Electronic Supplementary Information for

Coordination Assembly Enables Highly Selective Catalytic Hydroaminomethylation of Olefins

Chun Qian,^a Qingshu Zheng,^a Jie Chen,^a Bo Tu,^{a,*} and Tao Tu^{a,b,c*}

- ^a Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
- ^b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China

*Email: taotu@fudan.edu.cn and botu@fudan.edu.cn

Table of Contents

1. General
2. Synthesis of catalysts and substrates4
3. Optimization of reaction conditions9
4. General procedure for the hydroaminomethylation of olefins11
5. SEM, TEM, EDX & HAADF-STEM images of coordination assemblies30
6. XPS, PXRD, Solid-state ¹³ C NMR, FT-IR, TG & N ₂ sorption studies35
7. XANES, k ² -weighted EXAFS& Gel permeation chromatography studies46
8. Gel permeation chromatography (GPC) Study49
9. Metal-leaching tests with ICP-AES50
10. ¹ H, ¹³ C and ¹⁹ F NMR spectra52
11. High-resolution mass spectra123
12. Crystallography125
13. The calculated steric bulkiness of oligomer analogues169
14. References

1. General

All commercial reagents were used directly without further purification, unless otherwise stated. Dry N,N-dimethylformamide (DMF) was purchased from Alfa Aesar, stored over 4 Å molecular sieves, and handled under N₂ atmosphere. All reaction vials were purchased from Beijing Synthware Glass. CDCl₃ was purchased from Cambridge Isotope Laboratories. ¹H, ¹³C and ¹⁹F NMR spectra were recorded on Jeol ECA-400 and Bruker 400 DRX spectrometers. The chemical shifts (δ) for ¹H NMR are given in parts per million (ppm) referenced to the residual proton signal of the deuterated solvent (CHCl₃ at δ 7.26 ppm); coupling constants are expressed in hertz (Hz). ¹³C NMR spectra were referenced to the carbon signal of $CDCl_3$ (77.0 ppm). The following abbreviations are used to describe NMR signals: s =singlet, d = doublet, t = triplet, m = multiplet, dd = doublet of doublets, q = quartet. ESI-MS spectra were recorded on a Bruker microTOF II instrument. IR spectra were recorded on AVATAR FT-IR 360 instrument. Powder XRD studies were performed on a Bruker AXS D8. SEM experiments were carried out on a Philips XL30 microscope operated at 20 kV. TEM experiments were carried out on a JEOL JEM-2010 transmission electron microscope. The AC-HAADF-STEM images was collected on a JEOL JEM-ARM200F operated at 300 kV, with a guaranteed resolution of 80 pm. The X-ray photoemission spectroscopy (XPS) was performed in a PHI 5000C ESCA system. BET experiments were performed on a Quantachrome AUTOSORB-IQ. TGA were performed on a TA SDT Q600. The X-ray absorption spectra including X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) at the K-edge of Rh of the samples were collected at the BL 14W1 of Shanghai Synchrotron Radiation Facility (SSRF), China.

2. Synthesis of catalysts and substrates

2.1 Synthesis of NHC-Rh complexes

Fig. S1. Synthesis of mono-NHC-Rh complex 1

Slat **S3** was synthesized according to the literature reports ¹.

S3 (brown solid, 73 % yield).¹**H NMR** (400 MHz, DMSO-*d*₆) δ 9.73 (s, 1H), 8.85 (d, *J* = 1.7 Hz, 2H), 8.56 (d, *J* = 1.6 Hz, 2H), 8.29 (s, 2H), 4.70 (s, 6H), 1.61 (s, 18H) ppm;

¹⁹**F NMR** (376 MHz, DMSO- d_6) δ = -148.27 ppm.

Synthesis of mono-NHC-Rh complex 1: A Schlenk tube was charged with salt **S3** (178.7 mg, 0.380 mmol), KO'Bu (47.0 mg, 0.419 mmol), [Rh(COD)Cl]₂ (93.8 mg, 0.190 mmol), THF (3 mL) and stirred for 12 hours at ambient temperature under nitrogen atmosphere. After reaction completion, solvent was removed under vacuum, and the residue was purified over flash chromatography on silica gel (CH₂Cl₂/methanol = 800:1) to obtain yellow solid (212.4 mg, 89% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 8.82 (d, *J* = 1.8 Hz, 2H), 8.18 (d, *J* = 1.7 Hz, 2H), 8.04 (s, 2H), 5.25-5.20 (m, 2H), 5.12 (s, 6H), 3.50 (t, *J* = 4.3 Hz, 2H), 2.61-2.50 (m, 4H), 2.11-2.01 (m, 4H), 1.61 (s, 18H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 190.4 (d, *J* = 51.4 Hz), 190.1, 148.7, 131.7, 129.3, 128.2, 122.0, 121.1, 120.8, 116.0, 99.4, 99.3, 68.7, 68.5, 40.2, 35.4, 33.0, 31.9, 29.0 ppm;

HR-MS (ESI/TOF) m/z: Calcd. for C₃₅H₄₂N₂Rh 593.2403; Found: 593.2422.

Fig. S2. Synthesis of bis-NHC-Rh complexes 2

Synthesis of bis-NHC-Rh complex **2**: A Schlenk tube was charged with salt **S1** (184 mg, 1 mmol), $[Rh(COD)Cl]_2$ (123 mg, 0.25 mmol), NaH (60%, 52 mg ,1.3 mmol), dry THF (10 mL) and stirred for 12 hours at ambient temperature under nitrogen atmosphere. After reaction completion, solvent was removed under vacuum, and the residue was purified over flash chromatography on silica gel using CH₂Cl₂/methanol (100:1) mixture as eluent to obtain yellow solid (55 mg, 45% yield). ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.26 (s, 4H), 4.18 (s, 4H), 3.94 (s, 12H), 2.41 (d, *J* = 10.1 Hz, 4H), 2.10 (q, *J* = 7.6

Hz, 4H) ppm;

¹³C NMR (101 MHz, DMSO-*d*₆) δ 180.2 (d, *J* = 53.9 Hz), 123.6, 88.4, 88.3, 38.3, 30.8 ppm;

¹⁹**F NMR** (376 MHz, DMSO-*d*₆) δ = -148.26 ppm;

HR-MS (ESI/TOF) m/z: Calcd. for C₁₈H₂₈N₄Rh 403.1369; Found: 403.1367.

Fig. S3. Synthesis of bis-NHC-Rh complex 3

Synthesis of bis-NHC-Rh complex **3:** A Schlenk tube using salt **S2** (234 mg, 1 mmol), $[Rh(COD)Cl]_2$ (123 mg, 0.25 mmol), NaH (60%, 52 mg, 1.3 mmol), dry THF (10 mL) and stirred for 12 hours at ambient temperature under nitrogen atmosphere. After reaction completion, solvent was removed under vacuum, and the residue was purified over flash chromatography on silica gel using CH₂Cl₂/methanol (80:1) mixture as eluent to obtain yellow solid (102 mg, 69% yield).

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.54 (dd, *J* = 6.0, 3.1 Hz, 4H), 7.28 (dd, *J* = 6.1, 3.1 Hz, 4H), 4.48 (s, 4H), 4.29 (s, 12H), 2.62-2.54 (m, 4H), 2.26 (d, *J* = 8.6 Hz, 4H) ppm;

¹³C NMR (101 MHz, DMSO-*d*₆) δ 193.6 (d, *J* = 53.9 Hz), 135.3, 123.0, 110.7, 91.0, 55.4, 36.0, 30.8 ppm;

¹⁹**F NMR** (376 MHz, DMSO- d_6) δ = -148.32 ppm;

HR-MS (ESI/TOF) m/z: Calcd. for C₂₆H₃₂N₄Rh 503.1682; Found: 503.1677.

Fig. S4. Synthesis of bis-NHC-Rh complex 4a.

Synthesis of bis-NHC-Rh complex **4a**: A Schlenk tube using salt **S3** (470 mg, 1 mmol), $[Rh(acac)(CO)_2]$ (65 mg, 0.25 mmol), NaH (60%, 52 mg, 1.3 mmol), dry THF (10 mL) and stirred for 12 hours at ambient temperature under nitrogen atmosphere. After reaction completion, solvent was removed under vacuum, and the residue was purified over flash chromatography on silica gel using CH₂Cl₂/methanol (80:1) mixture as eluent to obtain yellow solid (159 mg, 63% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 8.87 (s, 4H), 8.22 (s, 4H), 8.03 (s, 4H), 4.96 (s, 12H), 1.58 (s, 36H) ppm; ¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 180.3 (*d*, *J* = 15.2 Hz), 171.9, 149.3, 131.7, 129.7, 128.7, 123.6, 120.9,

120.7, 117.4, 41.3, 35.7, 32.0 ppm;

¹⁹**F NMR** (376 MHz, CDCl₃) δ = -152.33 ppm;

Fig. S5. Synthesis of bis-NHC-Rh complex 4b.

Synthesis of bis-NHC-Rh complex **4b**: A Schlenk tube using salt **S3** (470 mg, 1 mmol), $[Rh(COD)Cl]_2$ (123 mg, 0.25 mmol), NaH (60%, 52 mg, 1.3 mmol), dry THF (10 mL) and stirred for 12 hours at ambient temperature under nitrogen atmosphere. After reaction completion, solvent was removed under vacuum, and the residue was purified over flash chromatography on silica gel using CH₂Cl₂/methanol (80:1) mixture as eluent to obtain yellow solid (185 mg, 76% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 8.91 (d, *J* = 1.7 Hz, 4H), 8.17 (d, *J* = 1.6 Hz, 4H), 7.99 (s, 4H), 5.25 (s, 12H), 4.60 (s, 4H), 2.79 (d, *J* = 10.4 Hz, 4H), 2.30 (d, *J* = 8.9 Hz, 4H), 1.62 (s, 36H) ppm;

¹³**C NMR** (101 MHz, CDCl₃) δ 188.0 (d, *J* = 55.1 Hz), 149.2, 131.6, 129.6, 128.1, 122.6, 120.9, 120.7, 116.3, 91.1, 91.0, 41.7, 35.4, 31.8, 30.8 ppm;

¹⁹**F NMR** (376 MHz, CDCl₃) δ = -153.21 ppm;

HR-MS (ESI/TOF) m/z: Calcd. for C₆₂H₇₂N₄Rh 975.4812; Found: 975.4841.

2.2 General synthetic procedure of NHC-Rh coordination assemblies

Fig. S6. General synthetic procedure of NHC-Rh coordination assemblies.

Bis-imidazolium salts S5, S6a were synthesized according to the literature reports ².

S5 (brown solid, 84 % yield). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.89 (s, 2H), 8.80 (s, 2H), 4.18 (s, 12H)

ppm.

S6a (brown solid, 63 % yield). ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 9.83 (s, 2H), 9.03 (s, 4H), 4.74 (s, 12H), 1.67 (s, 18H) ppm.

S6b: A Schlenk tube was charged with **S6a** (184 mg, 0.26 mmol), triethyloxonium tetrafluoroborate (117 mg, 1.04 mmol), dry CH_2Cl_2 (5 mL), and stirred at ambient temperature for 12 hours, methanol (3 mL) was then added. The resulting reaction mixture was stirred for an additional hour and then poured into excess diethyl ether (50 mL). After precipitation completed, the solids were collected via filtration and dried under reduced pressure to afford the desired salts as a white powder in 94% yield.

¹H NMR (400 MHz, DMSO-*d*₆) δ 9.88 (s, 2H), 9.04 (s, 4H), 4.77 (s, 12H), 1.69 (s, 18H) ppm₅

¹³C NMR (101 MHz, DMSO- d_6) δ = 150.8, 143.6, 127.5, 121.4, 120.4, 118.9, 54.8, 36.1, 31.6 ppm;

¹⁹**F NMR** (376 MHz, DMSO- d_6) δ = -148.29 ppm.

Salt **S6c**: To a solution of salt **S6a** (184 mg, 0.26 mmol) in 5 mL H_2O was added KPF₆ (191 mg, 1.04 mmol) and reaction mixture was stirred for 3 hours at ambient temperature. After precipitation completed, the solids were collected via filtration and dried under reduced pressure to afford the desired salts as a white powder, 86% yield.

¹H NMR (400 MHz, DMSO-*d*₆) δ 9.88 (s, 2H), 9.04 (s, 4H), 4.77 (s, 12H), 1.69 (s, 18H) ppm;

¹⁹**F NMR** (376 MHz, DMSO-*d*₆) δ = -69.21, -71.11 ppm.

NHC-Rh coordination assemblies **5 and 6a-6c**: bis-imidazolium salts **S5** or **S6a-6c** (0.5 mmol) and corresponding rhodium precursor ([Rh(acac)(CO)₂] (0.5 mmol) or [Rh(COD)Cl]₂ (0.25 mmol) were dissolved in DMF (5 mL) under N₂ at room temperature, LiHMDS (1 mmol) solution in THF was added dropwise. The resulting mixture was stirred at 80 °C for 24 h. After cooling to room temperature, the precipitate was washed by DMF, deionized water and methanol successively. Further purification of the solid was carried out by Soxhlet extraction from methanol for 48 h. The product was dried in vacuum for 24 h at 60 °C to give dark-brown solid.

NHC-Rh coordination assembly 5: dark-brown solid, 99% yield;

IR (KBr pellet) v 446.75, 662.39, 745.33, 828.32, 867.96, 1104.61, 1256.68, 1384.47, 1463.08, 1589.98, 1655.98, 1947.24, 2929.90, 3396.47 cm⁻¹;

Elemental analysis (%) Calcd. for (C₂₀H₂₆BF₄N₄Rh)_n: C, 46.90; H, 5.12; N, 10.94; found: C, 46.75; H, 5.31; N, 10.81.

NHC-Rh coordination assembly 6a: dark-brown solid, 92% yield;

IR (KBr pellet) v 440.98, 660.64, 726.70, 747.54, 812.93, 844.41, 862.07, 923.34, 1092.44, 1246.78, 1371.43, 1472.66, 1613.14, 1663.55, 1965.51, 2121.69, 2954.90, 3416.58 cm⁻¹;

Elemental analysis (%) Calcd. for (C₃₂H₃₅RhN₄O₂·BF₄·)_n: C, 55.09; H, 5.02; N,8.03; *found:* C, 54.97; H, 5.62; N, 8.21.

NHC-Rh coordination assembly 6b: dark-brown solid, 97% yield;

IR (KBr pellet) v 436.72, 727.09, 744.28, 816.01, 861.10, 923.91, 948.90, 1058.91, 1247.16, 1372.27,

1471.17, 1612.26, 1659.73, 1950.07, 2953.16, 3405.68 cm⁻¹;

Solid ¹³**C NMR** (101 MHz) δ = 187.3, 168.7, 149.5, 129.7, 121.4, 62.4, 55.3, 40.4, 36.0, 31.7 ppm;

Elemental analysis (%) *Calcd. for* (C₃₈H₄₇RhN₄BF₄·)_n: C, 60.88; H, 7.28; N, 7.48; *found:* C, 60.72; H,7.83; N, 7.23.

NHC-Rh coordination assembly 6c: dark-brown solid, 93% yield;

IR (KBr pellet) *v* 446.63, 726.43, 747.38, 817.65, 862.32, 924.07, 1087.50, 1246.70, 1372.80, 1470.27, 1612.15, 1663.47, 1950.29, 2953.95, 3417.64 cm⁻¹;

Elemental analysis (%) *Calcd. for* (C₃₈H₄₇RhN₄PF₆)_n: C, 56.51; H, 5.82; N, 6.94; *found:* C, 56.23; H, 5.96; N, 6.76.

3. Optimization of reaction conditions

Table S1. Optimization for hydroaminomethylation of allylbenzene ^a

Entry	[Cat.]	CO/H ₂	Solvent	Temp	Time	Yield ^b	l/b ^c
	(mol %)	(bar)	(4 mL)	(°C)	(h)	(%)	
1	5 (1.0)	60bar (1:5)	THF	100	12	51	64/36
2	5 (1.0)	60bar (1:5)	THF	120	1	48	58/42
3	5 (1.0)	60bar (1:5)	THF	130	12	47	54/46
4	5 (1.0)	60bar (1:5)	THF	140	12	50	55/45
5	5 (1.0)	60bar (1:5)	Tol	140	12	20	88/12
6	5 (1.0)	60bar (1:5)	anisole	140	12	58	65/35
7	5 (1.0)	60bar (1:5)	dioxane	140	12	42	85/15
8	5 (1.0)	60bar (1:5)	MeOH	140	12	36	89/11
9	5 (1.0)	60bar (1:5)	THF/MeOH	140	12	40	73/27
10	5 (1.0)	60bar (1:5)	Tol/MeOH	140	12	54	63/37
11	5 (1.0)	60bar (1:5)	THF	140	18	53	55/45
12	5 (1.0)	60bar (1:5)	THF	140	24	52	55/45
13	5 (1.0)	70bar (1:5)	THF	140	18	59	66/34
14	5 (1.0)	80bar (1:5)	THF	140	18	70	77/23
15	5 (1.0)	80bar (1:6)	THF	140	18	72	85/15
16	5 (1.0)	80bar (1:7)	THF	140	18	72	89/11
17	5 (1.0)	80bar (1:8)	THF	140	18	66	91/9
18	5 (1.0)	80bar (1:9)	THF	140	18	72	91/9
19	5 (1.0)	80bar (1:12)	THF	140	18	67	97/3
20	5 (1.0)	80bar (1:9)	THF	150	18	77	88/12
21	6a (1.0)	80bar (1:9)	THF	150	18	89	97/3
22	6b (1.0)	80bar (1:9)	THF	150	18	95	97/3
23	6b (1.0)	80bar (1:9)	THF	150	18	96	98/2
24	6b (1.0)	80bar (1:9)	THF	150	18	95	97/3
25	6c (1.0)	80bar (1:9)	THF	150	18	86	93/7
26	1 (1.0)	80bar (1:9)	THF	150	18	50	67/33
27	2 (1.0)	80bar (1:9)	THF	150	18	20	58/42
28	3 (1.0)	80bar (1:9)	THF	150	18	50	63/37
29	4b (1.0)	80bar (1:9)	THF	150	18	71	84/16
30	6b (0.5)	80bar (1:9)	THF	150	18	65	86/14
31	6b (0.3)	80bar (1:9)	THF	150	18	52	83/17
32	/	80bar (1:9)	THF	150	18	NR	N/A
33	6b (1.0)	70bar (1:9)	THF	150	18	88	92/8
34	6b (1.0)	80bar (1:9)	THF	140	18	89	95/5
35	6b (1.0)	60bar (1:9)	THF	150	18	76	91/9

36	6b (1.0)	80bar (1:9)	THF	130	18	79	95/5	
----	-----------------	-------------	-----	-----	----	----	------	--

^{*a*} 1.25 mmol of allylbenzene, 0.5 mmol *N*-methylaniline. ^{*b*}Isolated yields. ^{*c*} Regioselectivities were determined by ¹H NMR of the crude reaction mixture.

4. General procedure for the hydroaminomethylation of olefins

The hydroaminomethylation reactions were carried out in a Parr stainless steel autoclave (125 mL). In a typical experiment, the autoclave was loaded with a mixture of **6b** (1.0 mol %), 1.25 mmol olefins, 0.5 mmol amines and 4.0 mL THF. Subsequently, the autoclave was pressurized with CO (8 bar) and hydrogen (72 bar) and heated to 150 °C. After 18 h, the autoclave was allowed to cool to room temperature and the gases were vented. The solvent was removed under vacuum, regioselectivities were determined by ¹H NMR of the crude reaction mixture. And then the product was purified by column chromatography and the product was analyzed by NMR spectroscopy.

9aa.³ Yellow oil (114 mg, 95% yield) was obtained after column chromatography (petroleum ether / ethyl acetate = 400:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.33-7.19 (m, 7H), 6.71 (t, *J* = 7.5 Hz, 3H), 3.35 (t, *J* = 6.8 Hz, 2H), 2.94 (s, 3H), 2.67 (t, *J* = 7.0 Hz, 2H), 1.72-1.63 (m, 4H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 149.3, 142.3, 129.1, 128.4, 128.3, 125.7, 115.9, 112.1, 52.6, 38.3, 35.8, 29.0, 26.4 ppm.

9ba. Yellow oil (121 mg, 90% yield) was obtained after column chromatography (petroleum ether / ethyl acetate = 100:1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.36-7.29 (m, 2H), 7.18 (d, J = 8.2 Hz, 2H), 6.92 (d, J = 8.5 Hz, 2H), 6.82-6.74 (m, 3H), 3.87 (s, 3H), 3.42 (d, J = 6.7 Hz, 2H), 2.99 (s, 3H), 2.72-2.64 (m, 2H), 1.72 (q, J = 3.7 Hz, 4H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 157.8, 149.4, 134.5, 129.3, 129.2, 115.9, 113.8, 112.2, 55.3, 52.7, 38.4, 35.0, 29.3, 26.4 ppm;

HR-MS (ESI/TOF) m/z: Calcd. for C₁₈H₂₃NO [M+H]+ 270.1852; Found: 270.1844.

9ca. Yellow oil (145 mg, 97% yield) was obtained after column chromatography (petroleum ether / ethyl acetate = 50:1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.32-7.24 (m, 2H), 6.84 (d, J = 7.9 Hz, 1H), 6.79-6.70 (m, 5H), 3.91 (d, J = 3.3 Hz, 6H), 3.39 (t, J = 5.2 Hz, 2H), 2.96 (s, 3H), 2.68-2.59 (m, 2H), 1.69 (q, J = 3.8 Hz, 4H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 149.4, 148.8, 147.2, 135.0, 129.2, 120.2, 115.9, 112.1, 111.7, 111.3, 56.0, 55.9, 52.7, 38.4, 35.5, 29.3, 26.5 ppm.

HR-MS (ESI/TOF) m/z: Calcd. for C₁₉H₂₆NO₂ [M+H]+ 300.1958; Found: 300.1949.

9da.⁴ Yellow oil (93 mg, 92% yield) was obtained after column chromatography (petroleum ether / ethyl acetate = 400:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.34 (t, *J* = 7.5 Hz, 2H), 7.30-7.22 (m, 5H), 6.73 (d, *J* = 8.0 Hz, 3H), 3.43-3.36 (m, 2H), 2.97 (s, 3H), 2.71 (t, *J* = 7.7 Hz, 2H), 2.02-1.92 (m, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 149.3, 141.8, 129.2, 128.39, 128.36, 125.9, 116.0, 112.2, 52.3, 38.3, 33.4, 28.2 ppm.

9ea-*o*. Yellow oil (113 mg, 94% yield) was obtained after column chromatography (petroleum ether / ethyl acetate = 400:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.34 (d, *J* = 8.5, 3.9 Hz, 2H), 7.25 (dd, *J* = 8.6, 4.2 Hz, 4H), 6.81-6.75 (m, 3H), 3.56-3.43 (m, 2H), 3.06 (s, 3H), 2.80-2.69 (m, 2H), 2.43 (s, 3H), 2.05-1.91 (m, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 149.5, 140.1, 135.9, 130.3, 129.3, 128.7, 126.12, 126.08, 116.2, 112.4, 52.6, 38.4, 30.8, 27.2, 19.4 ppm;

HR-MS (ESI/TOF) m/z: Calcd. for C₁₇H₂₂N [M+H]⁺ 240.1752; Found: 240.1762.

