter	0.064(11)
Largest diff. peak/hole	0.24/-0.28 e \AA^{-3}

6.2. Crystal Data and Structure Refinement for Compound 1a•TsOH (CCDC 2215968)

A single crystal, grown from a saturated solution of acetonitrile and water, was selected for single crystal X-ray data analysis. The crystal was a colorless irregular shape with dimensions of $0.1 \mathrm{~mm} \times 0.09 \mathrm{~mm} x$ 0.09 mm . Data collection was performed on a Bruker Apex II system at 100 K . The unit cell was determined to be orthorhombic in space group $\mathrm{P} 2_{12} 2_{2}$. The structure contains one molecule 1a, one molecule of paratoluenesulfonic acid, and two water molecules in the crystallographic asymmetric unit.

The absolute configuration was established by anomalous-dispersion effects in diffraction measurements on the crystal and confirmed that the stereochemistry was as shown.
Crystallographic data is summarized in Table S9. Figure S21 shows a thermal ellipsoid representation of Compound $1 \mathbf{a} \cdot \mathbf{T s O H}$ with thermal ellipsoids set at the 30% probability level. Coordinates, refinement details, and structure factors have been deposited with the Cambridge Crystallographic Data Centre (CCDC 2215968).

Figure S21. Thermal ellipsoid representation of Compound $\mathbf{1 a} \cdot \mathbf{T s O H}$ with thermal ellipsoids set at the 30% probability level.

Table S8. Crystal data and structure refinement for $\mathbf{1 a} \cdot \mathbf{T s O H}$ [CCDC 2215968].

Identification code	mdq012
Empirical formula	$\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{NO}_{7} \mathrm{~S}$
Formula weight	339.40
Temperature	296.15 K
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$
Crystal system	orthorhombic
Space group	$\mathrm{P} 2_{12} 2_{1}{ }_{1}$
Unit Cell Dimensions	$\mathrm{a}=7.9459(9) \AA \quad \alpha=90^{\circ}$
	$b=13.5525(12) \AA \quad \beta=90^{\circ}$
	$\mathrm{c}=15.5352(9) \AA \quad \gamma=90^{\circ}$
Volume	1672.9(3) (\AA^{3})
Z	4
Density	$1.348\left(\mathrm{~g} / \mathrm{cm}^{3}\right)$
Absorption coefficient	$2.022 \mathrm{~mm}^{-1}$
F(000)	728.0
Crystal size	$0.1 \times 0.09 \times 0.09 \mathrm{~mm}^{3}$
2Θ range for data collection	8.658° to 133.028°
Index ranges	$-9 \leq \mathrm{h} \leq 9,-16 \leq \mathrm{k} \leq 13,-18 \leq 1 \leq 9$
Reflections collected	9594
Independent reflections	$2943\left[\mathrm{R}_{\text {int }}=0.0435, \mathrm{R}_{\text {sigma }}=0.0440\right]$
Completeness to $\Theta=66.514^{\circ}$	1.000
Absorption correction	multi-scan
Max. and min. transmission	0.7528 and 0.6738
Refinement Method	Full-matrix least-squares on F^{2}
Data/restraints/parameters	2943/0/293
Goodness-of-fit on $\mathbf{F}^{\mathbf{2}}$	1.068
Final R indexes [$1>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0311, \mathrm{wR}_{2}=0.0810$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0334, \mathrm{wR}_{2}=0.0831$
Flack parameter	0.031(12)
Largest diff. peak/hole	0.23/-0.17 e \AA^{-3}

7. NMR Spectra

${ }^{1} \mathrm{H}$ NMR at 500 MHz of 3a•HOTs in DMSO- d_{6} :

${ }^{13} \mathrm{C}$ NMR at 126 MHz of 3a•HOTs in DMSO- d_{6} :

| 00 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80
 $f 1(\mathrm{ppm})$ | 70 | 60 | 50 | 40 | 30 | 20 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

${ }^{1} \mathrm{H}$ NMR at 500 MHz of Boc-3b in DMSO- d_{6} :

${ }^{13} \mathrm{C}$ NMR at 126 MHz of Boc-3b in DMSO- d_{6} :

${ }^{1} \mathrm{H}$ NMR at 500 MHz of $\mathbf{3 b} \cdot \mathrm{HOTs}$ in DMSO- \boldsymbol{d}_{6} :

${ }^{13}$ C NMR at 126 MHz of $\mathbf{3 b} \cdot$ HOTs in DMSO- \boldsymbol{d}_{6} :

${ }^{1} \mathrm{H}$ NMR at 500 MHz of $\mathrm{Bn}-3 \mathrm{a}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$:

${ }^{13} \mathrm{C}$ NMR at 126 MHz of $\mathrm{Bn}-3 \mathrm{a}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$:

${ }^{1}$ H NMR at 500 MHz of $\mathbf{B n}-\mathbf{3 a} \cdot \mathrm{HOTs}$ in DMSO- \boldsymbol{d}_{6} :

${ }^{13} \mathrm{C}$ NMR at 126 MHz of Bn-3a-HOTs in DMSO- d_{6} :

${ }^{1}$ H NMR at 500 MHz of $\mathbf{B n}-\mathbf{3 b} \cdot \mathrm{HOTs}_{\mathrm{H}}$ in DMSO- d_{6} :

${ }^{13}$ C NMR at 126 MHz of $\mathbf{B n}-\mathbf{3 b} \cdot \mathrm{HOTs}$ in DMSO- d_{6} :