9ea-m.⁵ Yellow oil (108 mg, 90% yield) was obtained after column chromatography (petroleum ether / ethyl acetate = 400:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.30-7.19 (m, 3H), 7.09-7.02 (m, 3H), 6.73 (dd, *J* = 7.8, 6.2 Hz, 3H), 3.42-3.35 (m, 2H), 2.97 (s, 3H), 2.67 (t, *J* = 7.8 Hz, 2H), 2.38 (s, 3H), 2.01-1.87 (m, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 149.4, 141.8, 137.9, 129.19, 129.16, 128.3, 126.6, 125.4, 116.0, 112.3, 52.3, 38.3, 33.3, 28.2, 21.4 ppm.

9ea-p.⁶ Yellow oil (108 mg, 90% yield) was obtained after column chromatography (petroleum ether / ethyl acetate = 400:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.29-7.21 (m, 2H), 7.13 (d, *J* = 7.7 Hz, 4H), 6.75 -6.66 (m, 3H), 3.37 (q, *J* = 7.9 Hz, 2H), 2.96 (s, 3H), 2.65 (q, *J* = 7.9 Hz, 2H), 2.37 (s, 3H), 1.98-1.86 (m, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 149.3, 138.7, 135.3, 129.13, 129.05, 128.2, 116.0, 112.2, 52.3, 38.3, 32.9, 28.3, 21.0 ppm.

N I

9fa.⁷ Yellow oil (111 mg, 87% yield) was obtained after column chromatography (petroleum ether / ethyl acetate = 100:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.31-7.23 (m, 2H), 7.20-7.14 (m, 2H), 6.93-6.87 (m, 2H), 6.77-6.71 (m, 3H), 3.86 (s, 3H), 3.39 (t, J = 7.5 Hz, 2H), 2.98 (s, 3H), 2.67 (t, J = 7.7 Hz, 2H), 2.00-1.90 (m, 2H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ 157.9, 149.4, 133.9, 129.3, 129.2, 116.0, 113.8, 112.3, 55.3, 52.2, 38.3, 32.5, 28.4 ppm.

9ga. Yellow oil (114 mg, 85% yield) was obtained after column chromatography (petroleum ether / ethyl acetate = 40:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.30-7.22 (m, 2H), 7.15-7.08 (m, 2H), 6.78-6.69 (m, 5H), 3.41-3.33 (m, 2H), 2.96 (s, 9H), 2.62 (t, *J* = 7.7 Hz, 2H), 1.97-1.86 (m, 2H) ppm;

¹³C NMR δ 149.4, 149.1, 130.0, 129.1, 128.9, 115.9, 113.1, 112.2, 52.3, 41.0, 38.3, 32.3, 28.4 ppm; HR-MS (ESI/TOF) m/z: Calcd. for C₁₈H₂₅N₂ [M+H]+ 269.2012; Found: 269.1993.

9ha.⁶ Yellow oil (105 mg, 87% yield) was obtained after column chromatography (petroleum ether / ethyl acetate = 400:1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.30-7.22 (m, 2H), 7.18 (t, J = 4.4 Hz, 2H), 7.06-6.97 (m, 2H), 6.73 (t, J = 7.1 Hz, 3H), 3.41-3.33 (m, 2H), 2.97 (s, 3H), 2.67 (t, J = 7.7 Hz, 2H), 1.99-1.87 (m, 2H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 162.5, 160.1, 149.3, 137.4, 129.7, 129.6, 129.2, 116.1, 115.2, 115.0, 112.2, 52.1, 38.3, 32.5, 28.3 ppm;

¹⁹**F NMR** (376 MHz, CDCl₃) δ -117.58 ppm.

9ia.⁸ Yellow oil (110 mg, 85% yield) was obtained after column chromatography (petroleum ether / ethyl acetate = 400:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.35-7.23 (m, 4H), 7.18 (d, *J* = 8.4 Hz, 2H), 6.75 (t, *J* = 7.6 Hz, 3H), 3.39 (t, *J* = 7.4 Hz, 2H), 2.98 (s, 3H), 2.69 (t, *J* = 7.8 Hz, 2H), 2.01-1.89 (m, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 149.3, 140.3, 131.6, 129.7, 129.2, 128.5, 116.2, 112.3, 52.2, 38.4, 32.7, 28.2 ppm.

9ja.⁸ Yellow oil (134 mg, 88% yield) was obtained after column chromatography (petroleum ether / ethyl acetate = 400:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.48-7.41 (m, 2H), 7.32-7.22 (m, 2H), 7.14-7.07 (m, 2H), 6.78-6.67 (m, 3H), 3.41-3.33 (m, 2H), 2.96 (s, 3H), 2.65 (t, *J* = 7.7 Hz, 2H), 1.98-1.88 (m, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 149.3, 140.8, 131.4, 130.1, 129.2, 119.6, 116.2, 112.3, 52.1, 38.3, 32.8, 28.1 ppm.

9ka. Yellow oil (120 mg, 84% yield) was obtained after column chromatography (petroleum ether / ethyl acetate = 400:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.94-7.78 (m, 3H), 7.70 (d, *J* = 4.4 Hz, 1H), 7.52 (q, *J* = 7.0 Hz, 2H), 7.44 -7.36 (m, 1H), 7.35-7.24 (m, 2H), 6.76 (dd, *J* = 7.7, 5.1 Hz, 3H), 3.46 (t, *J* = 7.4 Hz, 2H), 3.00 (d, *J* = 3.6 Hz, 3H), 2.90 (t, *J* = 7.5 Hz, 2H), 2.15-2.02 (m, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 149.3, 139.3, 133.6, 132.1, 129.2, 128.0, 127.6, 127.4, 127.2, 126.4, 126.0, 125.2, 116.1, 112.3, 52.3, 38.3, 33.5, 28.0 ppm;

HR-MS (ESI/TOF) m/z: Calcd. for C₂₀H₂₂N [M+H]+ 276.1747; Found: 276.1711.

91a.⁹ Yellow oil (118 mg, 99% yield) was obtained after column chromatography (petroleum ether / ethyl acetate = 400:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.41 (t, *J* = 7.2 Hz, 2H), 7.34-7.24 (m, 5H), 6.75 (dd, *J* = 6.5, 2.8 Hz, 1H), 6.71-6.64 (m, 2H), 3.38-3.17 (m, 2H), 2.94 (s, 3H), 2.86-2.74 (m, 1H), 2.00-1.90 (m, 2H), 1.38 (d, *J* = 3.3 Hz, 3H) ppm;

¹³**C NMR** (101 MHz, CDCl₃) δ 149.4, 147.1, 129.4, 128.8, 127.2, 126.4, 116.2, 112.5, 51.3, 38.4, 38.2, 34.6, 23.1 ppm.

9ma-2.¹⁰ Yellow oil (65 mg, 80% yield) was obtained after column chromatography (petroleum ether / ethyl acetate = 400:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.49 – 7.40 (m, 2H), 6.96 – 6.86 (m, 3H), 3.56 – 3.47 (m, 2H), 3.12 (s, 3H), 1.85 – 1.72 (m, 2H), 1.65 – 1.52 (m, 2H), 1.18 (t, *J* = 7.3 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 149.6, 129.3, 116.0, 112.3, 52.7, 38.4, 29.1, 20.6, 14.2.

9ma-4.¹¹ Yellow oil (81 mg, 85% yield) was obtained after column chromatography (petroleum ether / ethyl acetate = 400:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.33-7.25 (m, 2H), 6.79-6.71 (m, 3H), 3.40-3.34 (m, 2H), 2.99 (s, 3H), 1.64 (t, *J* = 7.4 Hz, 2H), 1.39 (s, 6H), 1.00-0.95 (m, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 149.4, 129.2, 115.9, 112.2, 52.9, 38.3, 31.9, 27.0, 26.7, 22.8, 14.1 ppm.

9ma-5.¹² Yellow oil (96 mg, 93% yield) was obtained after column chromatography (petroleum ether / ethyl acetate = 400:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.34-7.27 (m, 2H), 6.82-6.73 (m, 3H), 3.41-3.34 (m, 2H), 3.00 (s, 3H), 1.66 (t, *J* = 7.8 Hz, 2H), 1.45-1.33 (m, 8H), 1.03-0.94 (m, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 149.4, 129.2, 115.9, 112.2, 52.9, 38.4, 32.0, 29.4, 27.3, 26.8, 22.8, 14.2 ppm.

9ma-7.¹² Yellow oil (107 mg, 92% yield) was obtained after column chromatography (petroleum ether / ethyl acetate = 400:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.36-7.30 (m, 2H), 6.83-6.76 (m, 3H), 3.44-3.36 (m, 2H), 3.02 (s, 3H), 1.68 (t, *J* = 7.5 Hz, 2H), 1.45-1.38 (m, 12H), 1.03-0.99 (m, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 149.5, 129.2, 115.9, 112.2, 52.9, 38.3, 32.0, 29.74, 29.69, 29.4, 27.3, 26.8, 22.8, 14.2 ppm.

9na. ¹³ Yellow oil (99 mg, 86% yield) was obtained after column chromatography (petroleum ether / ethyl acetate = 400:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.34-7.26 (m, 2H), 6.77 (dd, J = 8.6, 2.9 Hz, 3H), 3.35 (dd, J = 8.9, 6.5 Hz, 2H), 2.99 (d, J = 2.1 Hz, 3H), 1.84-1.73 (m, 5H), 1.65 (d, J = 7.7 Hz, 2H), 1.36 (s, 2H), 1.31-1.26 (m, 4H), 0.99-0.92 (m, 2H) ppm ;

¹³C NMR (101 MHz, CDCl₃) δ 149.4, 129.2, 115.8, 112.1, 53.2, 38.3, 37.7, 34.9, 33.5, 26.7, 26.5, 24.0 ppm.

90a.¹⁴ White oil (104 mg, 98% yield) was obtained after column chromatography (petroleum ether / ethyl acetate = 400:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.38 (t, *J* = 8.1 Hz, 2H), 6.84 (dd, *J* = 8.8, 2.2 Hz, 3H), 3.41 (t, *J* = 7.5 Hz, 2H), 3.07 (s, 3H), 1.76-1.65 (m, 2H), 1.38-1.28 (m, 2H), 1.05 (s, 9H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 149.5, 129.3, 116.0, 112.2, 53.8, 41.5, 38.3, 30.4, 29.5, 22.0 ppm.

9pa.¹⁴ Yellow oil (185 mg, 92% yield) was obtained after column chromatography (petroleum ether / ethyl acetate = 400:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.32 (dd, *J* = 8.7, 7.4 Hz, 2H), 6.79 (d, *J* = 8.8 Hz, 3H), 3.46 (t, *J* = 7.3 Hz, 2H), 3.00 (s, 3H), 2.25-2.10 (m, 2H), 2.02-1.92 (m, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 149.2, 129.3, 116.9, 112.6, 52.0, 38.2, 28.6, 28.4, 28.1, 18.0 ppm.
¹⁹F NMR (376 MHz, CDCl₃) δ -81.14, -114.22, -124.49, -126.07 ppm.

9qa.¹⁴ Yellow oil (73 mg, 57% yield) was obtained after column chromatography (petroleum ether / ethyl acetate = 200:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.35-7.25 (m, 4H), 6.96 (dd, J = 22.7, 7.7 Hz, 3H), 6.75 (dd, J = 16.7, 7.9 Hz, 3H), 4.01 (t, J = 5.8 Hz, 2H), 3.43 (t, J = 7.0 Hz, 2H), 2.98 (s, 3H), 1.89-1.76 (m, 4H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ 159.0, 129.5, 129.3, 120.7, 116.3, 114.5, 112.4, 67.6, 52.7, 38.5, 29.8, 27.0, 23.6 ppm.

9ra. Yellow oil (67 mg, 53% yield) was obtained after column chromatography (petroleum ether / ethyl acetate = 200:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.24 (dd, *J* = 15.5, 6.7 Hz, 2H), 6.69 (dd, *J* = 14.9, 7.7 Hz, 3H), 4.51 (s, 1H), 3.65 (dd, *J* = 9.4, 7.0 Hz, 2H), 3.55-3.44 (m, 2H), 3.38-3.30 (m, 2H), 2.93 (s, 3H), 1.66 (d, *J* = 2.8 Hz, 4H), 1.21 (t, *J* = 7.0 Hz, 6H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 149.2, 129.1, 115.9, 112.1, 102.8, 61.1, 52.5, 38.2, 31.1, 22.0, 15.3 ppm; HR-MS (ESI/TOF) m/z: Calcd. for C₁₅H₂₆NO₂ [M+H]+ 252.1958; Found: 252.1960.

9sa. Yellow oil (103 mg, 71% yield) was obtained after column chromatography (petroleum ether / ethyl acetate= 10:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.24 (dd, *J* = 8.7, 7.2 Hz, 2H), 6.73-6.67 (m, 3H), 3.75 (s, 6H), 3.39 (t, *J* = 7.5 Hz, 1H), 3.35-3.29 (m, 2H), 2.93 (s, 3H), 1.96 (q, *J* = 7.6 Hz, 2H), 1.67-1.58 (m, 2H), 1.41-1.33 (m, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 169.8, 149.2, 129.1, 116.0, 112.1, 52.5, 52.4, 51.6, 38.3, 28.7, 26.3, 24.9 ppm;

HR-MS (ESI/TOF) m/z: Calcd. for C₁₆H₂₄NO₄ [M+H]⁺ 294.1700; Found: 294.1691.

9ta. Yellow oil (70 mg, 63% yield) was obtained after column chromatography (petroleum ether / ethyl acetate = 50:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.31-7.23 (m, 2H), 6.77 -6.69 (m, 3H), 3.38-3.31 (m, 2H), 2.96 (s, 3H), 2.47 (t, *J* = 7.3 Hz, 2H), 2.17 (s, 3H), 1.68-1.61 (m, 4H), 1.40-1.32 (m, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 208.9, 149.3, 129.2, 116.0, 112.2, 52.6, 43.6, 38.3, 29.9, 26.8, 26.6, 23.7 ppm;

HR-MS (ESI/TOF) m/z: Calcd. for C₁₄H₂₂NO [M+H]⁺ 220.1696; Found: 220.1689.

9ua. White oil (91 mg, 82% yield) was obtained after column chromatography (petroleum ether / ethyl acetate = 5:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.28-7.20 (m, 2H), 6.76-6.64 (m, 3H), 3.66 (t, *J* = 6.6 Hz, 2H), 3.36-3.29 (m, 2H), 2.94 (s, 3H), 1.64-1.57 (m, 4H), 1.46-1.34 (m, 6H), 1.27 (s, 1H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 149.4, 129.1, 115.8, 112.1, 63.0, 52.8, 38.3, 32.7, 29.3, 27.2, 26.6, 25.8 ppm

HR-MS (ESI/TOF) m/z: Calcd. for C14H24NO [M+H]+ 222.1852; Found: 222.1846.

9va.¹⁴ Yellow oil (126 mg, 72% yield) was obtained after column chromatography (petroleum ether / ethyl acetate= 400:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.27-7.21 (m, 4H), 6.76-6.65 (m, 6H), 3.31 (t, *J* = 7.6 Hz, 4H), 2.94 (s, 6H), 1.58 (t, *J* = 7.4 Hz, 4H), 1.31 (d, *J* = 5.4 Hz, 12H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 149.4, 129.1, 115.8, 112.1, 52.8, 38.3, 29.61, 29.56, 27.2, 26.7 ppm.

9wa-5.¹⁵ Yellow oil (83 mg, 88% yield) was obtained after column chromatography (petroleum ether / ethyl acetate = 400:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.32-7.24 (m, 2H), 6.81-6.69 (m, 3H), 3.31 (d, *J* = 7.3 Hz, 2H), 3.02 (s, 3H), 2.29-2.40 (m, 1H), 1.86-1.56 (m, 6H), 1.36-1.22 (m, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 149.6, 129.1, 115.7, 112.0, 57.8, 39.05, 38.97, 30.9, 25.1 ppm.

9wa-6.¹⁶ Yellow oil (77 mg, 76% yield) was obtained after column chromatography (petroleum ether / ethyl acetate = 400:1).

¹H NMR (400 MHz, CDCl₃) δ 7.29 (t, *J* = 7.9 Hz, 2H), 6.78-6.69 (m, 3H), 3.19 (d, *J* = 6.7 Hz, 2H), 3.02 (d, *J* = 3.1 Hz, 3H), 1.83-1.75 (m, 5H), 1.40-1.23 (m, 5H), 1.01 (d, *J* = 12.0 Hz, 1H) ppm;
¹³C NMR (101 MHz, CDCl₃) δ 149.6, 129.1, 115.4, 111.6, 59.7, 39.6, 36.9, 31.3, 26.6, 26.1 ppm.

9xa¹⁴. Yellow oil (89 mg, 83% yield) was obtained after column chromatography (petroleum ether / ethyl acetate = 400:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.44-7.33 (m, 2H), 6.84 (dd, J = 14.9, 7.7 Hz, 3H), 3.29-3.15 (m, 2H), 3.09 (s, 3H), 2.43-2.37 (m, 1H), 2.27 (d, J = 3.1 Hz, 1H), 2.08-1.99 (m, 1H), 1.69-1.61 (m, 2H), 1.58-1.51 (m, 2H), 1.33-1.25 (m, 3H), 1.24-1.17 (m, 1H) ppm;

¹³**C NMR** (101 MHz, CDCl₃) δ 149.9, 129.2, 115.9, 112.1, 58.1, 41.0, 39.3, 39.1, 36.7, 35.5, 35.3, 30.0, 29.1 ppm.

9ya. Yellow oil (78 mg, 62% yield) was obtained after column chromatography (petroleum ether / ethyl acetate = 400:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.32-7.25 (m, 2H), 7.13 (q, *J* = 5.9 Hz, 4H), 6.75 (dd, *J* = 17.5, 7.8 Hz, 3H), 3.43-3.28 (m, 2H), 3.06 (s, 3H), 2.96-2.81 (m, 3H), 2.55 (dd, *J* = 16.3, 10.7 Hz, 1H), 2.37-2.22 (m, 1H), 2.11-2.01 (m, 1H), 1.57-1.44 (m, 1H) ppm;

¹³**C NMR** (101 MHz, CDCl₃) δ 149.6, 136.6, 136.0, 129.2, 129.1, 128.9, 125.7, 125.6, 115.9, 111.9, 58.8, 39.6, 34.0, 33.6, 28.9, 27.5 ppm;

HR-MS (ESI/TOF) m/z: Calcd. for C₁₈H₂₂N [M+H]⁺ 252.1747; Found: 252.1738.

9za. Yellow oil (58 mg, 57% yield) was obtained after column chromatography (petroleum ether / ethyl acetate = 100:1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.27-7.21 (m, 2H), 6.71 (d, J = 8.6 Hz, 3H), 5.29 (d, J = 3.5 Hz, 1H), 3.70 -3.60 (m, 2H), 3.32 (t, J = 7.7 Hz, 2H), 2.92 (d, J = 3.1 Hz, 3H), 1.60 (d, J = 7.1 Hz, 6H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 149.3, 129.2, 116.0, 112.2, 62.8, 52.8, 38.3, 32.6, 29.7, 26.5, 23.4 ppm. HR-MS (ESI/TOF) m/z: Calcd. for C₁₃H₂₀NO [M+H]⁺ 206.1539; Found: 206.1528.

9ab. Yellow oil (114 mg, 90% yield) was obtained after column chromatography (petroleum ether / ethyl acetate = 400:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.32 (t, *J* = 7.4 Hz, 2H), 7.22 (t, *J* = 7.6 Hz, 5H), 7.09 (d, *J* = 7.8 Hz, 1H), 7.01 (t, *J* = 7.3 Hz, 1H), 2.94 (t, *J* = 7.1 Hz, 2H), 2.69 (s, 3H), 2.65 (d, *J* = 7.8 Hz, 2H), 2.36 (s, 3H), 1.74-1.61 (m, 4H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 152.4, 142.6, 133.2, 131.0, 128.4, 128.3, 126.3, 125.6, 122.8, 120.0, 56.0, 41.8, 35.8, 29.0, 27.3, 18.3 ppm;

HR-MS (ESI/TOF) m/z: Calcd. for C₁₈H₂₄N [M+H]⁺ 254.1903; Found: 254.1894.

9ac¹⁶. Yellow oil (114 mg, 93% yield) was obtained after column chromatography (petroleum ether / ethyl acetate = 400:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.33-7.25 (m, 2H), 7.20 (dd, *J* = 7.6, 5.6 Hz, 3H), 7.15-7.09 (m, 1H), 6.52 (d, *J* = 7.3 Hz, 3H), 3.32 (t, *J* = 6.8 Hz, 2H), 2.91 (s, 3H), 2.66 (t, *J* = 7.1 Hz, 2H), 2.32 (s, 3H), 1.71 -1.61 (m, 4H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 149.5, 142.4, 138.8, 129.1, 128.44, 128.37, 125.8, 117.0, 112.9, 109.5, 52.7, 38.4, 35.9, 29.1, 26.6, 22.0 ppm.

9ad ¹⁶. Yellow oil (112 mg, 91% yield) was obtained after column chromatography (petroleum ether / ethyl acetate = 400:1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.40-7.33 (m, 2H), 7.30-7.24 (m, 3H), 7.12 (d, *J* = 8.3 Hz, 2H), 6.75-6.68 (m, 2H), 3.37 (t, *J* = 6.9 Hz, 2H), 2.95 (s, 3H), 2.72 (t, *J* = 7.1 Hz, 2H), 2.34 (s, 3H), 1.72 (dd, *J* = 4.4, 2.3 Hz, 4H) ppm;

¹³C NMR (101 MHz, CDCl3) δ 147.5, 142.4, 129.7, 128.5, 128.4, 125.8, 125.3, 112.7, 53.1, 38.6, 35.9, 29.2, 26.4, 20.3 ppm.

9ae. Yellow oil (123 mg, 92% yield) was obtained after column chromatography (petroleum ether / ethyl acetate = 400:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.35 (dd, *J* = 8.5, 6.5 Hz, 2H), 7.25 (dd, *J* = 8.0, 6.3 Hz, 3H), 6.93-6.87 (m, 2H), 6.79-6.73 (m, 2H), 3.82 (s, 3H), 3.30 (t, *J* = 7.0 Hz, 2H), 2.90 (s, 3H), 2.70 (t, *J* = 7.3 Hz, 2H), 1.74-1.62 (m, 4H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 151.5, 144.5, 142.4, 128.4, 128.3, 125.8, 114.8, 114.5, 55.8, 53.9, 39.0, 35.9, 29.1, 26.4 ppm;

HR-MS (ESI/TOF) m/z: Calcd. for C₁₈H₂₄NO [M+H]⁺ 270.1852; Found: 270.1843.

9mb. Yellow oil (102 mg, 83% yield) was obtained after column chromatography (petroleum ether / ethyl acetate = 400:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.25-7.17 (m, 2H), 7.10 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.01 (t, *J* = 7.1 Hz, 1H), 2.94-2.87 (m, 2H), 2.71 (s, 3H), 2.37 (s, 3H), 1.62-1.52 (m, 2H), 1.37-1.31 (m, 12H), 0.94 (t, *J* = 6.7 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 152.5, 133.1, 131.0, 126.2, 122.6, 119.9, 56.4, 41.7, 31.9, 29.65, 29.58, 29.3, 27.7, 27.2, 22.7, 18.3, 14.1 ppm.

HR-MS (ESI/TOF) m/z: Calcd. for C₁₇H₃₀N [M+H]⁺ 248.2373; Found: 248.2365.

~~~~N

**9mc**. Yellow oil (113 mg, 91% yield) was obtained after column chromatography (petroleum ether / ethyl acetate = 400:1).

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.19-7.12 (m, 1H), 6.55 (d, J = 6.2 Hz, 3H), 3.32 (t, J = 7.6 Hz, 2H), 2.95 (s, 3H), 2.36 (s, 3H), 1.61 (s, 2H), 1.34 (d, J = 13.0 Hz, 12H), 0.93 (t, J = 6.7 Hz, 3H) ppm;

<sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 149.5, 138.7, 129.0, 116.8, 112.9, 109.4, 52.9, 38.3, 31.9, 29.65, 29.59, 29.3, 27.2, 26.7, 22.7, 22.0, 14.1 ppm;

HR-MS (ESI/TOF) m/z: Calcd. for C<sub>17</sub>H<sub>30</sub>N [M+H]<sup>+</sup> 248.2373; Found: 248.2365.



**9md.** Yellow oil (112 mg, 91% yield) was obtained after column chromatography (petroleum ether / ethyl acetate = 400:1).

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>) δ 6.85 (d, J = 9.0 Hz, 2H), 6.71 (d, J = 8.8 Hz, 2H), 3.77 (s, 3H), 3.27-3.17 (m, 2H), 2.86 (s, 3H), 1.55 (t, J = 7.4 Hz, 2H), 1.30 (d, J = 10.2 Hz, 12H), 0.90 (t, J = 6.6 Hz, 3H) ppm; <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 151.4, 144.6, 114.7, 114.4, 55.8, 54.0, 38.9, 31.9, 29.60, 29.56, 29.3, 27.2, 26.5, 22.7, 14.1 ppm.

HR-MS (ESI/TOF) m/z: Calcd. for C<sub>17</sub>H<sub>30</sub>N [M+H]<sup>+</sup> 248.2373; Found: 248.2365.



**9me**.<sup>14</sup> Yellow oil (119 mg, 91% yield) was obtained after column chromatography (petroleum ether / ethyl acetate = 100:1).

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 6.87-6.80 (m, 2H), 6.70 (d, J = 9.1 Hz, 2H), 3.77 (s, 3H), 3.26-3.17 (m, 2H), 2.86 (s, 3H), 1.54 (t, J = 7.4 Hz, 2H), 1.29 (d, J = 9.9 Hz, 12H), 0.89 (t, J = 6.6 Hz, 3H) ppm; <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 151.4, 144.6, 114.7, 114.4, 55.8, 54.0, 38.9, 31.9, 29.6, 29.5, 29.3, 27.2, 26.5, 22.6, 14.1 ppm.



**9af**. Yellow oil (120 mg, 88% yield) was obtained after column chromatography (petroleum ether / ethyl acetate = 400:1).

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.35 (t, *J* = 7.4 Hz, 2H), 7.29-7.18 (m, 5H), 6.67-6.61 (m, 2H), 3.34 (t, *J* = 6.9 Hz, 2H), 2.93 (s, 3H), 2.70 (t, *J* = 7.1 Hz, 2H), 1.75-1.62 (m, 4H) ppm;

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 147.9, 142.2, 128.9, 128.41, 128.38, 125.9, 120.6, 113.2, 52.7, 38.5, 35.8, 29.0, 26.3 ppm;

HR-MS (ESI/TOF) m/z: Calcd. for C<sub>17</sub>H<sub>21</sub>ClN [M+H]<sup>+</sup> 274.1357; Found: 274.1349.

**9ag.** Yellow oil (118 mg, 92% yield) was obtained after column chromatography (petroleum ether / ethyl acetate = 400:1).

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.39-7.32 (m, 2H), 7.26 (dd, *J* = 9.1, 7.2 Hz, 3H), 7.04-6.95 (m, 2H), 6.72 -6.64 (m, 2H), 3.34 (t, *J* = 6.9 Hz, 2H), 2.93 (d, *J* = 1.5 Hz, 3H), 2.72 (t, *J* = 7.3 Hz, 2H), 1.78-1.64 (m, 4H) ppm;

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 156.4, 154.1, 146.3, 142.3, 128.43, 128.39, 125.9, 115.6, 115.4, 113.53, 113.46, 53.5, 38.8, 35.8, 29.0, 26.3 ppm;

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>) δ -129.81 ppm;

**HR-MS** (ESI/TOF) m/z: Calcd. for  $C_{17}H_{21}FN$  [M+H]<sup>+</sup> 258.1653; Found: 258.1644.



**9ah**. Yellow oil (126 mg, 87% yield) was obtained after column chromatography (petroleum ether / ethyl acetate = 200:1).

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 8.40-8.33 (m, 1H), 7.96-7.87 (m, 1H), 7.63 (d, *J* = 8.1 Hz, 1H), 7.57 (dd, *J* = 6.5, 3.7 Hz, 2H), 7.49 (t, *J* = 7.8 Hz, 1H), 7.37 (t, *J* = 7.4 Hz, 2H), 7.30-7.17 (m, 4H), 3.21 (t, *J* = 6.7 Hz, 2H), 2.94 (s, 3H), 2.76-2.67 (m, 2H), 1.80 (t, *J* = 3.9 Hz, 4H) ppm;

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 150.6, 142.6, 134.9, 129.7, 128.5, 128.3, 125.77, 125.76, 125.74, 125.2, 124.1, 123.1, 115.6, 56.9, 42.6, 35.8, 29.8, 29.1, 27.2 ppm;

HR-MS (ESI/TOF) m/z: Calcd. for C<sub>21</sub>H<sub>24</sub>N [M+H]<sup>+</sup> 290.1903; Found: 290.1894.



**9ai**. Yellow oil (128 mg, 89% yield) was obtained after column chromatography (petroleum ether / ethyl acetate = 200:1).

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.71 (dd, *J* = 18.0, 8.5 Hz, 3H), 7.41 (t, *J* = 7.5 Hz, 1H), 7.34 (dd, *J* = 8.4, 6.4 Hz, 2H), 7.28-7.20 (m, 4H), 7.17 (dd, *J* = 9.1, 2.6 Hz, 1H), 6.92 (d, *J* = 2.6 Hz, 1H), 3.52-3.43 (m, 2H), 3.05 (s, 3H), 2.70 (d, *J* = 7.2 Hz, 2H), 1.77-1.67 (m, 4H) ppm;

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 147.4, 142.3, 135.2, 128.7, 128.40, 128.35, 127.4, 126.5, 126.2, 126.0, 125.8, 121.8, 116.1, 105.9, 52.9, 38.6, 35.8, 29.0, 26.6 ppm;

HR-MS (ESI/TOF) m/z: Calcd. for C<sub>21</sub>H<sub>24</sub>N [M+H]<sup>+</sup> 290.1903; Found: 290.1892.



**9aj**. White solid (133 mg, 94% yield) was obtained after column chromatography (petroleum ether / ethyl acetate = 1:1).

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) $\delta$  7.75-7.68 (m, 2H), 7.34-7.26 (m, 2H), 7.24-7.16 (m, 3H), 6.68-6.61 (m, 2H), 5.88 (s, 2H), 3.40 (t, *J* = 6.7 Hz, 2H), 3.00 (s, 3H), 2.68 (t, *J* = 7.0 Hz, 2H), 1.68 (dd, *J* = 7.2, 3.6 Hz, 4H) ppm;

<sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 169.5, 151.7, 142.0, 129.2, 128.4, 125.9, 119.6, 110.7, 52.3, 38.4, 35.7, 28.8, 26.5 ppm;

HR-MS (ESI/TOF) m/z: Calcd. for C<sub>18</sub>H<sub>23</sub>N<sub>2</sub>O [M+H]<sup>+</sup> 283.1805; Found: 283.1784.



**9ak**. White solid (131 mg, 92% yield) was obtained after column chromatography (petroleum ether / ethyl acetate = 1:1).

<sup>1</sup>**H NMR** (400 MHz, DMSO-*d*<sub>6</sub>) δ 12.02 (s, 1H), 7.72-7.66 (m, 2H), 7.25 (t, *J* = 7.5 Hz, 2H), 7.20-7.11 (m, 3H), 6.68-6.60 (m, 2H), 3.39 (t, *J* = 7.1 Hz, 2H), 2.92 (s, 3H), 2.59 (t, *J* = 7.3 Hz, 2H), 1.61-1.47 (m, 4H) ppm;

<sup>13</sup>**C NMR** (101 MHz, DMSO-*d*<sub>6</sub>) δ 168.0, 152.4, 142.5, 131.5, 128.72, 128.69, 126.1, 117.0, 110.9, 51.6, 38.4, 35.4, 28.7, 26.3 ppm;

HR-MS (ESI/TOF) m/z: Calcd. for C<sub>18</sub>H<sub>22</sub>NO<sub>2</sub> [M+H]<sup>+</sup> 284.1645; Found: 284.1625.



**9al**. Yellow oil (145 mg, 96% yield) was obtained after column chromatography (petroleum ether / ethyl acetate= 400:1).

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.39-7.31 (m, 2H), 7.31-7.20 (m, 5H), 6.73 (d, J = 8.2 Hz, 3H), 3.41 (q, J = 6.5 Hz, 2H), 3.36-3.30 (m, 2H), 2.77-2.67 (m, 2H), 1.80-1.66 (m, 4H), 1.20 (q, J = 5.9 Hz, 3H) ppm; <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 148.0, 142.4, 129.3, 128.4, 128.3, 125.8, 115.4, 111.9, 50.3, 45.0, 35.9, 29.1, 27.3, 12.3 ppm;

HR-MS (ESI/TOF) m/z: Calcd. for C<sub>18</sub>H<sub>24</sub>N [M+H]<sup>+</sup> 254.1903; Found: 254.1900.



**9am**. Yellow oil (88 mg, 72% yield) was obtained after column chromatography (petroleum ether / ethyl acetate = 5:1).

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.36-7.29 (m, 2H), 7.28-7.20 (m, 5H), 6.80-6.75 (m, 3H), 3.78 (t, *J* = 5.9 Hz, 2H), 3.48 (t, *J* = 5.9 Hz, 2H), 3.37 (t, *J* = 6.9 Hz, 2H), 2.69 (t, *J* = 6.9 Hz, 2H), 2.01 (s, 1H), 1.75-1.65 (m, 4H) ppm;

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 148.3, 142.2, 129.3, 128.38, 128.36, 125.8, 116.8, 113.0, 60.0, 53.2, 51.7, 35.8, 28.9, 26.5 ppm;

**HR-MS** (ESI/TOF) m/z: Calcd. for  $C_{17}H_{22}NO [M+H]^+ 256.1696$ ; Found: 256.1663.



**9an.** Yellow oil (133 mg, 96% yield) was obtained after column chromatography (petroleum ether / ethyl acetate = 200:1).

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.43-7.35 (m, 2H), 7.30 (dd, *J* = 8.0, 4.0 Hz, 3H), 7.15 (t, *J* = 6.6 Hz, 1H), 7.04 (t, *J* = 5.6 Hz, 1H), 6.70-6.60 (m, 2H), 3.40-3.32 (m, 4H), 2.86 (t, *J* = 5.8 Hz, 2H), 2.80-2.72 (m, 2H), 2.08-1.99 (m, 2H), 1.84-1.70 (m, 4H) ppm;

<sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 145.3, 142.4, 129.2, 128.44, 128.37, 127.1, 125.8, 122.2, 115.3, 110.5, 51.4, 49.6, 35.9, 29.2, 28.3, 26.1, 22.3 ppm;

HR-MS (ESI/TOF) m/z: Calcd. for C<sub>19</sub>H<sub>24</sub>N [M+H]<sup>+</sup> 266.1903; Found: 266.1885.



**9ao**.<sup>17</sup> Yellow oil (73 mg, 65% yield) was obtained after column chromatography (petroleum ether / ethyl acetate = 50:1).

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.34-7.27 (m, 2H), 7.24-7.15 (m, 5H), 6.75-6.68 (m, 1H), 6.65-6.58 (m, 2H), 3.15 (t, *J* = 6.9 Hz, 2H), 2.68 (t, *J* = 7.4 Hz, 2H), 1.79-1.64 (m, 4H) ppm;

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 148.3, 142.2, 129.2, 128.4, 128.3, 125.8, 117.2, 112.7, 43.9, 35.6, 29.1, 28.9 ppm.



**9ap**. Yellow oil (131 mg, 89% yield) was obtained after column chromatography (petroleum ether / ethyl acetate = 2:1).

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.34-7.26 (m, 4H), 7.22 (dd, *J* = 7.2, 2.3 Hz, 3H), 6.986.93 (m, 2H), 6.90 -6.84 (m, 1H), 3.23 (t, *J* = 3.7 Hz, 4H), 2.68 (t, *J* = 6.4 Hz, 2H), 2.62 (t, *J* = 4.8 Hz, 4H), 2.45 (t, *J* = 7.1 Hz, 2H), 1.73-1.57 (m, 4H) ppm;

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 151.3, 142.4, 129.1, 128.4, 128.3, 125.7, 119.6, 116.0, 58.5, 53.3, 49.1, 35.8, 29.4, 26.5 ppm;

**HR-MS** (ESI/TOF) m/z: Calcd. for C<sub>20</sub>H<sub>27</sub>N<sub>2</sub> [M+H]<sup>+</sup> 295.2169; Found: 295.2149.

#### **Preparation of aripiprazole (13a)**



Fig. S7. Preparation of aripiprazole.

In a typical experiment, a Parr stainless steel autoclave (125 mL) was loaded with a mixture of **6b** (1.0 mol %), 10.0 mmol allyl alcohol, 5.0 mmol 1-(2,3-dichlorophenyl)piperazine and 20.0 mL THF. Subsequently, the autoclave was pressurized with CO (8 bar) and hydrogen (72 bar) and heated to 150 ° C. After 18 h, the autoclave was allowed to cool to room temperature and the gases were vented. The solvent was removed under vacuum, the resulting crude **12a** (63% as determined by <sup>1</sup>HNMR of the crude with 1,3,5-methoxybenzene as the internal standard, *l:b* = 96/4) was then filtered through a plug of silica (CH<sub>2</sub>Cl<sub>2</sub>/MeOH = 40:1) and concentrated *in vacuo*. This linear amino alcohol (302 mg, 1.0 mmol) was dissolved in CH<sub>2</sub>Cl<sub>2</sub> (4.0 mL) followed by addition of sulfoxide chloride (0.6 mL, 1.5 mmol). After stirring at 60 °C for 3.5 h, the resulting crude was then filtered through a plug of silica (CH<sub>2</sub>Cl<sub>2</sub>/MeOH = 100:1) and concentrated in vacuo. This resulting crude (297 mg, 0.93 mmol) was dissolved in acetonitrile (4.0 mL) followed by addition of of 7-hydroxy-3,4-dihydroquinolin-2(1*H*)-one (152 mg, 0.93 mmol, 1.0 equiv.), K<sub>2</sub>CO<sub>3</sub> (139 mg, 1.02 mmol, 1.1 equiv.). After stirring at 95 °C overnight, the solvent was removed under vacuum, and then filtered through a plug of silica (petroleum ether / ethyl acetate= 1:1) and concentrated in vacuo to give aripiprazole (**13a**, 391 mg, 94 %) as a white solid.



**13a**.<sup>18</sup> **<sup>1</sup>H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.11 (s, 1H), 7.15-7.09 (m, 2H), 7.02 (d, J = 8.3 Hz, 1H), 6.94 (dd, J = 6.3, 3.2 Hz, 1H), 6.51 (dd, J = 8.3, 2.4 Hz, 1H), 6.39 (d, J = 2.4 Hz, 1H), 3.95 (t, J = 6.2 Hz, 2H), 3.06 (t, J = 4.8 Hz, 4H), 2.88 (dd, J = 8.5, 6.5 Hz, 2H), 2.72-2.53 (m, 6H), 2.47 (t, J = 7.4 Hz, 2H), 1.85 -1.75 (m, 2H), 1.73-1.64 (m, 2H) ppm;

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 172.3, 158.7, 151.3, 138.3, 134.0, 128.6, 127.4, 124.5, 118.6, 115.6, 108.8, 102.3, 67.9, 58.2, 53.3, 51.4, 31.1, 27.3, 24.6, 23.4 ppm.

#### Preparation of laurel aripiprazole (13b)



Fig. S8. Preparation of aripiprazolelauroxil.

A Schlenk tube was charged with aripiprazole (448 mg, 1 mmol), formaldehyde aqueous solution (37%, 1.6 mL), triethylamine (0.50 eq, 52 mg, 0.5 mmol,) and DMF (1.5 mL), and stirred at 80 °C for 2.5

hours. After reaction completion, solvent was removed under vacuum, and the residue was purified over flash chromatography on silica gel to give hydroxymethylaripiprazole (444 mg, 93%) as a white solid. This hydroxymethylaripiprazole (239 mg, 0.5 mmol), triethylamine (52 mg, 0.5 mmol) was dissolved in  $CH_2Cl_2$  (2.5 mL), and stirred at room temperature for 5 min, followed by addition of lauryl chloride (219 mg, 1 mmol) at 30 °C. After stirring for 1.0 h, the resulting reaction mixture was diluted  $CH_2Cl_2$  (30 mL) and quenched by addition of brine (50 mL), the organic layer was separated, and the aqueous layer was further extracted with  $CH_2Cl_2$  (2 × 30 mL). The combined organic layers were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated in vacuo. The crude product was recrystallized from isopropanol to give aripiprazolelauroxil (**13b**, 245 mg, 78%) as white powder.



**13b.** <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.24-7.14 (m, 2H), 7.09 (d, *J* = 8.3 Hz, 1H), 7.03-6.98 (m, 1H), 6.83 (d, *J* = 3.1 Hz, 1H), 6.63 (dd, *J* = 8.3, 2.4 Hz, 1H), 3.98 (t, *J* = 5.7 Hz, 2H), 3.64 (dd, *J* = 12.8, 8.3 Hz, 4H), 3.37 (d, *J* = 12.6 Hz, 2H), 3.10 (dd, *J* = 13.6, 5.7 Hz, 5H), 2.97 (t, *J* = 7.5 Hz, 2H), 2.82 (dd, *J* = 8.3, 5.3 Hz, 2H), 2.68 (dd, *J* = 8.3, 5.2 Hz, 2H), 2.23-2.11 (m, 2H), 1.88 (t, *J* = 6.8 Hz, 2H), 1.77-1.66 (m, 2H), 1.40 (t, *J* = 7.2 Hz, 2H), 1.34-1.17 (m, 16H), 0.86 (t, *J* = 6.6 Hz, 3H) ppm;

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 177.8, 173.0, 157.2, 149.0, 137.4, 134.2, 128.1, 127.9, 127.6, 126.1, 121.8, 119.3, 111.1, 109.3, 67.1, 57.2, 52.2, 47.9, 45.8, 40.4, 35.1, 31.9, 29.6, 29.5, 29.4, 29.3, 29.2, 26.5, 25.1, 24.8, 22.7, 20.8, 14.1, 8.6 ppm;

HR-MS (ESI/TOF) m/z: Calcd. for C<sub>35</sub>H<sub>50</sub>Cl<sub>2</sub>N<sub>3</sub>O<sub>3</sub> [M+H]<sup>+</sup> 630.3229; Found: 630.3278.



#### Preparation of NGB2904 (14)

Fig. S9. Preparation of NGB2904.

In a typical experiment, a Parr stainless steel autoclave (125 mL) was loaded with a mixture of **6b** (1.0 mol %), 10.0 mmol allyl alcohol, 5.0 mmol 1-(2,3-dichlorophenyl)piperazine and 20.0 mL THF. Subsequently, the autoclave was pressurized with CO (8 bar) and hydrogen (72 bar) and heated to 150 °C. After 18 h, the autoclave was allowed to cool to room temperature and the gases were vented. The solvent was removed under vacuum, the resulting crude **12a** (63% as determined by <sup>1</sup>H NMR of the crude with 1,3,5-methoxybenzene as the internal standard, 1:b = 96/4) was then filtered through a plug

of silica ( $CH_2Cl_2/MeOH = 40:1$ ) and concentrated in vacuo. This linear amino alcohol (302 mg, 1.0 mmol) was dissolved in CH<sub>2</sub>Cl<sub>2</sub> (4.0 mL) followed by addition of sulfoxide chloride (0.6 ml, 1.5 mmol). After stirring at 60 °C for 3.5 h, the resulting reaction mixture was cooled to 0  $\,^{\circ}$ C and stirred for 2 h, the solvent was removed under vacuum, the resulting crude was then filtered through a plug of silica ( $CH_2Cl_2$ ) / MeOH = 100:1) and concentrated in vacuo, followed by the addition of potassium phthalimide (266 mg, 1.8 mmol). The reagents were suspended in 4.0 mL of dry DMF and allowed to reflux at 100 °C for 3 hours. Reaction was cooled, quenched with addition of water, and extracted with EtOAc (4 x 20 mL). The organic phases were combined, dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, concentrated, and purified by flash column chromatography in CH<sub>2</sub>Cl<sub>2</sub>, 397 mg of yellow solid was obtained with a 92% yield. This intermediate was dissolved in 4.0 mL EtOH, followed by the addition of hydrazine monohydrate. The reaction mixture was allowed to mix for 5 hours at 80 °C then allowed to cool to rt. The solvent was removed under vacuum, the resulting crude was then filtered through a plug of silica ( $CH_2Cl_2 / MeOH =$ 10:1) and concentrated in vacuo. This 4-(4-(2, 3-dichlorophenyl)piperazin-1-yl)butan-1-amine (250 mg, 0.83 mmol) was dissolved in 4.0 mL chloroform, and 115 mg K<sub>2</sub>CO<sub>3</sub> was added. The 9H-fluorene-2carbonyl chloride (189 mg, 0.83 mmol) was dissolved in proper amount of chloroform, and then dropped into a three-way flask of 10.0 mL with a constant pressure drop funnel. Titration reaction 1h, extraction, mother solution decompression concentration to obtain a light yellow solid, ether recrystallization to obtain N-(4-(4-(2,3-dichlorophenyl))piperazin-1-yl)butyl)-9H-fluorene-3-carboxamide (14, 289 mg, 95 %) as a white solid.



**14** <sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.95 (s, 1H), 7.84-7.73 (m, 3H), 7.54 (d, J = 7.2 Hz, 1H), 7.43-7.30 (m, 2H), 7.11 (dd, J = 8.0, 1.4 Hz, 1H), 7.00 (t, J = 8.0 Hz, 1H), 6.90 (t, J = 5.5 Hz, 1H), 6.79 (dd, J = 8.0, 1.5 Hz, 1H), 3.89 (s, 2H), 3.50 (q, J = 6.2 Hz, 2H), 3.09-2.89 (m, 4H), 2.61 (s, 4H), 2.46 (t, J = 6.8 Hz, 2H), 1.79-1.59 (m, 4H) ppm;

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 168.1, 151.1, 144.7, 143.9, 143.4, 140.7, 134.0, 133.4, 127.6, 127.5, 127.4, 127.0, 125.8, 125.2, 124.6, 123.9, 120.5, 119.7, 118.5, 58.1, 53.3, 51.1, 40.1, 36.9, 27.6, 24.5 ppm;

HR-MS (ESI/TOF) m/z: Calcd. for C<sub>28</sub>H<sub>30</sub>Cl<sub>2</sub>N<sub>3</sub>O [M+H]<sup>+</sup> 494.1766; Found: 494.1772.

**Preparation of brexpiprazole (15)** 



Fig. S10. Preparation of brexpiprazole.

In a typical experiment, a Parr stainless steel autoclave (125 mL) was loaded with a mixture of **6b** (1.0 mol %), 10.0 mmol allyl alcohol, 5.0 mmol 1-(benzo[*b*]thiophen-4-yl)piperazine and 20.0 mL THF. Subsequently, the autoclave was pressurized with CO (8 bar) and hydrogen (72 bar) and heated to 150 ° C. After 18 h, the autoclave was allowed to cool to room temperature and the gases were vented. The solvent was removed under vacuum, the resulting crude **12b** (56% as determined by <sup>1</sup>H NMR of the crude with 1,3,5-methoxybenzene as the internal standard, *l:b* = 96/4) was then filtered through a plug of silica (CH<sub>2</sub>Cl<sub>2</sub>/MeOH = 20:1) and concentrated *in vacuo*. This linear amino alcohol (290 mg, 1.0 mmol) was dissolved in CH<sub>2</sub>Cl<sub>2</sub> (4.0 mL) followed by addition of sulfoxide chloride (0.6 ml, 1.5 mmol). After stirring at 60 °C for 3.5 h, the resulting reaction mixture was cooled to 0 °C and stirred for 2 h , the solvent was removed under vacuum, the resulting crude was then filtered through a plug of silica (CH<sub>2</sub>Cl<sub>2</sub>/MeOH = 100:1) and concentrated in vacuo. This resulting crude (280, 0.91 mmol) was dissolved in acetonitrile (4.0 mL) followed by addition of of 7-(Allyloxy)quinolin-2(1*H*)-one (146 mg, 0.91 mmol, 1.0 equiv.), K<sub>2</sub>CO<sub>3</sub> (136 mg, .1.01mmol, 1.1 equiv.). After stirring at 95 °C overnight, the solvent was removed under vacuum, and then filtered through a plug of silica (petroleum ether / ethyl acetate= 1:1) and concentrated in vacuo. To give brexpiprazole (**15**, 331 mg, 84 %) as a white solid.



**15**.<sup>18</sup> <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  12.93 (s, 1H), 7.73 (d, J = 9.4 Hz, 1H), 7.56 (d, J = 8.0 Hz, 1H), 7.48-7.35 (m, 3H), 7.28 (t, J = 7.8 Hz, 1H), 6.91 (d, J = 7.9 Hz, 2H), 6.83 (dd, J = 8.6, 2.4 Hz, 1H), 6.59 (d, J = 9.3 Hz, 1H), 4.12 (t, J = 6.3 Hz, 2H), 3.22 (t, J = 5.0 Hz, 4H), 2.84-2.62 (m, 4H), 2.55 (t, J = 7.5 Hz, 2H), 1.98-1.84 (m, 2H), 1.83-1.67 (m, 2H) ppm;

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 165.3, 161.4, 148.5, 141.1, 140.8, 140.5, 134.0, 128.9, 125.0, 124.9, 121.9, 117.8, 116.9, 114.1, 112.7, 112.1, 99.0, 68.1, 58.2, 53.6, 52.1, 27.2, 23.4 ppm.

#### Preparation of BP897 (16)



Fig. S11. Preparation of BP897.

In a typical experiment, a Parr stainless steel autoclave (125 mL) was loaded with a mixture of **6b** (1.0 mol %), 10.0 mmol allyl alcohol, 5.0 mmol 1-(2-methoxyphenyl)piperazine and 20.0 mL THF. Subsequently, the autoclave was pressurized with CO (8 bar) and hydrogen (72 bar) and heated to 150  $^{\circ}$ C. After 18 h, the autoclave was allowed to cool to room temperature and the gases were vented. The solvent was removed under vacuum, the resulting crude 12c (55% as determined by <sup>1</sup>H NMR of the crude with 1,3,5-methoxybenzene as the internal standard, l:b = 96/4) was then filtered through a plug of silica  $(CH_2Cl_2/MeOH = 40:1)$  and concentrated *in vacuo*. This linear amino alcohol (264 mg, 1.0 mmol) was dissolved in CH<sub>2</sub>Cl<sub>2</sub> (4.0 mL) followed by addition of sulfoxide chloride (0.6 ml, 1.5 mmol). After stirring at 60  $^{\circ}$  C for 3.5 h, the resulting reaction mixture was cooled to 0  $^{\circ}$ C and stirred for 2 h , the solvent was removed under vacuum, the resulting crude was then filtered through a plug of silica  $(CH_2Cl_2/MeOH = 100:1)$  and concentrated in vacuo, followed by the addition of potassium phthalimide (266 mg, 1.8 mmol). The reagents were suspended in 4.0 mL of dry DMF and allowed to reflux at 100 °C for 3 hours. Reaction was cooled, quenched with addition of water, and extracted with EtOAc (4 x 20 mL). The organic phases were combined, dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, concentrated, and purified by flash column chromatography in CH<sub>2</sub>Cl<sub>2</sub>. 366 mg of yellow solid was obtained with a 93% yield. This intermediate was dissolved in 4.0 mL EtOH, followed by the addition of hydrazine monohydrate. The reaction mixture was allowed to mix for 5 hours at 80 °C, then allowed to cool to rt. The solvent was removed under vacuum, the resulting crude was then filtered through a plug of silica ( $CH_2Cl_2 / MeOH =$ 10:1) and concentrated in vacuo. This 4-(4-(2-methoxy-phenyl) -piperazinyl) -butyl-1-primary amine (200 mg, 0.76 mmol) was dissolved in 4.0 mL chloroform, and 208 mg K<sub>2</sub>CO<sub>3</sub> was added. The 2naphthoyl chloride (144 mg, 0.76 mmol) was dissolved in proper amount of chloroform, and then dropped into a three-way flask of 10.0 mL with a constant pressure drop funnel. Titration reaction 1h, extraction, mother solution decompression concentration to obtain a light yellow solid, ether recrystallization to obtain N-[4-(2-methoxy-phenyl) -piperazinyl]-butyl-2-naphthoformamide (16, 307 mg, 97 %) as a white solid.



**16**. <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 8.61 (d, *J* = 1.8 Hz, 1H), 8.06 (dd, *J* = 8.6, 1.8 Hz, 1H), 8.00-7.90 (m, 2H), 7.88-7.80 (m, 2H), 7.57-7.43 (m, 2H), 7.10-7.01 (m, 1H), 6.93-6.82 (m, 3H), 3.83 (s, 3H), 3.60

(q, *J* = 6.1 Hz, 4H), 3.43 (d, *J* = 4.7 Hz, 4H), 3.19-2.90 (m, 4H), 2.05 (q, *J* = 7.4 Hz, 2H), 1.80 (q, *J* = 6.5 Hz, 2H) ppm;

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 167.7, 152.0, 138.8, 134.7, 132.7, 131.4, 129.2, 128.14, 128.10, 127.6, 127.5, 126.4, 124.3, 124.2, 121.2, 118.8, 111.3, 56.4, 55.4, 52.3, 47.4, 38.1, 26.1, 20.7 ppm; HR-MS (ESI/TOF) m/z: Calcd. for C<sub>26</sub>H<sub>32</sub>N<sub>3</sub>O<sub>2</sub> [M+H]<sup>+</sup> 418.2495; Found: 418.2528.

#### **Preparation of buspirone (18)**



Fig. S12. Preparation of buspirone.

To a solution of 8-azaspiro[4.5]decane-7,9-dione (1.19 g, 7.11 mmol, 1.0 equiv.) in acetone (15 mL) was added allyl bromide (0.675 mL, 7.8 mmol, 1.1 equiv.),  $K_2 CO_3$  (1.96 g, 14.2 mmol, 2.0 equiv.) and TBAI (0.25 g, 0.68 mmol, 9.5 mol%). After stirring for 72 h at roomtemperature, the reaction mixture was filtered through Celite and the filtrate concentrated in vacuo to give the crude which was purified via column chromatography (pentane/EtOAc= 1/10) to give **17** (1.32 g, 6.35 mmol, 89%) as a colourless oil. In a typical experiment, a Parr stainless steel autoclave (125 mL) was loaded with a mixture of **6b** (1.0 mol %), 10.0 mmol **17**, 5.0 mmol 2-(piperazin-1-yl)pyrimidine and 20.0 mL THF. Subsequently, the autoclave was pressurized with CO (8 bar) and hydrogen (72 bar) and heated to 150 °C. After 18 h, the autoclave was allowed to cool to room temperature and the gases were vented. The solvent was removed under vacuum, the resulting crude **18** (63% as determined by <sup>1</sup>H NMR of the crude with 1,3,5-methoxybenzene as the internal standard, *l:b* = 96/4) was then purified via column chromatography (CH<sub>2</sub>Cl<sub>2</sub> / EtOAc =1:200) to give buspirone as a colourless solid.



**18**.<sup>18</sup> <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.28 (d, J = 4.7 Hz, 2H), 6.45 (t, J = 4.8 Hz, 1H), 3.82-3.74 (m, 6H), 2.57 (s, 4H), 2.47 (t, J = 5.1 Hz, 4H), 2.37 (t, J = 6.8 Hz, 2H), 1.72-1.67 (m, 4H), 1.54-1.45 (m, 8H) ppm;

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 172.2, 161.7, 157.7, 109.7, 58.3, 53.1, 44.9, 43.7, 39.5, 39.4, 39.3, 37.6, 26.1, 24.25, 24.19 ppm.

## 5. SEM, TEM, EDX & HAADF-STEM images of coordination assemblies

5.1 SEM images of coordination assemblies



Fig. S13. SEM image of freshly prepared NHC-Rh coordination assembly 5 (scale bar 10 µm).



Fig. S14. SEM image of freshly prepared NHC-Rh coordination assembly 6a (scale bar 10  $\mu$ m).



Fig. S15. SEM image of freshly prepared NHC-Rh coordination assembly 6b (scale bar 10  $\mu$ m).



Fig. S16. SEM image of freshly prepared NHC-Rh coordination assembly 6c (scale bar 10  $\mu$ m).

### 5.2 EDX of coordination assemblies



Fig. S17. EDX pattern of newly prepared NHC-Rh coordination assembly 6b measured with TEM.



**Fig. S18.** EDX pattern in percentage of newly prepared NHC-Rh coordination assembly **6b** measured with TEM. The Cu signal originates from the microgate used.



Fig. S19. EDX pattern of recovered NHC-Rh coordination assembly 6b measured with TEM.



**Fig. S20.** EDX pattern in percentage of recovered NHC-Rh coordination assembly **6b** measured with TEM. The Cu signal originates from the microgate used.

## 5.3 Magnified HAADF-STEM images of NHC-Rh coordination assembly 6b



**Fig. S21.** Magnified HAADF-STEM image of freshly prepared NHC-Rh coordination assembly **6b** (scale bar 2 nm).

5.4 SEM, TEM, EDX & HAADF-STEM images of recovered NHC-Rh coordination assembly 6b



**Fig. S22.** (a) SEM, (b) TEM, and (c) magnified HAADF-STEM images of the recovered solid **6b** (white dots represent individual Rh atoms), respectively. (d) EDS mapping of the recovered solid **6b**.

# 6. XPS, PXRD, Solid-state <sup>13</sup>C NMR, FT-IR, TG & N<sub>2</sub> sorption studies



6.1 XPS spectra of coordination assemblies

Fig. S23. XPS spectrum of freshly prepared NHC-Rh coordination assembly 5.



Fig. S24. XPS spectrum of freshly prepared NHC-Rh coordination assembly 6a.



Fig. S25. XPS spectrum of freshly prepared NHC-Rh coordination assembly 6b.



Fig. S26. XPS spectrum of freshly prepared NHC-Rh coordination assembly 6c.


Fig. S27. XPS spectrum of homogeneous bis-NHC-Rh complex 4b.

6.2 PXRD spectra of coordination assemblies



Fig. S28. PXRD spectrum of freshly prepared NHC-Rh coordination assembly 6b.



Fig. S29. PXRD spectrum of recovered NHC-Rh coordination assembly 6b.

### 6.3 Solid-state <sup>13</sup>C NMR spectra





Fig. S31. Solid-state <sup>13</sup>C NMR spectrum of freshly prepared NHC-Rh coordination assembly 6b.





Wavenumbers (cm<sup>-1</sup>)

Fig. S32. FT-IR spectrum of freshly prepared NHC-Rh complex 4b.



Fig. S33. FT-IR spectrum of freshly prepared NHC-Rh complex 4a.



Fig. S34. FT-IR spectrum of freshly prepared NHC-Rh coordination assembly 5.



Fig. S35. FT-IR spectrum of freshly prepared NHC-Rh coordination assembly 6a.



Fig. S36. FT-IR spectrum of freshly prepared NHC-Rh coordination assembly 6b.



Fig. S37. FT-IR spectrum of recovered NHC-Rh coordination assembly 6b after the 18th run.



Wavenumbers (cm<sup>-1</sup>)





Fig. S39. FT-IR spectrum of freshly prepared NHC-Rh complex 6b after 200 °C.



Fig. S40. FT-IR spectrum of freshly prepared NHC-Rh complex 6a after 200 °C.

6.5 TG spectra of coordination assemblies



Fig. S41. TG spectrum of freshly prepared NHC-Rh coordination assembly 6a.



Fig. S42. TG spectrum of freshly prepared NHC-Rh coordination assembly 6b.



Fig. S43. TG spectrum of freshly prepared NHC-Rh coordination assembly 6c.

6.6 N2 sorption isotherm of NHC-Rh coordination assembly 6b



Fig. S44. N<sub>2</sub> sorption isotherm of NHC-Rh coordination assembly 6b.

# 7. XANES, $k^2$ -weighted EXAFS & Gel permeation chromatography studies

| Sample    | Shell | CN  | R(Å) | $\sigma^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{$ | $\Delta E_0^{}$ (eV) | r-factor (%) |
|-----------|-------|-----|------|------------------------------------------------|----------------------|--------------|
| Rh foil   | Rh-Rh | 12  | 2.69 | 0.4                                            | -7.1                 | 2            |
| Solid 6b  | Rh-C  | 3.1 | 2.11 | 0.05                                           | -5.1                 |              |
| Rh sample | Rh-C  | 7.7 | 2.06 | 0.2                                            | -9.9                 | 0.4          |

Table S2. The best-fifitted EXAFS results of Rh sample <sup>a</sup>

<sup>*a*</sup> CN is the coordination number for the absorber-backscatterer pair, R is the average absorberbackscatterer distance,  $\sigma^2$  is the Debye-Waller factor, and  $\Delta E0$  is the inner potential correction. The accuracies of the above parameters are estimated as CN, ±20%; R, ±1%;  $\sigma^2$ , ± 20%;  $\Delta E_0$ , ±20%. The data range used for data fitting in k-space ( $\Delta k$ ) and R-space ( $\Delta R$ ) are 3.0-13.6 Å<sup>-1</sup> and 1.0-1.9 Å, respectively.



Fig. S45. The normalized XANES spectra at the Rh K-edge of the solid 6b, Rh<sub>2</sub>O<sub>3</sub> and Rh foil.



Fig. S46. The Fourier transform of  $k^2$  -weighted EXAFS spectra at the K-edge of the solid 6b,  $Rh_2O_3$  and Rh foil



Fig. S47. The experimental Rh EXAFS spectra (black line) and the fitting curve of solid 6b (red line)

### 8. Gel permeation chromatography (GPC) Study

Due to its insolubility of solid NHC-Rh coordination assembly **6b** even in hot DMF or DMSO, we performed GPC analysis on its oligomer **6b**', which was prepared with bis-NHC ligand and rhodium precursor in a ratio of 20:21 under the otherwise identical preparation method. The obtained solid could be partially dissolved in hot DMSO, which make it is possible to be measured by GPC.



Fig. S48. GPC result of NHC-Rh coordination assembly 6b'.

# 9. Metal-leaching tests with ICP-AES

| [Cat.] | Run | Conc. of Rh (mg/L) |
|--------|-----|--------------------|
| 6b     | 1   | 0.0856             |
| 6b     | 2   | 0.0741             |
| 6b     | 3   | 0.0631             |
| 6b     | 7   | < 0.03             |
| 6b     | 10  | < 0.03             |
| 6b     | 14  | < 0.03             |
| 6b     | 18  | < 0.03             |

Table S3. Rhodium leaching tests with the filtrates of the reaction mixture after consecutive runs<sup>*a*</sup>.

<sup>*a*</sup> ICP-AES analysis of the reaction filtrates after each consecutive run (reaction was carried at 1 mmol scale with 1 mol % **6b**). After filtration, the recovered catalyst was washed with 10 mL methanol and 10 mL dichloromethane then separated with centrifuging. After full volatilization of the dichloromethane at r.t, the residue was diluted to 500 mL as an alkaline or higher concentration will both cause a flameout of ICP-AES. The corresponding amount of Rh in the original mixture is  $0.5 \times$  the concentration measured with ICP-AES (mg).

#### Table S4. Substrate scope of olefins and amines <sup>a</sup>

Extremely bulky 2, 6-diisopropyl-*N*-methylaniline was selected as the amine substrate, no corresponding amine product was detected. We have applied propene as the smallest olefin in our study, one of the most important substrates in industry, the corresponding amine **9ma-2** was still produced 84% yield with 95/5 selectivity, demonstrating the high efficiency of our strategy. When *N*, *N*-dimethylamine, with better nucleophilicity than aromatic amines, was applied, no corresponding product was obtained.



<sup>*a*</sup> Reaction conditions: 1.25 mmol olefin, 0.5 mmol amine, 1 mol % solid catalyst **6b**, 4.0 mL THF, CO:H<sub>2</sub> (80 bar, 1:9), 150 °C, 18 h (All yields reported are isolated yields and regioselectivities were determined by <sup>1</sup>H NMR of the crude reaction mixture)



Fig. S49. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>, 298 K) spectrum of compound S3.



-30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 fl (ppm)

Fig. S50. <sup>19</sup>F NMR (376 MHz, DMSO-*d*<sub>6</sub>, 298 K) spectrum of compound S3.







Fig. S52. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>, 298 K) spectrum of NHC-Rh complex 1.



40 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 fl (ppm)

Fig. S54. <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>, 298 K) spectrum of NHC-Rh complex 2.



-30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 fl (ppm)





Fig. S56. <sup>1</sup>H NMR (400 MHz, DMSO-d6, 298 K) spectrum of NHC-Rh complex 3.



Fig. S57.  $^{13}$ C NMR (101 MHz, DMSO- $d_6$ , 298 K) spectrum of NHC-Rh complex 3.



**Fig. S58**. <sup>19</sup>F NMR (376 MHz, DMSO-*d*<sub>6</sub>, 298 K) spectrum of NHC-Rh complex **3**.



Fig. S59. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K) spectrum of NHC-Rh complex 4b.



Fig. S60. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>, 298 K) spectrum of spectrum of NHC-Rh complex 4b.



-30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 fl (ppm)

Fig. S61.  $^{19}\mathrm{F}$  NMR (376 MHz, CDCl\_3, 298 K) spectrum of NHC-Rh complex 4b.



Fig. S62. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K) spectrum of NHC-Rh complex 4a.



Fig. S63. <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>, 298 K) spectrum of spectrum of NHC-Rh complex 4a.





-30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 fl (ppm)

Fig. S64.  $^{19}\mathrm{F}$  NMR (376 MHz, CDCl\_3, 298 K) spectrum of NHC-Rh complex 4a.



Fig. S66. <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ , 298 K) spectrum of compound S5.



Fig. S67. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>, 298 K) spectrum of compound S6a.



Fig. S68. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>, 298 K) spectrum of compound S6b.



Fig. S69.  $^{13}$ C NMR (101 MHz, DMSO- $d_6$ , 298 K) spectrum of compound S6b.



Fig. S70. <sup>19</sup>F NMR (376 MHz, DMSO-*d*<sub>6</sub>, 298 K) spectrum of compound S6b.



Fig. S71. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>, 298 K) spectrum of compound S6c.



Fig. S72. <sup>19</sup>F NMR (376 MHz, DMSO-*d*<sub>6</sub>, 298 K) spectrum of compound S6c.



Fig. S73. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9aa.



Fig. S74. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K) spectrum of reaction mixture after reaction competition to generate 9aa.





Fig. S76. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9ba.





Fig. S78. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9ca.



Fig. S79. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9ca.



Fig. S80. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9da.



Fig. S81. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9da.



Fig. S82. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9ea-o.



Fig. S83. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9ea-o.



Fig. S84. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9ea-m.





Fig. S86. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9ea-p.





Fig. S88. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9fa.



Fig. S89. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9fa.



Fig. S90. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9ga.


Fig. S92. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9ha.

## (12.5) (162.5) (160.1) (149.3) (137.4) (137.4) (129.7) (129.7) (129.7) (129.7) (115.0) (115.2) (115.2) (115.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.2) (112.



Fig. S93. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9ha.





Fig. S94. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9ha.





Fig. S96.  $^{13}$ C NMR (101 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9ia.



220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 fl (ppm)

Fig. S98.  $^{13}$ C NMR (101 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9ja.



Fig. S99. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9ka.



Fig. S100. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9ka.



Fig. S101. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9la.



Fig. S102. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9la.

## 



Fig. S104. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9ma-2.





Fig. S106. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9ma-4.



Fig. S107. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9ma-5.



Fig. S108. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9ma-5.



Fig. S109. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9ma-7.



Fig. S110. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9ma-7.



Fig. S111. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9na.



Fig. S112. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9na.





Fig. S114.  $^{13}\mathrm{C}$  NMR (101 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 90a.





Fig. S116.  $^{13}$ C NMR (101 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9pa.



Fig. S117. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9pa.



Fig. S118. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9qa.



Fig. S119. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9qa.



Fig. S120. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9ra.





Fig. S121. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9ra.



Fig. S122. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9sa.



Fig. S123. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9sa.



Fig. S124. <sup>13</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9ta.



Fig. S125. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9ta.



Fig. S126. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9ua.



Fig. S127. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9ua.



Fig. S128. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9va.



Fig. S129. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9va.



Fig. S130. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9wa-5.



Fig. S131. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9wa-5.



Fig. S132. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9wa-6.



Fig. S133. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9wa-6.



Fig. S134. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9xa.



Fig. S135. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9xa.



Fig. S136. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9ya.





Fig. S138. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9za.



Fig. S139. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9za.



Fig. S140. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9ab.





Fig. S141. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9ab.



Fig. S142. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9ac.



Fig. S143. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9ac.



Fig. S144. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9ad.



Fig. S145. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9ad.



Fig. S146. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9ae.



40 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 fl (ppm)

Fig. S147. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9ae.



Fig. S148. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9mb.



Fig. S149. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9mb.



Fig. S150. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9mc.



Fig. S152. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9md.





Fig. S153. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9md.



Fig. S154. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9me.



40 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 fl (ppm)

Fig. S155. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9me.



Fig. S156. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9af.



40 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 f1 (ppm)

Fig. S157. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9af.





Fig. S158. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9ag.



Fig. S160. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9ag.





Fig. S162. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9ah.


Fig. S163. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9ai.



Fig. S164. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9ai.



Fig. S166. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9aj.





Fig. S167. <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>, 298 K) spectrum of compound 9ak.



Fig. S168. <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>, 298 K) spectrum of compound 9ak.



Fig. S169. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9al.



Fig. S170. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9al.





Fig. S172. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9am.



Fig. S174. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9an.



Fig. S175. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9ao.



Fig. S176. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9ao.



Fig. S178. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 9ap.





Fig. S180.  $^{13}$ C NMR (101 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 13a.

 $\begin{array}{c} 7.7\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\$ 



Fig. S181. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 13b.



Fig. S182. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 13b.

 $\begin{array}{c} 7,7,95\\ 7,7,77\\ 7,7,77\\ 7,7,77\\ 7,7,77\\ 7,7,77\\ 7,7,77\\ 7,7,77\\ 7,7,77\\ 7,7,72\\ 7,7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7,73\\ 7$ 



Fig. S183. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 14.



Fig. S184.  $^{13}$ C NMR (101 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 14.



Fig. S185. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 15.



Fig. S186. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 15.



Fig. S187. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 16.



Fig. S188. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 16.



Fig. S190.  $^{13}$ C NMR (101 MHz, CDCl<sub>3</sub>, 298 K) spectrum of compound 18.

## 11. High-resolution mass spectra



Fig. S191. HR-MS spectrum of compound 2.



Fig. S192. HR-MS spectrum of compound 3.



Fig. S193. HR-MS spectrum of compound 4b.

## 12. Crystallography

| Identification code                       | compound <b>2</b>                                      |
|-------------------------------------------|--------------------------------------------------------|
| Empirical formula                         | $C_{18}H_{28}BF_4N_4Rh$                                |
| Formula weight                            | 490.14                                                 |
| Temperature                               | 173(2) K                                               |
| Wavelength                                | 1.34138 Å                                              |
| Crystal system                            | Tetragonal                                             |
| Space group                               | I41/acd                                                |
| Unit cell dimensions                      | $a = 15.9403(10) \text{ Å}$ $\alpha = 90 ^{\circ}.$    |
|                                           | $b = 15.9403(10) \text{ Å} \qquad \beta = 90 \degree.$ |
|                                           | $c = 31.662(2) \text{ Å}$ $\gamma = 90 ^{\circ}.$      |
| Volume                                    | 8045.0(12) Å <sup>3</sup>                              |
| Z                                         | 72                                                     |
| Density (calculated)                      | 1.619 mg/m <sup>3</sup>                                |
| Absorption coefficient                    | 4.919 mm <sup>-1</sup>                                 |
| F(000)                                    | 4000                                                   |
| Crystal size                              | 0.160 x 0.120 x 0.050 mm <sup>3</sup>                  |
| Theta range for data collection           | 4.189 to 56.993 °.                                     |
| Index ranges                              | -19<=h<=19, -19<=k<=19, -39<=l<=35                     |
| Reflections collected                     | 54960                                                  |
| Independent reflections                   | 2064 [R(int) = 0.0543]                                 |
| Completeness to theta = 53.594 $^{\circ}$ | 99.9 %                                                 |
| Absorption correction                     | Semi-empirical from equivalents                        |
| Max. and min. transmission                | 0.751 and 0.554                                        |
| Refinement method                         | Full-matrix least-squares on F <sup>2</sup>            |
| Data / restraints / parameters            | 2064 / 42 / 149                                        |
| Goodness-of-fit on F <sup>2</sup>         | 1.121                                                  |
| Final R indices [I>2sigma(I)]             | R1 = 0.0387, wR2 = 0.1083                              |
| R indices (all data)                      | R1 = 0.0427, wR2 = 0.1118                              |
| Extinction coefficient                    | n/a                                                    |
| Largest diff. peak and hole               | 2.342 and -1.185 e.Å <sup>-3</sup>                     |

Table S5. Crystal data and structure refinement for compound 2

| Rh(1)-C(1)#1 | 2.045(4)  |
|--------------|-----------|
| Rh(1)-C(1)   | 2.045(4)  |
| Rh(1)-C(6)#1 | 2.203(3)  |
| Rh(1)-C(6)   | 2.203(3)  |
| Rh(1)-C(6')  | 2.203(3)  |
| Rh(1)-C(9)#1 | 2.205(3)  |
| Rh(1)-C(9')  | 2.205(3)  |
| Rh(1)-C(9)   | 2.205(3)  |
| B(1)-F(1)    | 1.342(3)  |
| B(1)-F(1)#2  | 1.342(3)  |
| B(1)-F(1)#3  | 1.342(3)  |
| B(1)-F(1)#4  | 1.342(3)  |
| B(2)-F(2)#5  | 1.308(4)  |
| B(2)-F(2)#6  | 1.308(4)  |
| B(2)-F(2)#7  | 1.308(4)  |
| B(2)-F(2)    | 1.308(4)  |
| N(1)-C(1)    | 1.358(5)  |
| N(1)-C(3)    | 1.383(5)  |
| N(1)-C(4)    | 1.447(5)  |
| N(2)-C(1)    | 1.358(5)  |
| N(2)-C(2)    | 1.381(5)  |
| N(2)-C(5)    | 1.458(6)  |
| C(2)-C(3)    | 1.337(7)  |
| C(2)-H(2)    | 0.9500    |
| C(3)-H(3)    | 0.9500    |
| C(4)-H(4A)   | 0.9800    |
| C(4)-H(4B)   | 0.9800    |
| C(4)-H(4C)   | 0.9800    |
| C(5)-H(5A)   | 0.9800    |
| C(5)-H(5B)   | 0.9800    |
| C(5)-H(5C)   | 0.9800    |
| C(6)-C(9)#1  | 1.380(6)  |
| C(6)-C(7)    | 1.544(11) |
| C(6)-H(6)    | 0.9500    |
| C(7)-C(8)    | 1.513(16) |
| C(7)-H(7A)   | 0.9900    |

Table S6. Bond lengths [Å] and angles  $[\circ]$  for Rh complex 2.

| C(7)-H(7B)          | 0.9900     |
|---------------------|------------|
| C(8)-C(9)           | 1.501(11)  |
| C(8)-H(8A)          | 0.9900     |
| C(8)-H(8B)          | 0.9900     |
| C(9)-H(9)           | 0.9500     |
| C(6')-C(7')         | 1.504(14)  |
| C(6')-H(6')         | 0.9500     |
| C(7')-C(8')         | 1.544(19)  |
| C(7')-H(7'1)        | 0.9900     |
| C(7')-H(7'2)        | 0.9900     |
| C(8')-C(9')         | 1.571(12)  |
| C(8')-H(8'1)        | 0.9900     |
| C(8')-H(8'2)        | 0.9900     |
| C(9')-H(9')         | 0.9500     |
|                     |            |
| C(1)#1-Rh(1)-C(1)   | 91.20(18)  |
| C(1)#1-Rh(1)-C(6)#1 | 160.08(15) |
| C(1)-Rh(1)-C(6)#1   | 91.80(13)  |
| C(1)#1-Rh(1)-C(6)   | 91.80(13)  |
| C(1)-Rh(1)-C(6)     | 160.08(15) |
| C(6)#1-Rh(1)-C(6)   | 92.0(2)    |
| C(1)#1-Rh(1)-C(6')  | 91.80(13)  |
| C(1)-Rh(1)-C(6')    | 160.08(15) |
| C(1)#1-Rh(1)-C(9)#1 | 90.69(13)  |
| C(1)-Rh(1)-C(9)#1   | 163.12(15) |
| C(6)#1-Rh(1)-C(9)#1 | 80.94(13)  |
| C(6)-Rh(1)-C(9)#1   | 36.48(15)  |
| C(6')-Rh(1)-C(9)#1  | 36.48(15)  |
| C(1)#1-Rh(1)-C(9')  | 163.12(15) |
| C(1)-Rh(1)-C(9')    | 90.69(13)  |
| C(6')-Rh(1)-C(9')   | 80.94(13)  |
| C(1)#1-Rh(1)-C(9)   | 163.12(15) |
| C(1)-Rh(1)-C(9)     | 90.69(13)  |
| C(6)#1-Rh(1)-C(9)   | 36.47(15)  |
| C(6)-Rh(1)-C(9)     | 80.94(13)  |
| C(9)#1-Rh(1)-C(9)   | 92.4(2)    |
| F(1)-B(1)-F(1)#2    | 108.7(5)   |
| F(1)-B(1)-F(1)#3    | 108.8(4)   |

| F(1)#2-B(1)-F(1)#3 | 111.0(5) |
|--------------------|----------|
| F(1)-B(1)-F(1)#4   | 111.0(5) |
| F(1)#2-B(1)-F(1)#4 | 108.8(4) |
| F(1)#3-B(1)-F(1)#4 | 108.7(5) |
| F(2)#5-B(2)-F(2)#6 | 111.9(6) |
| F(2)#5-B(2)-F(2)#7 | 108.3(3) |
| F(2)#6-B(2)-F(2)#7 | 108.3(3) |
| F(2)#5-B(2)-F(2)   | 108.3(3) |
| F(2)#6-B(2)-F(2)   | 108.3(3) |
| F(2)#7-B(2)-F(2)   | 111.9(6) |
| C(1)-N(1)-C(3)     | 111.9(3) |
| C(1)-N(1)-C(4)     | 124.7(3) |
| C(3)-N(1)-C(4)     | 123.4(3) |
| C(1)-N(2)-C(2)     | 111.7(3) |
| C(1)-N(2)-C(5)     | 124.8(3) |
| C(2)-N(2)-C(5)     | 123.4(3) |
| N(2)-C(1)-N(1)     | 103.1(3) |
| N(2)-C(1)-Rh(1)    | 128.3(3) |
| N(1)-C(1)-Rh(1)    | 128.5(3) |
| C(3)-C(2)-N(2)     | 106.9(3) |
| C(3)-C(2)-H(2)     | 126.6    |
| N(2)-C(2)-H(2)     | 126.6    |
| C(2)-C(3)-N(1)     | 106.3(3) |
| C(2)-C(3)-H(3)     | 126.8    |
| N(1)-C(3)-H(3)     | 126.8    |
| N(1)-C(4)-H(4A)    | 109.5    |
| N(1)-C(4)-H(4B)    | 109.5    |
| H(4A)-C(4)-H(4B)   | 109.5    |
| N(1)-C(4)-H(4C)    | 109.5    |
| H(4A)-C(4)-H(4C)   | 109.5    |
| H(4B)-C(4)-H(4C)   | 109.5    |
| N(2)-C(5)-H(5A)    | 109.5    |
| N(2)-C(5)-H(5B)    | 109.5    |
| H(5A)-C(5)-H(5B)   | 109.5    |
| N(2)-C(5)-H(5C)    | 109.5    |
| H(5A)-C(5)-H(5C)   | 109.5    |
| H(5B)-C(5)-H(5C)   | 109.5    |
| C(9)#1-C(6)-C(7)   | 117.4(6) |
|                    |          |

| C(9)#1-C(6)-Rh(1)   | 71.9(2)   |
|---------------------|-----------|
| C(7)-C(6)-Rh(1)     | 110.0(4)  |
| C(9)#1-C(6)-H(6)    | 121.3     |
| C(7)-C(6)-H(6)      | 121.3     |
| Rh(1)-C(6)-H(6)     | 88.3      |
| C(8)-C(7)-C(6)      | 113.4(8)  |
| C(8)-C(7)-H(7A)     | 108.9     |
| C(6)-C(7)-H(7A)     | 108.9     |
| C(8)-C(7)-H(7B)     | 108.9     |
| C(6)-C(7)-H(7B)     | 108.9     |
| H(7A)-C(7)-H(7B)    | 107.7     |
| C(9)-C(8)-C(7)      | 112.1(8)  |
| C(9)-C(8)-H(8A)     | 109.2     |
| C(7)-C(8)-H(8A)     | 109.2     |
| C(9)-C(8)-H(8B)     | 109.2     |
| C(7)-C(8)-H(8B)     | 109.2     |
| H(8A)-C(8)-H(8B)    | 107.9     |
| C(6)#1-C(9)-C(8)    | 135.6(6)  |
| C(6)#1-C(9)-Rh(1)   | 71.7(2)   |
| C(8)-C(9)-Rh(1)     | 107.1(4)  |
| C(6)#1-C(9)-H(9)    | 112.2     |
| C(8)-C(9)-H(9)      | 112.2     |
| Rh(1)-C(9)-H(9)     | 91.6      |
| C(7')-C(6')-Rh(1)   | 106.5(5)  |
| C(7')-C(6')-H(6')   | 126.8     |
| Rh(1)-C(6')-H(6')   | 126.8     |
| C(6')-C(7')-C(8')   | 109.7(9)  |
| C(6')-C(7')-H(7'1)  | 109.7     |
| C(8')-C(7')-H(7'1)  | 109.7     |
| C(6')-C(7')-H(7'2)  | 109.7     |
| C(8')-C(7')-H(7'2)  | 109.7     |
| H(7'1)-C(7')-H(7'2) | 108.2     |
| C(7')-C(8')-C(9')   | 110.6(10) |
| C(7')-C(8')-H(8'1)  | 109.5     |
| C(9')-C(8')-H(8'1)  | 109.5     |
| C(7')-C(8')-H(8'2)  | 109.5     |
| C(9')-C(8')-H(8'2)  | 109.5     |
| H(8'1)-C(8')-H(8'2) | 108.1     |

| C(8')-C(9')-Rh(1) | 109.8(5) |
|-------------------|----------|
| C(8')-C(9')-H(9') | 125.1    |
| Rh(1)-C(9')-H(9') | 125.1    |



Fig. S194. Crystal structure of rhodium complex 2.

| Identification code                       | compound <b>3</b>                           |                         |
|-------------------------------------------|---------------------------------------------|-------------------------|
| Empirical formula                         | $C_{13.50}H_{17}B_{0.50}ClF_2N_2Rh_{0.50}$  |                         |
| Formula weight                            | 337.60                                      |                         |
| Temperature                               | 181(2) K                                    |                         |
| Wavelength                                | 1.34138 Å                                   |                         |
| Crystal system                            | Monoclinic                                  |                         |
| Space group                               | P21/n                                       |                         |
| Unit cell dimensions                      | a = 13.6170(10) Å                           | $\alpha = 90$ °.        |
|                                           | b = 17.2920(12) Å                           | $\beta$ = 116.871(2) °. |
|                                           | c = 13.8897(10) Å                           | $\gamma = 90$ °.        |
| Volume                                    | 2917.4(4) Å <sup>3</sup>                    |                         |
| Z                                         | 8                                           |                         |
| Density (calculated)                      | 1.537 Mg/m <sup>3</sup>                     |                         |
| Absorption coefficient                    | 4.603 mm <sup>-1</sup>                      |                         |
| F(000)                                    | 1376                                        |                         |
| Crystal size                              | 0.160 x 0.120 x 0.090 mm <sup>3</sup>       |                         |
| Theta range for data collection           | 5.346 to 59.478 °.                          |                         |
| Index ranges                              | -16<=h<=17, -22<=k<=22, -17<=l<=17          |                         |
| Reflections collected                     | 34511                                       |                         |
| Independent reflections                   | 6455 [R(int) = 0.0634]                      |                         |
| Completeness to theta = 53.594 $^{\circ}$ | 99.7 %                                      |                         |
| Absorption correction                     | Semi-empirical from equivalents             |                         |
| Max. and min. transmission                | 0.752 and 0.435                             |                         |
| Refinement method                         | Full-matrix least-squares on F <sup>2</sup> |                         |
| Data / restraints / parameters            | 6455 / 37 / 391                             |                         |
| Goodness-of-fit on F <sup>2</sup>         | 1.035                                       |                         |
| Final R indices [I>2sigma(I)]             | R1 = 0.0370, $wR2 = 0.0895$                 |                         |
| R indices (all data)                      | R1 = 0.0428, wR2 = 0.0941                   |                         |
| Extinction coefficient                    | n/a                                         |                         |
| Largest diff. peak and hole               | 0.957 and -1.120 e.Å <sup>-3</sup>          |                         |

Table S7. Crystal data and structure refinement for compound 3

| Rh(1)-C(1)  | 2.036(3) |
|-------------|----------|
| Rh(1)-C(10) | 2.045(3) |
| Rh(1)-C(23) | 2.200(3) |
| Rh(1)-C(20) | 2.203(3) |
| Rh(1)-C(19) | 2.206(3) |
| Rh(1)-C(24) | 2.208(3) |
| B(1)-F(3)   | 1.358(4) |
| B(1)-F(4)   | 1.365(4) |
| B(1)-F(1)   | 1.371(4) |
| B(1)-F(2)   | 1.379(4) |
| N(1)-C(1)   | 1.359(3) |
| N(1)-C(7)   | 1.391(3) |
| N(1)-C(8)   | 1.457(4) |
| N(2)-C(1)   | 1.356(3) |
| N(2)-C(2)   | 1.389(3) |
| N(2)-C(9)   | 1.451(3) |
| N(3)-C(10)  | 1.357(3) |
| N(3)-C(16)  | 1.388(3) |
| N(3)-C(17)  | 1.459(4) |
| N(4)-C(10)  | 1.360(3) |
| N(4)-C(11)  | 1.393(3) |
| N(4)-C(18)  | 1.458(3) |
| C(2)-C(7)   | 1.382(4) |
| C(2)-C(3)   | 1.390(4) |
| C(3)-C(4)   | 1.384(4) |
| C(3)-H(3)   | 0.9500   |
| C(4)-C(5)   | 1.385(5) |
| C(4)-H(4)   | 0.9500   |
| C(5)-C(6)   | 1.388(4) |
| C(5)-H(5)   | 0.9500   |
| C(6)-C(7)   | 1.391(4) |
| C(6)-H(6)   | 0.9500   |
| C(8)-H(8A)  | 0.9800   |
| C(8)-H(8B)  | 0.9800   |
| C(8)-H(8C)  | 0.9800   |
| C(9)-H(9A)  | 0.9800   |

 Table S8. Bond lengths [Å] and angles [°] for Rh complex 3.

| C(9)-H(9B)    | 0.9800    |
|---------------|-----------|
| C(9)-H(9C)    | 0.9800    |
| C(11)-C(16)   | 1.387(4)  |
| C(11)-C(12)   | 1.390(4)  |
| C(12)-C(13)   | 1.392(5)  |
| C(12)-H(12)   | 0.9500    |
| C(13)-C(14)   | 1.386(5)  |
| C(13)-H(13)   | 0.9500    |
| C(14)-C(15)   | 1.387(4)  |
| C(14)-H(14)   | 0.9500    |
| C(15)-C(16)   | 1.392(4)  |
| C(15)-H(15)   | 0.9500    |
| C(17)-H(17A)  | 0.9800    |
| C(17)-H(17B)  | 0.9800    |
| C(17)-H(17C)  | 0.9800    |
| C(18)-H(18A)  | 0.9800    |
| C(18)-H(18B)  | 0.9800    |
| C(18)-H(18C)  | 0.9800    |
| C(19)-C(20)   | 1.377(4)  |
| C(19)-C(26)   | 1.506(4)  |
| C(19)-H(19)   | 0.95(3)   |
| C(20)-C(21)   | 1.490(6)  |
| C(20)-C(21')  | 1.591(13) |
| C(20)-H(20)   | 1.02(3)   |
| C(21)-C(22)   | 1.529(10) |
| C(21)-H(21A)  | 0.9900    |
| C(21)-H(21B)  | 0.9900    |
| C(22)-C(23)   | 1.517(8)  |
| C(22)-H(22A)  | 0.9900    |
| C(22)-H(22B)  | 0.9900    |
| C(21')-C(22') | 1.509(16) |
| C(21')-H(21C) | 0.9900    |
| C(21')-H(21D) | 0.9900    |
| C(22')-C(23)  | 1.527(16) |
| C(22')-H(22C) | 0.9900    |
| C(22')-H(22D) | 0.9900    |
| C(23)-C(24)   | 1.375(4)  |
| C(23)-H(23)   | 0.98(3)   |

| C(24)-C(25)       | 1.506(4)   |
|-------------------|------------|
| C(24)-H(24)       | 0.97(3)    |
| C(25)-C(26)       | 1.467(5)   |
| C(25)-H(25A)      | 0.9900     |
| C(25)-H(25B)      | 0.9900     |
| C(26)-H(26A)      | 0.9900     |
| C(26)-H(26B)      | 0.9900     |
| C(27)-Cl(2)       | 1.740(4)   |
| C(27)-Cl(1)       | 1.748(4)   |
| C(27)-H(27A)      | 0.9900     |
| C(27)-H(27B)      | 0.9900     |
| C(1)-Rh(1)-C(10)  | 92.42(10)  |
| C(1)-Rh(1)-C(23)  | 158.36(11) |
| C(10)-Rh(1)-C(23) | 93.15(10)  |
| C(1)-Rh(1)-C(20)  | 87.94(11)  |
| C(10)-Rh(1)-C(20) | 163.28(11) |
| C(23)-Rh(1)-C(20) | 80.84(11)  |
| C(1)-Rh(1)-C(19)  | 91.94(10)  |
| C(10)-Rh(1)-C(19) | 160.07(11) |
| C(23)-Rh(1)-C(19) | 89.90(11)  |
| C(20)-Rh(1)-C(19) | 36.39(11)  |
| C(1)-Rh(1)-C(24)  | 164.56(11) |
| C(10)-Rh(1)-C(24) | 89.71(10)  |
| C(23)-Rh(1)-C(24) | 36.36(11)  |
| C(20)-Rh(1)-C(24) | 94.38(12)  |
| C(19)-Rh(1)-C(24) | 81.13(11)  |
| F(3)-B(1)-F(4)    | 108.9(3)   |
| F(3)-B(1)-F(1)    | 108.7(3)   |
| F(4)-B(1)-F(1)    | 110.6(3)   |
| F(3)-B(1)-F(2)    | 110.1(3)   |
| F(4)-B(1)-F(2)    | 110.6(3)   |
| F(1)-B(1)-F(2)    | 107.9(3)   |
| C(1)-N(1)-C(7)    | 110.7(2)   |
| C(1)-N(1)-C(8)    | 126.0(2)   |
| C(7)-N(1)-C(8)    | 123.0(2)   |
| C(1)-N(2)-C(2)    | 111.2(2)   |
| C(1)-N(2)-C(9)    | 125.7(2)   |

| C(2)-N(2)-C(9)   | 123.0(2)   |
|------------------|------------|
| C(10)-N(3)-C(16) | 111.1(2)   |
| C(10)-N(3)-C(17) | 125.7(2)   |
| C(16)-N(3)-C(17) | 123.3(2)   |
| C(10)-N(4)-C(11) | 111.0(2)   |
| C(10)-N(4)-C(18) | 125.8(2)   |
| C(11)-N(4)-C(18) | 123.2(2)   |
| N(2)-C(1)-N(1)   | 105.5(2)   |
| N(2)-C(1)-Rh(1)  | 127.39(19) |
| N(1)-C(1)-Rh(1)  | 126.87(19) |
| C(7)-C(2)-N(2)   | 106.0(2)   |
| C(7)-C(2)-C(3)   | 122.2(3)   |
| N(2)-C(2)-C(3)   | 131.8(3)   |
| C(4)-C(3)-C(2)   | 115.8(3)   |
| C(4)-C(3)-H(3)   | 122.1      |
| C(2)-C(3)-H(3)   | 122.1      |
| C(3)-C(4)-C(5)   | 122.4(3)   |
| C(3)-C(4)-H(4)   | 118.8      |
| C(5)-C(4)-H(4)   | 118.8      |
| C(4)-C(5)-C(6)   | 121.8(3)   |
| C(4)-C(5)-H(5)   | 119.1      |
| C(6)-C(5)-H(5)   | 119.1      |
| C(5)-C(6)-C(7)   | 116.1(3)   |
| C(5)-C(6)-H(6)   | 122.0      |
| C(7)-C(6)-H(6)   | 122.0      |
| C(2)-C(7)-N(1)   | 106.5(2)   |
| C(2)-C(7)-C(6)   | 121.8(3)   |
| N(1)-C(7)-C(6)   | 131.6(3)   |
| N(1)-C(8)-H(8A)  | 109.5      |
| N(1)-C(8)-H(8B)  | 109.5      |
| H(8A)-C(8)-H(8B) | 109.5      |
| N(1)-C(8)-H(8C)  | 109.5      |
| H(8A)-C(8)-H(8C) | 109.5      |
| H(8B)-C(8)-H(8C) | 109.5      |
| N(2)-C(9)-H(9A)  | 109.5      |
| N(2)-C(9)-H(9B)  | 109.5      |
| H(9A)-C(9)-H(9B) | 109.5      |
| N(2)-C(9)-H(9C)  | 109.5      |
|                  |            |

| H(9A)-C(9)-H(9C)    | 109.5      |
|---------------------|------------|
| H(9B)-C(9)-H(9C)    | 109.5      |
| N(3)-C(10)-N(4)     | 105.5(2)   |
| N(3)-C(10)-Rh(1)    | 127.9(2)   |
| N(4)-C(10)-Rh(1)    | 126.53(19) |
| C(16)-C(11)-C(12)   | 121.7(3)   |
| C(16)-C(11)-N(4)    | 106.0(2)   |
| C(12)-C(11)-N(4)    | 132.2(3)   |
| C(11)-C(12)-C(13)   | 116.0(3)   |
| C(11)-C(12)-H(12)   | 122.0      |
| C(13)-C(12)-H(12)   | 122.0      |
| C(14)-C(13)-C(12)   | 122.3(3)   |
| C(14)-C(13)-H(13)   | 118.9      |
| C(12)-C(13)-H(13)   | 118.9      |
| C(13)-C(14)-C(15)   | 121.8(3)   |
| C(13)-C(14)-H(14)   | 119.1      |
| C(15)-C(14)-H(14)   | 119.1      |
| C(14)-C(15)-C(16)   | 116.1(3)   |
| C(14)-C(15)-H(15)   | 122.0      |
| C(16)-C(15)-H(15)   | 122.0      |
| C(11)-C(16)-N(3)    | 106.4(2)   |
| C(11)-C(16)-C(15)   | 122.2(3)   |
| N(3)-C(16)-C(15)    | 131.4(3)   |
| N(3)-C(17)-H(17A)   | 109.5      |
| N(3)-C(17)-H(17B)   | 109.5      |
| H(17A)-C(17)-H(17B) | 109.5      |
| N(3)-C(17)-H(17C)   | 109.5      |
| H(17A)-C(17)-H(17C) | 109.5      |
| H(17B)-C(17)-H(17C) | 109.5      |
| N(4)-C(18)-H(18A)   | 109.5      |
| N(4)-C(18)-H(18B)   | 109.5      |
| H(18A)-C(18)-H(18B) | 109.5      |
| N(4)-C(18)-H(18C)   | 109.5      |
| H(18A)-C(18)-H(18C) | 109.5      |
| H(18B)-C(18)-H(18C) | 109.5      |
| C(20)-C(19)-C(26)   | 124.0(3)   |
| C(20)-C(19)-Rh(1)   | 71.68(16)  |
| C(26)-C(19)-Rh(1)   | 109.9(2)   |

| C(20)-C(19)-H(19)    | 117.8(19) |
|----------------------|-----------|
| C(26)-C(19)-H(19)    | 115.0(19) |
| Rh(1)-C(19)-H(19)    | 106.3(19) |
| C(19)-C(20)-C(21)    | 132.6(4)  |
| C(19)-C(20)-C(21')   | 110.4(7)  |
| C(19)-C(20)-Rh(1)    | 71.93(16) |
| C(21)-C(20)-Rh(1)    | 105.4(3)  |
| C(21')-C(20)-Rh(1)   | 111.0(4)  |
| C(19)-C(20)-H(20)    | 115(2)    |
| C(21)-C(20)-H(20)    | 110(2)    |
| C(21')-C(20)-H(20)   | 127(2)    |
| Rh(1)-C(20)-H(20)    | 107(2)    |
| C(20)-C(21)-C(22)    | 113.1(5)  |
| C(20)-C(21)-H(21A)   | 109.0     |
| C(22)-C(21)-H(21A)   | 109.0     |
| C(20)-C(21)-H(21B)   | 109.0     |
| C(22)-C(21)-H(21B)   | 109.0     |
| H(21A)-C(21)-H(21B)  | 107.8     |
| C(23)-C(22)-C(21)    | 111.4(6)  |
| C(23)-C(22)-H(22A)   | 109.3     |
| C(21)-C(22)-H(22A)   | 109.3     |
| C(23)-C(22)-H(22B)   | 109.3     |
| C(21)-C(22)-H(22B)   | 109.3     |
| H(22A)-C(22)-H(22B)  | 108.0     |
| C(22')-C(21')-C(20)  | 110.4(12) |
| C(22')-C(21')-H(21C) | 109.6     |
| C(20)-C(21')-H(21C)  | 109.6     |
| C(22')-C(21')-H(21D) | 109.6     |
| C(20)-C(21')-H(21D)  | 109.6     |
| H(21C)-C(21')-H(21D) | 108.1     |
| C(21')-C(22')-C(23)  | 112.2(13) |
| C(21')-C(22')-H(22C) | 109.2     |
| C(23)-C(22')-H(22C)  | 109.2     |
| C(21')-C(22')-H(22D) | 109.2     |
| C(23)-C(22')-H(22D)  | 109.2     |
| H(22C)-C(22')-H(22D) | 107.9     |
| C(24)-C(23)-C(22)    | 121.0(4)  |
| C(24)-C(23)-C(22')   | 138.0(7)  |

| C(24)-C(23)-Rh(1)   | 72.11(16) |
|---------------------|-----------|
| C(22)-C(23)-Rh(1)   | 111.0(4)  |
| C(22')-C(23)-Rh(1)  | 107.7(8)  |
| C(24)-C(23)-H(23)   | 116(2)    |
| C(22)-C(23)-H(23)   | 120(2)    |
| C(22')-C(23)-H(23)  | 105(2)    |
| Rh(1)-C(23)-H(23)   | 101.7(19) |
| C(23)-C(24)-C(25)   | 126.8(3)  |
| C(23)-C(24)-Rh(1)   | 71.52(15) |
| C(25)-C(24)-Rh(1)   | 108.0(2)  |
| C(23)-C(24)-H(24)   | 116.4(19) |
| C(25)-C(24)-H(24)   | 114.3(19) |
| Rh(1)-C(24)-H(24)   | 106.6(19) |
| C(26)-C(25)-C(24)   | 115.9(3)  |
| C(26)-C(25)-H(25A)  | 108.3     |
| C(24)-C(25)-H(25A)  | 108.3     |
| C(26)-C(25)-H(25B)  | 108.3     |
| C(24)-C(25)-H(25B)  | 108.3     |
| H(25A)-C(25)-H(25B) | 107.4     |
| C(25)-C(26)-C(19)   | 117.4(3)  |
| C(25)-C(26)-H(26A)  | 108.0     |
| C(19)-C(26)-H(26A)  | 108.0     |
| C(25)-C(26)-H(26B)  | 108.0     |
| C(19)-C(26)-H(26B)  | 108.0     |
| H(26A)-C(26)-H(26B) | 107.2     |
| Cl(2)-C(27)-Cl(1)   | 112.7(2)  |
| Cl(2)-C(27)-H(27A)  | 109.0     |
| Cl(1)-C(27)-H(27A)  | 109.0     |
| Cl(2)-C(27)-H(27B)  | 109.0     |
| Cl(1)-C(27)-H(27B)  | 109.0     |
| H(27A)-C(27)-H(27B) | 107.8     |



Fig. S195. Crystal structure of rhodium complex 3.

| Table S9. Crystal data and structure refinement for compound 4b |                                                      |                  |
|-----------------------------------------------------------------|------------------------------------------------------|------------------|
| Identification code                                             | compound <b>4b</b>                                   |                  |
| Empirical formula                                               | $C_{127}H_{147}B_2Cl_9F_8N_8Rh_2$                    |                  |
| Formula weight                                                  | 2484.01                                              |                  |
| Temperature                                                     | 175(2) K                                             |                  |
| Wavelength                                                      | 1.34138 Å                                            |                  |
| Crystal system                                                  | Monoclinic                                           |                  |
| Space group                                                     | P21/c                                                |                  |
| Unit cell dimensions                                            | a = 15.1914(9) Å                                     | $\alpha = 90$ °. |
|                                                                 | b = 15.8408(9) Å                                     | β=93.157(2) °.   |
|                                                                 | c = 55.703(3)  Å                                     | $\gamma = 90$ °. |
| Volume                                                          | 13384.2(13) Å <sup>3</sup>                           |                  |
| Z                                                               | 4                                                    |                  |
| Density (calculated)                                            | $1.233 \text{ Mg/m}^3$                               |                  |
| Absorption coefficient                                          | 2.755 mm <sup>-1</sup>                               |                  |
| F(000)                                                          | 5160                                                 |                  |
| Crystal size                                                    | $0.250 \text{ x} 0.220 \text{ x} 0.180 \text{ mm}^3$ |                  |
| Theta range for data collection                                 | 3.510 to 56.500 °.                                   |                  |
| Index ranges                                                    | -18<=h<=18, -19<=k<=18, -69                          | 9<=l<=69         |
| Reflections collected                                           | 148292                                               |                  |
| Independent reflections                                         | 26519 [R(int) = 0.0653]                              |                  |
| Completeness to theta = 53.594 $^{\circ}$                       | 99.0 %                                               |                  |
| Absorption correction                                           | Semi-empirical from equivaler                        | nts              |
| Max. and min. transmission                                      | 0.751 and 0.454                                      |                  |
| Refinement method                                               | Full-matrix least-squares on F <sup>2</sup>          |                  |
| Data / restraints / parameters                                  | 26519 / 308 / 1482                                   |                  |
| Goodness-of-fit on F <sup>2</sup>                               | 1.087                                                |                  |
| Final R indices [I>2sigma(I)]                                   | R1 = 0.1248, wR2 = 0.3036                            |                  |
| R indices (all data)                                            | R1 = 0.1326, wR2 = 0.3069                            |                  |
| Extinction coefficient                                          | n/a                                                  |                  |
| Largest diff. peak and hole                                     | 1.428 and -2.474 e.Å <sup>-3</sup>                   |                  |

| Rh(1)-C(28)  | 2.057(8)  |
|--------------|-----------|
| Rh(1)-C(1)   | 2.061(8)  |
| Rh(1)-C(77)  | 2.187(9)  |
| Rh(1)-C(73)  | 2.188(8)  |
| Rh(1)-C(72)  | 2.202(9)  |
| Rh(1)-C(76)  | 2.214(9)  |
| Rh(2)-C(90)  | 2.062(9)  |
| Rh(2)-C(55)  | 2.072(9)  |
| Rh(2)-C(117) | 2.168(9)  |
| Rh(2)-C(118) | 2.203(9)  |
| Rh(2)-C(121) | 2.214(9)  |
| Rh(2)-C(122) | 2.226(10) |
| B(1)-F(4)    | 1.21(2)   |
| B(1)-F(3)    | 1.358(17) |
| B(1)-F(1)    | 1.374(16) |
| B(1)-F(2)    | 1.378(16) |
| B(2)-F(8)    | 1.313(17) |
| B(2)-F(7)    | 1.32(3)   |
| B(2)-F(5)    | 1.33(3)   |
| B(2)-F(6)    | 1.400(18) |
| B(2')-F(6')  | 1.325(16) |
| B(2')-F(8')  | 1.328(17) |
| B(2')-F(7')  | 1.330(17) |
| B(2')-F(5')  | 1.358(13) |
| N(1)-C(1)    | 1.345(11) |
| N(1)-C(15)   | 1.399(10) |
| N(1)-C(26)   | 1.472(11) |
| N(2)-C(1)    | 1.366(11) |
| N(2)-C(2)    | 1.402(10) |
| N(2)-C(27)   | 1.447(10) |
| N(3)-C(28)   | 1.354(10) |
| N(3)-C(42)   | 1.410(9)  |
| N(3)-C(53)   | 1.433(11) |
| N(4)-C(28)   | 1.373(10) |
| N(4)-C(29)   | 1.396(10) |
| N(4)-C(54)   | 1.456(11) |

 Table S10. Bond lengths [Å] and angles [°] for Rh complex 4.

| N(5)-C(55)  | 1.342(11) |
|-------------|-----------|
| N(5)-C(69)  | 1.397(10) |
| N(5)-C(88)  | 1.457(10) |
| N(6)-C(55)  | 1.349(11) |
| N(6)-C(56)  | 1.398(12) |
| N(6)-C(89)  | 1.446(11) |
| N(7)-C(90)  | 1.375(11) |
| N(7)-C(104) | 1.382(12) |
| N(7)-C(115) | 1.460(13) |
| N(8)-C(90)  | 1.341(11) |
| N(8)-C(91)  | 1.399(13) |
| N(8)-C(116) | 1.438(14) |
| C(2)-C(15)  | 1.371(11) |
| C(2)-C(3)   | 1.445(11) |
| C(3)-C(4)   | 1.407(12) |
| C(3)-C(16)  | 1.430(11) |
| C(4)-C(5)   | 1.401(12) |
| C(4)-H(4)   | 0.9500    |
| C(5)-C(6)   | 1.390(12) |
| C(5)-C(18)  | 1.501(12) |
| C(6)-C(7)   | 1.392(12) |
| C(6)-H(6)   | 0.9500    |
| C(7)-C(16)  | 1.400(11) |
| C(7)-C(8)   | 1.442(11) |
| C(8)-C(9)   | 1.326(12) |
| C(8)-H(8)   | 0.9500    |
| C(9)-C(10)  | 1.441(12) |
| C(9)-H(9)   | 0.9500    |
| C(10)-C(11) | 1.395(12) |
| C(10)-C(17) | 1.415(11) |
| C(11)-C(12) | 1.386(12) |
| C(11)-H(11) | 0.9500    |
| C(12)-C(13) | 1.396(11) |
| C(12)-C(22) | 1.533(12) |
| C(13)-C(14) | 1.373(11) |
| C(13)-H(13) | 0.9500    |
| C(14)-C(17) | 1.423(11) |
| C(14)-C(15) | 1.457(11) |
|             |           |

| C(16)-C(17)  | 1.435(11) |
|--------------|-----------|
| C(18)-C(20)  | 1.479(18) |
| C(18)-C(21)  | 1.532(16) |
| C(18)-C(19)  | 1.578(17) |
| C(19)-H(19A) | 0.9800    |
| C(19)-H(19B) | 0.9800    |
| C(19)-H(19C) | 0.9800    |
| C(20)-H(20A) | 0.9800    |
| C(20)-H(20B) | 0.9800    |
| C(20)-H(20C) | 0.9800    |
| C(21)-H(21A) | 0.9800    |
| C(21)-H(21B) | 0.9800    |
| C(21)-H(21C) | 0.9800    |
| C(22)-C(24)  | 1.507(15) |
| C(22)-C(23)  | 1.533(14) |
| C(22)-C(25)  | 1.536(15) |
| C(23)-H(23A) | 0.9800    |
| C(23)-H(23B) | 0.9800    |
| C(23)-H(23C) | 0.9800    |
| C(24)-H(24A) | 0.9800    |
| C(24)-H(24B) | 0.9800    |
| C(24)-H(24C) | 0.9800    |
| C(25)-H(25A) | 0.9800    |
| C(25)-H(25B) | 0.9800    |
| C(25)-H(25C) | 0.9800    |
| C(26)-H(26A) | 0.9800    |
| C(26)-H(26B) | 0.9800    |
| C(26)-H(26C) | 0.9800    |
| C(27)-H(27A) | 0.9800    |
| C(27)-H(27B) | 0.9800    |
| C(27)-H(27C) | 0.9800    |
| C(29)-C(42)  | 1.341(12) |
| C(29)-C(30)  | 1.458(11) |
| C(30)-C(31)  | 1.383(11) |
| C(30)-C(43)  | 1.415(12) |
| C(31)-C(32)  | 1.388(12) |
| C(31)-H(31)  | 0.9500    |
| C(32)-C(33)  | 1.343(13) |
| C(32)-C(45)  | 1.552(13) |
|--------------|-----------|
| C(33)-C(34)  | 1.393(13) |
| C(33)-H(33)  | 0.9500    |
| C(34)-C(43)  | 1.446(11) |
| C(34)-C(35)  | 1.449(12) |
| C(35)-C(36)  | 1.358(11) |
| C(35)-H(35)  | 0.9500    |
| C(36)-C(37)  | 1.436(12) |
| C(36)-H(36)  | 0.9500    |
| C(37)-C(38)  | 1.378(13) |
| C(37)-C(44)  | 1.437(12) |
| C(38)-C(39)  | 1.388(14) |
| C(38)-H(38)  | 0.9500    |
| C(39)-C(40)  | 1.418(13) |
| C(39)-C(49)  | 1.521(14) |
| C(40)-C(41)  | 1.392(12) |
| C(40)-H(40)  | 0.9500    |
| C(41)-C(44)  | 1.413(11) |
| C(41)-C(42)  | 1.442(11) |
| C(43)-C(44)  | 1.420(12) |
| C(45)-C(47)  | 1.528(15) |
| C(45)-C(46)  | 1.559(15) |
| C(45)-C(48)  | 1.561(16) |
| C(46)-H(46A) | 0.9800    |
| C(46)-H(46B) | 0.9800    |
| C(46)-H(46C) | 0.9800    |
| C(47)-H(47A) | 0.9800    |
| C(47)-H(47B) | 0.9800    |
| C(47)-H(47C) | 0.9800    |
| C(48)-H(48A) | 0.9800    |
| C(48)-H(48B) | 0.9800    |
| C(48)-H(48C) | 0.9800    |
| C(49)-C(51)  | 1.512(17) |
| C(49)-C(52)  | 1.523(17) |
| C(49)-C(50)  | 1.556(16) |
| C(50)-H(50A) | 0.9800    |
| C(50)-H(50B) | 0.9800    |
| C(50)-H(50C) | 0.9800    |
|              |           |

| C(51)-H(51A) | 0.9800    |
|--------------|-----------|
| C(51)-H(51B) | 0.9800    |
| C(51)-H(51C) | 0.9800    |
| C(52)-H(52A) | 0.9800    |
| C(52)-H(52B) | 0.9800    |
| C(52)-H(52C) | 0.9800    |
| C(53)-H(53A) | 0.9800    |
| C(53)-H(53B) | 0.9800    |
| C(53)-H(53C) | 0.9800    |
| C(54)-H(54A) | 0.9800    |
| C(54)-H(54B) | 0.9800    |
| C(54)-H(54C) | 0.9800    |
| C(56)-C(69)  | 1.375(12) |
| C(56)-C(57)  | 1.441(12) |
| C(57)-C(70)  | 1.405(14) |
| C(57)-C(58)  | 1.421(14) |
| C(58)-C(59)  | 1.394(15) |
| C(58)-H(58)  | 0.9500    |
| C(59)-C(60)  | 1.376(18) |
| C(59)-C(80)  | 1.515(16) |
| C(60)-C(61)  | 1.412(16) |
| C(60)-H(60)  | 0.9500    |
| C(61)-C(62)  | 1.404(16) |
| C(61)-C(70)  | 1.415(13) |
| C(62)-C(63)  | 1.355(13) |
| C(62)-H(62)  | 0.9500    |
| C(63)-C(64)  | 1.420(13) |
| C(63)-H(63)  | 0.9500    |
| C(64)-C(65)  | 1.412(13) |
| C(64)-C(71)  | 1.438(13) |
| C(65)-C(66)  | 1.405(13) |
| C(65)-H(65)  | 0.9500    |
| C(66)-C(67)  | 1.386(12) |
| C(66)-C(84)  | 1.491(13) |
| C(67)-C(68)  | 1.418(12) |
| C(67)-H(67)  | 0.9500    |
| C(68)-C(69)  | 1.419(11) |
| C(68)-C(71)  | 1.427(12) |
|              |           |

| C(70)-C(71)  | 1.419(13) |
|--------------|-----------|
| C(72)-C(73)  | 1.360(15) |
| C(72)-C(79)  | 1.536(16) |
| C(72)-H(72)  | 1.0000    |
| C(73)-C(74)  | 1.496(15) |
| С(73)-Н(73)  | 1.0000    |
| C(74)-C(75)  | 1.504(16) |
| C(74)-H(74A) | 0.9900    |
| C(74)-H(74B) | 0.9900    |
| C(75)-C(76)  | 1.483(14) |
| C(75)-H(75A) | 0.9900    |
| C(75)-H(75B) | 0.9900    |
| C(76)-C(77)  | 1.367(16) |
| C(76)-H(76)  | 1.0000    |
| C(77)-C(78)  | 1.547(18) |
| C(77)-H(77)  | 1.0000    |
| C(78)-C(79)  | 1.487(19) |
| C(78)-H(78A) | 0.9900    |
| C(78)-H(78B) | 0.9900    |
| C(79)-H(79A) | 0.9900    |
| C(79)-H(79B) | 0.9900    |
| C(80)-C(82)  | 1.510(19) |
| C(80)-C(83)  | 1.518(15) |
| C(80)-C(81)  | 1.530(19) |
| C(81)-H(81A) | 0.9800    |
| C(81)-H(81B) | 0.9800    |
| C(81)-H(81C) | 0.9800    |
| C(82)-H(82A) | 0.9800    |
| C(82)-H(82B) | 0.9800    |
| C(82)-H(82C) | 0.9800    |
| C(83)-H(83A) | 0.9800    |
| C(83)-H(83B) | 0.9800    |
| C(83)-H(83C) | 0.9800    |
| C(84)-C(85)  | 1.514(15) |
| C(84)-C(87)  | 1.537(13) |
| C(84)-C(86)  | 1.552(13) |
| C(85)-H(85A) | 0.9800    |
| C(85)-H(85B) | 0.9800    |

| C(86)-H(86A)   0.9800     C(86)-H(86B)   0.9800     C(86)-H(86C)   0.9800     C(87)-H(87A)   0.9800     C(87)-H(87B)   0.9800     C(87)-H(87C)   0.9800     C(88)-H(88A)   0.9800     C(88)-H(88B)   0.9800     C(89)-H(89A)   0.9800     C(89)-H(89B)   0.9800     C(91)-C(104)   1.359(16)     C(91)-C(92)   1.448(14)     C(92)-C(03)   1.391(14)     C(92)-C(05)   1.452(17)     C(93)-H(93)   0.9500     C(94)-C(107)   1.53(3)     C(94)-C(107)   1.53(3)     C(95)-H(95)   0.9500     C(96)-C(105)   1.462(16)     C(96)-C(105)   1.462(16)     C(96)-C(105)   1.462(16)     C(96)-C(105)   1.462(16)     C(96)-C(97)   1.462(16)     C(97)-H(97)   0.9500     C(98)-C(99)   1.37(19)     C(97)-H(97)   0.9500     C(98)-C(106)   1.378(14)     C(99)-C(106)   1.37(2)     C(100)-H(100)   0.9500 <t< th=""><th>C(85)-H(85C)</th><th>0.9800</th></t<>                                                                     | C(85)-H(85C)  | 0.9800    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|
| C(86)-H(86B)   0.9800     C(86)-H(86C)   0.9800     C(87)-H(87A)   0.9800     C(87)-H(87B)   0.9800     C(87)-H(87C)   0.9800     C(88)-H(88A)   0.9800     C(88)-H(88B)   0.9800     C(89)-H(89A)   0.9800     C(89)-H(89C)   0.9800     C(89)-H(89C)   0.9800     C(91)-C(104)   1.359(16)     C(92)-C(03)   1.391(14)     C(92)-C(105)   1.452(17)     C(93)-H(93)   0.9500     C(94)-C(107)   1.36(3)     C(94)-C(107)   1.34(2)     C(95)-H(95)   0.9500     C(96)-C(105)   1.462(16)     C(96)-C(105)   1.462(16)     C(96)-C(105)   1.462(16)     C(96)-C(97)   1.462(16)     C(96)-C(97)   1.462(16)     C(97)-C(98)   1.337(19)     C(97)-H(97)   0.9500     C(98)-H(98)   0.9500     C(98)-H(98)   0.9500     C(99)-C(106)   1.317(2)     C(100)-H(100)   0.9500     C(100)-H(100)   0.9500                                                                                                                            | C(86)-H(86A)  | 0.9800    |
| C(86)-H(86C)0.9800C(87)-H(87A)0.9800C(87)-H(87B)0.9800C(87)-H(87C)0.9800C(88)-H(88A)0.9800C(88)-H(88B)0.9800C(88)-H(88C)0.9800C(89)-H(89A)0.9800C(89)-H(89B)0.9800C(91)-C(104)1.359(16)C(91)-C(92)1.448(14)C(92)-C(93)1.391(14)C(92)-C(105)1.452(17)C(93)-C(94)1.431(14)C(93)-C(94)1.431(14)C(93)-C(94)1.36(3)C(94)-C(107)1.53(3)C(94)-C(107)1.53(3)C(95)-H(95)0.9500C(96)-C(105)1.462(16)C(96)-C(105)1.462(16)C(96)-C(105)1.415(17)C(96)-C(105)1.337(19)C(97)-C(98)1.337(19)C(97)-H(97)0.9500C(98)-C(99)1.415(17)C(98)-H(98)0.9500C(99)-C(100)1.378(14)C(99)-C(100)1.378(14)C(99)-C(100)1.378(14)C(99)-C(100)1.378(14)C(100)-H(100)0.9500C(101)-C(111)1.46(2)C(101)-C(102)1.390(16)C(101)-C(102)1.390(16)C(102)-H(102)0.9500C(102)-H(102)0.9500C(102)-H(102)0.9500C(102)-H(102)0.9500C(102)-H(102)0.9500C(102)-H(102)0.9500C(102)-H(102)0.9500C(102)-H(102)0.9500C(102)-H(102)0.9500 </td <td>C(86)-H(86B)</td> <td>0.9800</td> | C(86)-H(86B)  | 0.9800    |
| C(87)-H(87A)0.9800C(87)-H(87B)0.9800C(87)-H(87C)0.9800C(88)-H(88A)0.9800C(88)-H(88B)0.9800C(89)-H(89A)0.9800C(89)-H(89B)0.9800C(89)-H(89C)0.9800C(91)-C(104)1.359(16)C(91)-C(104)1.359(16)C(92)-C(93)1.448(14)C(92)-C(93)1.448(14)C(92)-C(93)1.452(17)C(93)-C(94)1.431(14)C(93)-C(94)1.431(14)C(93)-C(94)1.431(14)C(93)-C(95)1.36(3)C(94)-C(107)1.53(3)C(94)-C(107)1.53(3)C(94)-C(105)1.462(16)C(95)-H(95)0.9500C(96)-C(105)1.462(16)C(96)-C(105)1.462(16)C(97)-C(98)1.337(19)C(97)-C(98)1.337(19)C(97)-C(98)1.337(19)C(97)-C(98)1.337(19)C(99)-C(100)1.378(14)C(99)-C(100)1.378(14)C(99)-C(100)1.378(14)C(99)-C(100)1.378(14)C(100)-H(100)0.9500C(101)-C(101)1.37(2)C(100)-H(100)0.9500C(101)-C(102)1.390(16)C(101)-C(102)1.390(16)C(102)-C(103)1.406(18)C(102)-H(102)0.9500C(101)-C(104)1.391(12)                                                                                                                              | C(86)-H(86C)  | 0.9800    |
| C(87)-H(87B)0.9800C(87)-H(87C)0.9800C(88)-H(88A)0.9800C(88)-H(88B)0.9800C(89)-H(89A)0.9800C(89)-H(89B)0.9800C(89)-H(89C)0.9800C(91)-C(104)1.359(16)C(91)-C(102)1.448(14)C(92)-C(93)1.391(14)C(92)-C(105)1.452(17)C(93)-H(93)0.9500C(94)-C(107)1.53(3)C(94)-C(107)1.53(3)C(95)-C(96)1.34(2)C(95)-C(96)1.462(16)C(96)-C(105)1.462(16)C(96)-C(105)1.462(16)C(96)-C(97)1.462(16)C(96)-C(97)1.462(16)C(97)-H(97)0.9500C(97)-H(97)0.9500C(98)-H(98)0.9500C(99)-C(100)1.378(14)C(99)-C(100)1.378(14)C(99)-C(100)1.378(14)C(99)-C(100)1.378(14)C(99)-C(100)1.378(14)C(100)-C(101)1.37(2)C(100)-H(100)0.9500C(101)-C(102)1.390(16)C(101)-C(102)1.390(16)C(102)-H(102)0.9500C(102)-H(102)0.9500C(102)-H(102)0.9500C(102)-H(102)0.9500C(101)-C(103)1.406(18)C(102)-H(102)0.9500C(103)-C(106)1.391(12)                                                                                                                                       | C(87)-H(87A)  | 0.9800    |
| C(87)-H(87C)0.9800C(88)-H(88A)0.9800C(88)-H(88B)0.9800C(89)-H(89A)0.9800C(89)-H(89B)0.9800C(89)-H(89C)0.9800C(91)-C(104)1.359(16)C(91)-C(102)1.448(14)C(92)-C(93)1.391(14)C(92)-C(105)1.452(17)C(93)-H(93)0.9500C(94)-C(107)1.53(3)C(94)-C(107)1.53(3)C(94)-C(107)1.53(3)C(95)-H(95)0.9500C(96)-C(105)1.462(16)C(96)-C(97)1.462(2)C(97)-C(98)1.337(19)C(97)-H(97)0.9500C(98)-C(99)1.415(17)C(98)-C(99)1.415(17)C(98)-C(100)1.378(14)C(99)-C(100)1.378(14)C(100)-C(101)1.37(2)C(100)-H(100)0.9500C(101)-C(102)1.390(16)C(101)-C(102)1.390(16)C(102)-H(102)0.9500C(102)-H(102)0.9500C(102)-H(102)0.9500C(102)-H(102)0.9500C(102)-H(102)0.9500C(102)-H(102)0.9500C(103)-C(106)1.390(16)                                                                                                                                                                                                                                             | C(87)-H(87B)  | 0.9800    |
| C(88)-H(88A)0.9800C(88)-H(88B)0.9800C(88)-H(88C)0.9800C(89)-H(89A)0.9800C(89)-H(89B)0.9800C(89)-H(89C)0.9800C(91)-C(104)1.359(16)C(91)-C(92)1.448(14)C(92)-C(93)1.391(14)C(92)-C(105)1.452(17)C(93)-H(93)0.9500C(94)-C(95)1.36(3)C(94)-C(107)1.53(3)C(95)-F(96)1.34(2)C(95)-F(96)1.4462(16)C(96)-C(105)1.462(16)C(96)-C(105)1.462(16)C(96)-C(97)1.462(16)C(97)-F(98)1.337(19)C(97)-F(98)1.337(19)C(98)-C(99)1.415(17)C(98)-H(98)0.9500C(99)-C(100)1.378(14)C(99)-C(100)1.378(14)C(100)-C(101)1.37(2)C(100)-H(100)0.9500C(101)-C(111)1.46(2)C(101)-C(111)1.406(18)C(102)-H(102)0.9500C(101)-C(103)1.406(18)C(102)-H(102)0.9500                                                                                                                                                                                                                                                                                                    | C(87)-H(87C)  | 0.9800    |
| C(88)-H(88B)   0.9800     C(88)-H(88C)   0.9800     C(89)-H(89A)   0.9800     C(89)-H(89B)   0.9800     C(89)-H(89C)   0.9800     C(91)-C(104)   1.359(16)     C(91)-C(92)   1.448(14)     C(92)-C(93)   1.391(14)     C(92)-C(105)   1.452(17)     C(93)-C(94)   1.431(14)     C(93)-C(94)   1.431(14)     C(93)-C(94)   1.36(3)     C(94)-C(107)   1.53(3)     C(94)-C(107)   1.53(3)     C(95)-C(96)   1.34(2)     C(95)-C(96)   1.462(16)     C(96)-C(105)   1.462(16)     C(96)-C(105)   1.462(16)     C(97)-C(98)   1.337(19)     C(97)-C(98)   1.337(19)     C(97)-C(98)   1.337(19)     C(98)-C(99)   1.415(17)     C(98)-C(99)   1.415(17)     C(98)-C(99)   1.415(13)     C(100)-C(101)   1.37(2)     C(100)-C(101)   1.37(2)     C(100)-C(102)   1.390(16)     C(101)-C(111)   1.46(2)     C(101)-C(103)   1.406(18                                                                                                   | C(88)-H(88A)  | 0.9800    |
| C(88)-H(88C)   0.9800     C(89)-H(89B)   0.9800     C(89)-H(89C)   0.9800     C(91)-C(104)   1.359(16)     C(91)-C(92)   1.448(14)     C(92)-C(93)   1.391(14)     C(92)-C(105)   1.452(17)     C(93)-C(94)   1.431(14)     C(93)-C(94)   1.431(14)     C(93)-C(94)   1.431(14)     C(93)-C(94)   1.431(3)     C(94)-C(107)   1.53(3)     C(94)-C(107)   1.53(3)     C(95)-C(96)   1.34(2)     C(95)-C(96)   1.462(16)     C(96)-C(105)   1.462(16)     C(96)-C(105)   1.462(16)     C(96)-C(97)   1.46(2)     C(97)-C(98)   1.337(19)     C(97)-H(97)   0.9500     C(98)-H(98)   0.9500     C(98)-H(98)   0.9500     C(100)-C(101)   1.37(2)     C(100)-C(102)   1.390(16)     C(101)-C(111)   1.46(2)     C(101)-C(103)   1.406(18)     C(102)-C(103)   1.406(18)     C(102)-C(103)   1.391(12)                                                                                                                                | C(88)-H(88B)  | 0.9800    |
| C(89)-H(89A)0.9800C(89)-H(89B)0.9800C(89)-H(89C)0.9800C(91)-C(104)1.359(16)C(91)-C(92)1.448(14)C(92)-C(93)1.391(14)C(92)-C(105)1.452(17)C(93)-C(94)1.431(14)C(93)-C(94)1.431(14)C(93)-C(94)0.9500C(94)-C(95)1.36(3)C(94)-C(107)1.53(3)C(95)-C(96)1.34(2)C(95)-C(96)1.34(2)C(96)-C(105)1.462(16)C(96)-C(105)1.462(16)C(96)-C(97)1.46(2)C(97)-C(98)1.337(19)C(97)-C(98)1.337(19)C(97)-H(97)0.9500C(98)-C(99)1.415(17)C(98)-C(99)1.415(17)C(98)-C(100)1.378(14)C(99)-C(100)1.378(14)C(99)-C(100)1.37(2)C(100)-H(100)0.9500C(101)-C(101)1.390(16)C(101)-C(102)1.390(16)C(101)-C(103)1.406(18)C(102)-H(102)0.9500C(102)-H(102)0.9500C(102)-H(102)0.9500C(102)-H(102)0.9500C(102)-H(102)0.9500C(102)-H(102)0.9500C(102)-H(102)0.9500C(102)-H(102)0.9500C(102)-H(102)0.9500C(102)-H(102)0.9500                                                                                                                                          | C(88)-H(88C)  | 0.9800    |
| C(89)-H(89B)0.9800C(89)-H(89C)0.9800C(91)-C(104)1.359(16)C(91)-C(92)1.448(14)C(92)-C(93)1.391(14)C(92)-C(105)1.452(17)C(93)-C(94)1.431(14)C(93)-H(93)0.9500C(94)-C(107)1.53(3)C(94)-C(107)1.53(3)C(95)-H(95)0.9500C(95)-H(95)0.9500C(96)-C(105)1.462(16)C(96)-C(97)1.46(2)C(97)-C(98)1.337(19)C(97)-C(98)1.337(19)C(98)-C(99)1.415(17)C(98)-C(99)1.415(17)C(98)-C(99)1.415(17)C(98)-C(100)1.378(14)C(99)-C(100)1.378(14)C(99)-C(100)1.378(14)C(100)-C(101)1.37(2)C(100)-H(100)0.9500C(101)-C(102)1.390(16)C(101)-C(103)1.406(18)C(102)-H(102)0.9500C(102)-H(102)0.9500C(102)-H(102)0.9500C(103)-C(106)1.391(12)                                                                                                                                                                                                                                                                                                                  | C(89)-H(89A)  | 0.9800    |
| C(89)-H(89C)0.9800C(91)-C(104)1.359(16)C(91)-C(92)1.448(14)C(92)-C(93)1.391(14)C(92)-C(105)1.452(17)C(93)-C(94)1.431(14)C(93)-C(94)0.9500C(94)-C(95)1.36(3)C(94)-C(107)1.53(3)C(95)-C(96)1.34(2)C(95)-H(95)0.9500C(96)-C(105)1.462(16)C(96)-C(105)1.462(16)C(96)-C(97)1.46(2)C(97)-H(97)0.9500C(98)-C(99)1.415(17)C(98)-C(99)1.415(17)C(98)-H(98)0.9500C(99)-C(100)1.378(14)C(99)-C(106)1.416(13)C(100)-C(101)1.37(2)C(100)-H(100)0.9500C(101)-C(102)1.390(16)C(101)-C(103)1.406(18)C(102)-H(102)0.9500C(102)-H(102)0.9500C(102)-H(102)0.9500C(103)-C(106)1.391(12)                                                                                                                                                                                                                                                                                                                                                              | C(89)-H(89B)  | 0.9800    |
| C(91)-C(104)1.359(16)C(91)-C(92)1.448(14)C(92)-C(93)1.391(14)C(92)-C(105)1.452(17)C(93)-C(94)1.431(14)C(93)-H(93)0.9500C(94)-C(95)1.36(3)C(94)-C(107)1.53(3)C(95)-C(96)1.34(2)C(95)-C(96)1.34(2)C(96)-C(105)1.462(16)C(96)-C(105)1.462(16)C(96)-C(105)1.462(16)C(96)-C(97)1.46(2)C(97)-C(98)1.337(19)C(97)-H(97)0.9500C(98)-H(98)0.9500C(98)-H(98)0.9500C(99)-C(100)1.378(14)C(99)-C(100)1.378(14)C(99)-C(100)1.37(2)C(100)-H(100)0.9500C(101)-C(101)1.390(16)C(101)-C(102)1.390(16)C(101)-C(103)1.406(18)C(102)-H(102)0.9500C(102)-H(102)0.9500C(103)-C(106)1.391(12)                                                                                                                                                                                                                                                                                                                                                           | C(89)-H(89C)  | 0.9800    |
| C(91)-C(92)1.448(14)C(92)-C(93)1.391(14)C(92)-C(105)1.452(17)C(93)-C(94)1.431(14)C(93)-H(93)0.9500C(94)-C(95)1.36(3)C(94)-C(107)1.53(3)C(95)-C(96)1.34(2)C(95)-C(96)1.462(16)C(96)-C(105)1.462(16)C(96)-C(97)1.46(2)C(97)-H(97)0.9500C(97)-H(97)0.9500C(98)-C(99)1.415(17)C(98)-C(99)1.415(17)C(98)-H(98)0.9500C(99)-C(100)1.378(14)C(99)-C(106)1.416(13)C(100)-H(100)0.9500C(101)-C(101)1.37(2)C(101)-C(102)1.390(16)C(101)-C(103)1.406(18)C(102)-H(102)0.9500C(102)-H(102)0.9500C(103)-C(106)1.391(12)                                                                                                                                                                                                                                                                                                                                                                                                                         | C(91)-C(104)  | 1.359(16) |
| C(92)-C(93)1.391(14)C(92)-C(105)1.452(17)C(93)-C(94)1.431(14)C(93)-H(93)0.9500C(94)-C(95)1.36(3)C(94)-C(107)1.53(3)C(95)-C(96)1.34(2)C(95)-H(95)0.9500C(96)-C(105)1.462(16)C(96)-C(97)1.46(2)C(97)-C(98)1.337(19)C(97)-H(97)0.9500C(98)-C(99)1.415(17)C(98)-H(98)0.9500C(99)-C(100)1.378(14)C(99)-C(106)1.416(13)C(100)-C(101)1.37(2)C(100)-H(100)0.9500C(101)-C(101)1.46(2)C(101)-C(102)1.390(16)C(102)-H(102)0.9500C(102)-H(102)0.9500C(102)-H(102)0.9500C(102)-H(102)0.9500C(103)-C(106)1.391(12)                                                                                                                                                                                                                                                                                                                                                                                                                             | C(91)-C(92)   | 1.448(14) |
| C(92)-C(105)1.452(17)C(93)-C(94)1.431(14)C(93)-H(93)0.9500C(94)-C(95)1.36(3)C(94)-C(107)1.53(3)C(95)-C(96)1.34(2)C(95)-C(96)1.462(16)C(96)-C(105)1.462(16)C(96)-C(97)1.46(2)C(97)-C(98)1.337(19)C(97)-C(98)1.337(19)C(97)-H(97)0.9500C(98)-C(99)1.415(17)C(98)-C(99)1.415(17)C(98)-H(98)0.9500C(99)-C(100)1.378(14)C(99)-C(106)1.416(13)C(100)-H(100)0.9500C(101)-C(101)1.37(2)C(100)-H(100)0.9500C(101)-C(101)1.46(2)C(101)-C(102)1.390(16)C(101)-C(103)1.406(18)C(102)-H(102)0.9500C(102)-H(102)0.9500C(102)-H(102)0.9500C(103)-C(106)1.391(12)                                                                                                                                                                                                                                                                                                                                                                                | C(92)-C(93)   | 1.391(14) |
| C(93)-C(94)1.431(14)C(93)-H(93)0.9500C(94)-C(95)1.36(3)C(94)-C(107)1.53(3)C(95)-C(96)1.34(2)C(95)-H(95)0.9500C(96)-C(105)1.462(16)C(96)-C(97)1.46(2)C(97)-C(98)1.337(19)C(97)-H(97)0.9500C(98)-C(99)1.415(17)C(98)-H(98)0.9500C(98)-H(98)0.9500C(99)-C(100)1.378(14)C(99)-C(106)1.416(13)C(100)-H(100)0.9500C(101)-C(101)1.37(2)C(101)-C(102)1.390(16)C(101)-C(103)1.406(18)C(102)-H(102)0.9500C(102)-H(102)0.9500C(103)-C(106)1.391(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(92)-C(105)  | 1.452(17) |
| C(93)-H(93)0.9500C(94)-C(95)1.36(3)C(94)-C(107)1.53(3)C(95)-C(96)1.34(2)C(95)-H(95)0.9500C(96)-C(105)1.462(16)C(96)-C(97)1.46(2)C(97)-C(98)1.337(19)C(97)-H(97)0.9500C(98)-C(99)1.415(17)C(98)-C(99)1.415(17)C(98)-H(98)0.9500C(99)-C(100)1.378(14)C(99)-C(106)1.416(13)C(100)-H(100)0.9500C(101)-C(101)1.37(2)C(100)-H(100)0.9500C(101)-C(111)1.46(2)C(102)-C(103)1.406(18)C(102)-H(102)0.9500C(102)-H(102)0.9500C(103)-C(106)1.391(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(93)-C(94)   | 1.431(14) |
| C(94)-C(95)1.36(3)C(94)-C(107)1.53(3)C(95)-C(96)1.34(2)C(95)-H(95)0.9500C(96)-C(105)1.462(16)C(96)-C(97)1.46(2)C(97)-C(98)1.337(19)C(97)-H(97)0.9500C(98)-C(99)1.415(17)C(98)-H(98)0.9500C(99)-C(100)1.378(14)C(99)-C(106)1.416(13)C(100)-C(101)1.37(2)C(100)-H(100)0.9500C(101)-C(111)1.46(2)C(102)-C(103)1.406(18)C(102)-H(102)0.9500C(103)-C(106)1.391(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C(93)-H(93)   | 0.9500    |
| C(94)-C(107)1.53(3)C(95)-C(96)1.34(2)C(95)-H(95)0.9500C(96)-C(105)1.462(16)C(96)-C(97)1.46(2)C(97)-C(98)1.337(19)C(97)-H(97)0.9500C(98)-C(99)1.415(17)C(98)-H(98)0.9500C(99)-C(100)1.378(14)C(99)-C(106)1.416(13)C(100)-C(101)1.37(2)C(100)-H(100)0.9500C(101)-C(102)1.390(16)C(101)-C(103)1.406(18)C(102)-H(102)0.9500C(103)-C(106)1.391(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C(94)-C(95)   | 1.36(3)   |
| C(95)-C(96)1.34(2)C(95)-H(95)0.9500C(96)-C(105)1.462(16)C(96)-C(97)1.46(2)C(97)-C(98)1.337(19)C(97)-H(97)0.9500C(98)-C(99)1.415(17)C(98)-H(98)0.9500C(99)-C(100)1.378(14)C(99)-C(106)1.416(13)C(100)-C(101)1.37(2)C(100)-H(100)0.9500C(101)-C(102)1.390(16)C(101)-C(103)1.406(18)C(102)-H(102)0.9500C(103)-C(106)1.391(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(94)-C(107)  | 1.53(3)   |
| C(95)-H(95)0.9500C(96)-C(105)1.462(16)C(96)-C(97)1.46(2)C(97)-C(98)1.337(19)C(97)-H(97)0.9500C(98)-C(99)1.415(17)C(98)-H(98)0.9500C(99)-C(100)1.378(14)C(99)-C(106)1.416(13)C(100)-C(101)1.37(2)C(100)-H(100)0.9500C(101)-C(101)1.390(16)C(101)-C(101)1.46(2)C(102)-C(103)1.406(18)C(102)-H(102)0.9500C(103)-C(106)1.391(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C(95)-C(96)   | 1.34(2)   |
| C(96)-C(105)1.462(16)C(96)-C(97)1.46(2)C(97)-C(98)1.337(19)C(97)-H(97)0.9500C(98)-C(99)1.415(17)C(98)-H(98)0.9500C(99)-C(100)1.378(14)C(99)-C(106)1.416(13)C(100)-C(101)1.37(2)C(100)-H(100)0.9500C(101)-C(111)1.46(2)C(102)-C(103)1.406(18)C(102)-H(102)0.9500C(103)-C(106)1.391(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C(95)-H(95)   | 0.9500    |
| C(96)-C(97)1.46(2)C(97)-C(98)1.337(19)C(97)-H(97)0.9500C(98)-C(99)1.415(17)C(98)-H(98)0.9500C(99)-C(100)1.378(14)C(99)-C(106)1.416(13)C(100)-C(101)1.37(2)C(100)-H(100)0.9500C(101)-C(102)1.390(16)C(101)-C(103)1.406(18)C(102)-H(102)0.9500C(102)-H(102)0.9500C(103)-C(106)1.391(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C(96)-C(105)  | 1.462(16) |
| C(97)-C(98)1.337(19)C(97)-H(97)0.9500C(98)-C(99)1.415(17)C(98)-H(98)0.9500C(99)-C(100)1.378(14)C(99)-C(106)1.416(13)C(100)-C(101)1.37(2)C(100)-H(100)0.9500C(101)-C(102)1.390(16)C(101)-C(111)1.46(2)C(102)-C(103)1.406(18)C(102)-H(102)0.9500C(103)-C(106)1.391(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(96)-C(97)   | 1.46(2)   |
| C(97)-H(97)0.9500C(98)-C(99)1.415(17)C(98)-H(98)0.9500C(99)-C(100)1.378(14)C(99)-C(106)1.416(13)C(100)-C(101)1.37(2)C(100)-H(100)0.9500C(101)-C(102)1.390(16)C(101)-C(111)1.46(2)C(102)-C(103)1.406(18)C(102)-H(102)0.9500C(103)-C(106)1.391(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C(97)-C(98)   | 1.337(19) |
| C(98)-C(99)1.415(17)C(98)-H(98)0.9500C(99)-C(100)1.378(14)C(99)-C(106)1.416(13)C(100)-C(101)1.37(2)C(100)-H(100)0.9500C(101)-C(102)1.390(16)C(101)-C(111)1.46(2)C(102)-C(103)1.406(18)C(102)-H(102)0.9500C(103)-C(106)1.391(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(97)-H(97)   | 0.9500    |
| C(98)-H(98)0.9500C(99)-C(100)1.378(14)C(99)-C(106)1.416(13)C(100)-C(101)1.37(2)C(100)-H(100)0.9500C(101)-C(102)1.390(16)C(101)-C(111)1.46(2)C(102)-C(103)1.406(18)C(102)-H(102)0.9500C(103)-C(106)1.391(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C(98)-C(99)   | 1.415(17) |
| C(99)-C(100)1.378(14)C(99)-C(106)1.416(13)C(100)-C(101)1.37(2)C(100)-H(100)0.9500C(101)-C(102)1.390(16)C(101)-C(111)1.46(2)C(102)-C(103)1.406(18)C(102)-H(102)0.9500C(103)-C(106)1.391(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(98)-H(98)   | 0.9500    |
| C(99)-C(106)1.416(13)C(100)-C(101)1.37(2)C(100)-H(100)0.9500C(101)-C(102)1.390(16)C(101)-C(111)1.46(2)C(102)-C(103)1.406(18)C(102)-H(102)0.9500C(103)-C(106)1.391(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C(99)-C(100)  | 1.378(14) |
| C(100)-C(101)1.37(2)C(100)-H(100)0.9500C(101)-C(102)1.390(16)C(101)-C(111)1.46(2)C(102)-C(103)1.406(18)C(102)-H(102)0.9500C(103)-C(106)1.391(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C(99)-C(106)  | 1.416(13) |
| C(100)-H(100)0.9500C(101)-C(102)1.390(16)C(101)-C(111)1.46(2)C(102)-C(103)1.406(18)C(102)-H(102)0.9500C(103)-C(106)1.391(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C(100)-C(101) | 1.37(2)   |
| C(101)-C(102)1.390(16)C(101)-C(111)1.46(2)C(102)-C(103)1.406(18)C(102)-H(102)0.9500C(103)-C(106)1.391(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(100)-H(100) | 0.9500    |
| C(101)-C(111)1.46(2)C(102)-C(103)1.406(18)C(102)-H(102)0.9500C(103)-C(106)1.391(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C(101)-C(102) | 1.390(16) |
| C(102)-C(103)1.406(18)C(102)-H(102)0.9500C(103)-C(106)1.391(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(101)-C(111) | 1.46(2)   |
| C(102)-H(102) 0.9500<br>C(103)-C(106) 1.391(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(102)-C(103) | 1.406(18) |
| C(103)-C(106) 1.391(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C(102)-H(102) | 0.9500    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(103)-C(106) | 1.391(12) |

| C(103)-C(104) | 1.456(16) |
|---------------|-----------|
| C(105)-C(106) | 1.415(14) |
| C(107)-C(109) | 1.41(3)   |
| C(107)-C(108) | 1.512(18) |
| C(107)-C(110) | 1.60(4)   |
| C(108)-H(10A) | 0.9800    |
| C(108)-H(10B) | 0.9800    |
| C(108)-H(10C) | 0.9800    |
| C(109)-H(10D) | 0.9800    |
| C(109)-H(10E) | 0.9800    |
| C(109)-H(10F) | 0.9800    |
| C(110)-H(11A) | 0.9800    |
| C(110)-H(11B) | 0.9800    |
| C(110)-H(11C) | 0.9800    |
| C(111)-C(114) | 1.524(16) |
| C(111)-C(112) | 1.551(13) |
| C(111)-C(113) | 1.571(17) |
| C(112)-H(11D) | 0.9800    |
| C(112)-H(11E) | 0.9800    |
| C(112)-H(11F) | 0.9800    |
| C(113)-H(11G) | 0.9800    |
| С(113)-Н(11Н) | 0.9800    |
| C(113)-H(11I) | 0.9800    |
| C(114)-H(11J) | 0.9800    |
| C(114)-H(11K) | 0.9800    |
| C(114)-H(11L) | 0.9800    |
| C(115)-H(11M) | 0.9800    |
| C(115)-H(11N) | 0.9800    |
| C(115)-H(11O) | 0.9800    |
| C(116)-H(11P) | 0.9800    |
| C(116)-H(11Q) | 0.9800    |
| C(116)-H(11R) | 0.9800    |
| C(117)-C(118) | 1.373(15) |
| C(117)-C(124) | 1.490(17) |
| С(117)-Н(117) | 1.0000    |
| C(118)-C(119) | 1.534(15) |
| C(118)-H(118) | 1.0000    |
| C(119)-C(120) | 1.515(15) |

| C(119)-H(11S)     | 0.9900    |
|-------------------|-----------|
| C(119)-H(11T)     | 0.9900    |
| C(120)-C(121)     | 1.507(14) |
| C(120)-H(12A)     | 0.9900    |
| C(120)-H(12B)     | 0.9900    |
| C(121)-C(122)     | 1.371(15) |
| C(121)-H(121)     | 1.0000    |
| C(122)-C(123)     | 1.503(15) |
| C(122)-H(122)     | 1.0000    |
| C(123)-C(124)     | 1.550(17) |
| C(123)-H(12C)     | 0.9900    |
| C(123)-H(12D)     | 0.9900    |
| C(124)-H(12E)     | 0.9900    |
| C(124)-H(12F)     | 0.9900    |
| C(125)-Cl(1)      | 1.683(16) |
| C(125)-Cl(3)      | 1.72(2)   |
| C(125)-Cl(2)      | 1.770(17) |
| C(125)-H(125)     | 1.0000    |
| C(126)-Cl(5)      | 1.698(18) |
| C(126)-Cl(4)      | 1.718(18) |
| C(126)-Cl(6)      | 1.795(17) |
| C(126)-H(126)     | 1.0000    |
| C(127)-Cl(7)      | 1.66(2)   |
| C(127)-Cl(9)      | 1.72(3)   |
| C(127)-Cl(8)      | 1.73(2)   |
| C(127)-H(127)     | 1.0000    |
| C(28)-Rh(1)-C(1)  | 91.9(3)   |
| C(28)-Rh(1)-C(77) | 154.4(4)  |
| C(1)-Rh(1)-C(77)  | 91.6(4)   |
| C(28)-Rh(1)-C(73) | 92.5(3)   |
| C(1)-Rh(1)-C(73)  | 153.7(4)  |
| C(77)-Rh(1)-C(73) | 95.5(4)   |
| C(28)-Rh(1)-C(72) | 90.4(3)   |
| C(1)-Rh(1)-C(72)  | 169.6(4)  |
| C(77)-Rh(1)-C(72) | 82.0(4)   |
| C(73)-Rh(1)-C(72) | 36.1(4)   |
| C(28)-Rh(1)-C(76) | 168.9(4)  |

| 90.6(4)                              |
|--------------------------------------|
| 36.2(4)                              |
| 80.5(4)                              |
| 89.0(4)                              |
| 91.1(3)                              |
| 161.0(4)                             |
| 89.1(4)                              |
| 162.2(4)                             |
| 92.7(4)                              |
| 36.6(4)                              |
| 89.6(3)                              |
| 162.1(4)                             |
| 96.0(4)                              |
| 81.6(4)                              |
| 93.6(4)                              |
| 161.5(4)                             |
| 80.7(4)                              |
| 88.3(4)                              |
| 36.0(4)                              |
| 116(2)                               |
| 111.0(17)                            |
| 109.3(19)                            |
| 119.8(19)                            |
| 96.1(16)                             |
| 102.6(17)                            |
| 115(3)                               |
| 113(3)                               |
| 112(3)                               |
| 108(2)                               |
| 108(2)                               |
| 101(3)                               |
| 110(3)                               |
| 122(3)                               |
|                                      |
| 107(3)                               |
| 107(3)<br>109(3)                     |
| 107(3)<br>109(3)<br>100(3)           |
| 107(3)<br>109(3)<br>100(3)<br>106(2) |
|                                      |

| C(1)-N(1)-C(26)    | 123.1(7) |
|--------------------|----------|
| C(15)-N(1)-C(26)   | 126.2(7) |
| C(1)-N(2)-C(2)     | 110.0(7) |
| C(1)-N(2)-C(27)    | 121.5(7) |
| C(2)-N(2)-C(27)    | 127.5(7) |
| C(28)-N(3)-C(42)   | 109.4(7) |
| C(28)-N(3)-C(53)   | 121.8(7) |
| C(42)-N(3)-C(53)   | 128.8(7) |
| C(28)-N(4)-C(29)   | 108.5(7) |
| C(28)-N(4)-C(54)   | 123.4(7) |
| C(29)-N(4)-C(54)   | 128.0(7) |
| C(55)-N(5)-C(69)   | 110.7(7) |
| C(55)-N(5)-C(88)   | 123.3(7) |
| C(69)-N(5)-C(88)   | 126.0(7) |
| C(55)-N(6)-C(56)   | 110.0(7) |
| C(55)-N(6)-C(89)   | 122.2(8) |
| C(56)-N(6)-C(89)   | 127.9(8) |
| C(90)-N(7)-C(104)  | 108.4(9) |
| C(90)-N(7)-C(115)  | 123.5(8) |
| C(104)-N(7)-C(115) | 128.1(9) |
| C(90)-N(8)-C(91)   | 109.6(9) |
| C(90)-N(8)-C(116)  | 123.0(8) |
| C(91)-N(8)-C(116)  | 127.4(9) |
| N(1)-C(1)-N(2)     | 106.2(7) |
| N(1)-C(1)-Rh(1)    | 127.5(6) |
| N(2)-C(1)-Rh(1)    | 126.3(6) |
| C(15)-C(2)-N(2)    | 106.4(7) |
| C(15)-C(2)-C(3)    | 123.6(7) |
| N(2)-C(2)-C(3)     | 130.0(7) |
| C(4)-C(3)-C(16)    | 119.3(8) |
| C(4)-C(3)-C(2)     | 125.8(7) |
| C(16)-C(3)-C(2)    | 114.8(7) |
| C(5)-C(4)-C(3)     | 122.6(8) |
| C(5)-C(4)-H(4)     | 118.7    |
| C(3)-C(4)-H(4)     | 118.7    |
| C(6)-C(5)-C(4)     | 116.8(8) |
| C(6)-C(5)-C(18)    | 120.7(8) |
| C(4)-C(5)-C(18)    | 122.4(8) |
|                    |          |

| C(5)-C(6)-C(7)    | 122.3(8)  |
|-------------------|-----------|
| C(5)-C(6)-H(6)    | 118.8     |
| C(7)-C(6)-H(6)    | 118.8     |
| C(6)-C(7)-C(16)   | 121.3(8)  |
| C(6)-C(7)-C(8)    | 120.3(8)  |
| C(16)-C(7)-C(8)   | 118.4(8)  |
| C(9)-C(8)-C(7)    | 121.4(8)  |
| C(9)-C(8)-H(8)    | 119.3     |
| C(7)-C(8)-H(8)    | 119.3     |
| C(8)-C(9)-C(10)   | 121.3(8)  |
| C(8)-C(9)-H(9)    | 119.4     |
| C(10)-C(9)-H(9)   | 119.4     |
| C(11)-C(10)-C(17) | 118.5(8)  |
| C(11)-C(10)-C(9)  | 121.8(8)  |
| C(17)-C(10)-C(9)  | 119.7(8)  |
| C(12)-C(11)-C(10) | 123.5(8)  |
| C(12)-C(11)-H(11) | 118.2     |
| C(10)-C(11)-H(11) | 118.2     |
| C(11)-C(12)-C(13) | 116.8(8)  |
| C(11)-C(12)-C(22) | 123.5(8)  |
| C(13)-C(12)-C(22) | 119.7(8)  |
| C(14)-C(13)-C(12) | 122.5(8)  |
| C(14)-C(13)-H(13) | 118.7     |
| C(12)-C(13)-H(13) | 118.7     |
| C(13)-C(14)-C(17) | 120.1(7)  |
| C(13)-C(14)-C(15) | 126.0(8)  |
| C(17)-C(14)-C(15) | 113.9(7)  |
| C(2)-C(15)-N(1)   | 106.7(7)  |
| C(2)-C(15)-C(14)  | 122.8(7)  |
| N(1)-C(15)-C(14)  | 130.5(7)  |
| C(7)-C(16)-C(3)   | 117.6(8)  |
| C(7)-C(16)-C(17)  | 121.2(7)  |
| C(3)-C(16)-C(17)  | 121.1(7)  |
| C(10)-C(17)-C(14) | 118.5(7)  |
| C(10)-C(17)-C(16) | 118.0(7)  |
| C(14)-C(17)-C(16) | 123.6(7)  |
| C(20)-C(18)-C(5)  | 112.7(9)  |
| C(20)-C(18)-C(21) | 109.4(12) |
|                   |           |

| H(24A)-C(24)-H(24C) | 109.5    |
|---------------------|----------|
| H(24B)-C(24)-H(24C) | 109.5    |
| C(22)-C(25)-H(25A)  | 109.5    |
| C(22)-C(25)-H(25B)  | 109.5    |
| H(25A)-C(25)-H(25B) | 109.5    |
| C(22)-C(25)-H(25C)  | 109.5    |
| H(25A)-C(25)-H(25C) | 109.5    |
| H(25B)-C(25)-H(25C) | 109.5    |
| N(1)-C(26)-H(26A)   | 109.5    |
| N(1)-C(26)-H(26B)   | 109.5    |
| H(26A)-C(26)-H(26B) | 109.5    |
| N(1)-C(26)-H(26C)   | 109.5    |
| H(26A)-C(26)-H(26C) | 109.5    |
| H(26B)-C(26)-H(26C) | 109.5    |
| N(2)-C(27)-H(27A)   | 109.5    |
| N(2)-C(27)-H(27B)   | 109.5    |
| H(27A)-C(27)-H(27B) | 109.5    |
| N(2)-C(27)-H(27C)   | 109.5    |
| H(27A)-C(27)-H(27C) | 109.5    |
| H(27B)-C(27)-H(27C) | 109.5    |
| N(3)-C(28)-N(4)     | 106.8(7) |
| N(3)-C(28)-Rh(1)    | 128.7(6) |
| N(4)-C(28)-Rh(1)    | 124.4(6) |
| C(42)-C(29)-N(4)    | 108.4(7) |
| C(42)-C(29)-C(30)   | 122.6(8) |
| N(4)-C(29)-C(30)    | 128.9(8) |
| C(31)-C(30)-C(43)   | 119.6(8) |
| C(31)-C(30)-C(29)   | 125.6(8) |
| C(43)-C(30)-C(29)   | 114.7(7) |
| C(30)-C(31)-C(32)   | 122.0(8) |
| C(30)-C(31)-H(31)   | 119.0    |
| C(32)-C(31)-H(31)   | 119.0    |
| C(33)-C(32)-C(31)   | 120.4(9) |
| C(33)-C(32)-C(45)   | 119.7(8) |
| C(31)-C(32)-C(45)   | 119.8(9) |
| C(32)-C(33)-C(34)   | 120.3(8) |
| C(32)-C(33)-H(33)   | 119.9    |
| C(34)-C(33)-H(33)   | 119.9    |
|                     |          |

| C(33)-C(34)-C(43) | 121.1(8)  |
|-------------------|-----------|
| C(33)-C(34)-C(35) | 122.1(8)  |
| C(43)-C(34)-C(35) | 116.8(8)  |
| C(36)-C(35)-C(34) | 122.4(8)  |
| C(36)-C(35)-H(35) | 118.8     |
| C(34)-C(35)-H(35) | 118.8     |
| C(35)-C(36)-C(37) | 121.2(8)  |
| C(35)-C(36)-H(36) | 119.4     |
| C(37)-C(36)-H(36) | 119.4     |
| C(38)-C(37)-C(36) | 121.3(9)  |
| C(38)-C(37)-C(44) | 119.9(8)  |
| C(36)-C(37)-C(44) | 118.8(8)  |
| C(37)-C(38)-C(39) | 122.9(9)  |
| C(37)-C(38)-H(38) | 118.5     |
| C(39)-C(38)-H(38) | 118.5     |
| C(38)-C(39)-C(40) | 116.8(9)  |
| C(38)-C(39)-C(49) | 124.1(9)  |
| C(40)-C(39)-C(49) | 119.1(9)  |
| C(41)-C(40)-C(39) | 122.6(8)  |
| C(41)-C(40)-H(40) | 118.7     |
| C(39)-C(40)-H(40) | 118.7     |
| C(40)-C(41)-C(44) | 119.4(8)  |
| C(40)-C(41)-C(42) | 125.6(8)  |
| C(44)-C(41)-C(42) | 115.0(7)  |
| C(29)-C(42)-N(3)  | 106.8(7)  |
| C(29)-C(42)-C(41) | 123.5(7)  |
| N(3)-C(42)-C(41)  | 129.7(8)  |
| C(30)-C(43)-C(44) | 122.2(7)  |
| C(30)-C(43)-C(34) | 116.7(8)  |
| C(44)-C(43)-C(34) | 121.0(8)  |
| C(41)-C(44)-C(43) | 121.9(7)  |
| C(41)-C(44)-C(37) | 118.3(8)  |
| C(43)-C(44)-C(37) | 119.7(8)  |
| C(47)-C(45)-C(32) | 109.0(8)  |
| C(47)-C(45)-C(46) | 111.7(10) |
| C(32)-C(45)-C(46) | 110.3(9)  |
| C(47)-C(45)-C(48) | 106.3(10) |
| C(32)-C(45)-C(48) | 114.2(8)  |

| C(46)-C(45)-C(48)   | 105.3(9)  |
|---------------------|-----------|
| C(45)-C(46)-H(46A)  | 109.5     |
| C(45)-C(46)-H(46B)  | 109.5     |
| H(46A)-C(46)-H(46B) | 109.5     |
| C(45)-C(46)-H(46C)  | 109.5     |
| H(46A)-C(46)-H(46C) | 109.5     |
| H(46B)-C(46)-H(46C) | 109.5     |
| C(45)-C(47)-H(47A)  | 109.5     |
| C(45)-C(47)-H(47B)  | 109.5     |
| H(47A)-C(47)-H(47B) | 109.5     |
| C(45)-C(47)-H(47C)  | 109.5     |
| H(47A)-C(47)-H(47C) | 109.5     |
| H(47B)-C(47)-H(47C) | 109.5     |
| C(45)-C(48)-H(48A)  | 109.5     |
| C(45)-C(48)-H(48B)  | 109.5     |
| H(48A)-C(48)-H(48B) | 109.5     |
| C(45)-C(48)-H(48C)  | 109.5     |
| H(48A)-C(48)-H(48C) | 109.5     |
| H(48B)-C(48)-H(48C) | 109.5     |
| C(51)-C(49)-C(39)   | 110.3(10) |
| C(51)-C(49)-C(52)   | 108.8(13) |
| C(39)-C(49)-C(52)   | 112.8(10) |
| C(51)-C(49)-C(50)   | 104.6(10) |
| C(39)-C(49)-C(50)   | 113.3(9)  |
| C(52)-C(49)-C(50)   | 106.7(12) |
| C(49)-C(50)-H(50A)  | 109.5     |
| C(49)-C(50)-H(50B)  | 109.5     |
| H(50A)-C(50)-H(50B) | 109.5     |
| C(49)-C(50)-H(50C)  | 109.5     |
| H(50A)-C(50)-H(50C) | 109.5     |
| H(50B)-C(50)-H(50C) | 109.5     |
| C(49)-C(51)-H(51A)  | 109.5     |
| C(49)-C(51)-H(51B)  | 109.5     |
| H(51A)-C(51)-H(51B) | 109.5     |
| C(49)-C(51)-H(51C)  | 109.5     |
| H(51A)-C(51)-H(51C) | 109.5     