[^5]${ }^{1} \mathrm{H}$ NMR at 500 MHz of $\mathbf{3 a} \cdot \mathrm{HOTf}$ in DMSO- d_{6} :

${ }^{13} \mathrm{C}$ NMR at 126 MHz of $3 \mathrm{a} \cdot \mathrm{HOTf}$ in DMSO- d_{6} :

${ }^{19} \mathrm{~F}$ NMR at 471 MHz of $\mathbf{3 a} \cdot \mathrm{HOTf}$ in DMSO- \boldsymbol{d}_{6} :

${ }^{1} \mathrm{H}$ NMR at 500 MHz of $\mathbf{3 a} \cdot \mathbf{H C l}$ in DMSO- d_{6} :

${ }^{13} \mathrm{C}$ NMR at 126 MHz of $\mathbf{3 a} \cdot \mathrm{HCl}$ in DMSO- d_{6} :

${ }^{1} \mathrm{H}$ NMR at 500 MHz of $\mathbf{3 a} \cdot \mathbf{H B r}$ in DMSO- \boldsymbol{d}_{6} :

${ }^{13} \mathrm{C}$ NMR at 126 MHz of $3 \mathrm{a} \cdot \mathrm{HBr}$ in DMSO- d_{6} :

$\begin{aligned} & \text { N } \\ & \infty \\ & \infty \\ & \hline \end{aligned}$	$\xrightarrow[\sim]{\text { O}}$	8	$\stackrel{ֻ}{\stackrel{N}{\top}}$	$\begin{aligned} & \text { O} \\ & 0 \\ & 0 \\ & \sum_{0}^{n} \\ & N \\ & \text { N } \\ & \text { N } \end{aligned}$	$\stackrel{\text { N }}{\substack{\text { N }}}$

${ }^{1}$ H NMR at 500 MHz of $\mathbf{4}$ in $\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}$: (contains Cyrene ${ }^{\mathrm{TM}}$)

${ }^{13}$ C NMR at 126 MHz of 4 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$: (contains Cyrene ${ }^{\mathrm{TM}}$)

${ }^{1} \mathrm{H}$ NMR at 500 MHz of $\mathrm{Bn}-1 \mathrm{a} \cdot \mathrm{in} \mathrm{CD}_{2} \mathrm{Cl}_{2}$:

${ }^{13} \mathrm{C}$ NMR at 126 MHz of $\mathbf{B n - 1 a}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$:

${ }^{1} \mathrm{H}$ NMR at 500 MHz of $\mathrm{Bn}-\mathbf{1 a} \cdot \mathrm{Ts} \mathrm{OH} \cdot \mathrm{in}^{2}$ methanol- \boldsymbol{d}_{4} :

${ }^{13} \mathrm{C}$ NMR at 126 MHz of $\mathrm{Bn}-\mathbf{1 a} \cdot \mathbf{T s O H}$ in methanol- d_{4} :

${ }^{1} \mathrm{H}$ NMR at 500 MHz of $\mathbf{B n}-\mathbf{1 b} \cdot$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$:

${ }^{13} \mathrm{C}$ NMR at 126 MHz of $\mathrm{Bn}-1 \mathrm{~b}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$:

${ }^{1} \mathrm{H}$ NMR at 500 MHz of $\mathbf{1 a} \cdot \mathbf{T s O H}$ in DMSO- d_{6} :

${ }^{13} \mathrm{C}$ NMR at 126 MHz of $1 \mathrm{a} \cdot$ TsOH in DMSO- d_{6} :

[^6]
[^0]: ${ }^{1}$ Fulmer, G. R.; Miller, A. J. M. Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M. Bercaw, J. E.; Goldberg, K. I. Organometallics 2010, 29, 2176-2179.

[^1]: ${ }^{2}$ Limanto, J. et al. Org. Lett. 2014, 16, 2716-2719.
 ${ }^{3}$ Yasuda, N. et al. Org. Process Res. Dev. 2017, 21, 1851-1858.
 ${ }^{4}$ Savile, C. K. et al. Science 2010, 329, 305-309.

[^2]: ${ }^{5}$ Shevlin, M. Practical High-Throughput Experimentation for Chemists. ACS Med. Chem. Lett. 2017, 8, 601-607.

[^3]: ${ }^{6}{ }^{i} \mathrm{Pr}_{2} \mathrm{SO}_{2}$ was synthesized following a literature procedure: Balicki, R. Synth. Commun. 1999, 29, 2235-2239.

[^4]: ${ }^{7}$ Gaussian 16, Revision C.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., J.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.
 ${ }^{8}$ Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.
 ${ }^{9}$ Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157.
 ${ }^{10}$ Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378.
 ${ }^{11}$ Zhao, Y.; Truhlar, D. G. Phys. Chem. Chem. Phys. 2008, 10, 2813.
 ${ }^{12}$ Schrödinger Release 2019-3: MacroModel, Schrödinger, LLC, New York, NY, 2019.
 ${ }^{13}$ Roos, K.; Wu, C.; Damm, W.; Reboul, M.; Stevenson, J. M.; Lu, C.; Dahlgren, M. K.; Mondal, S.; Chen, W.; Wang, L.; Abel, R.; Friesner, R. A.; Harder, E. D. J. Chem. Theory Comput. 2019, 1863-1874.
 ${ }^{14}$ Legault, C. Y. CYLview, version 1.0b; Université de Sherbrooke: Quebec, Canada, 2009; http://www.cylview.org.
 ${ }^{15}$ The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC.

[^5]:

[^6]:

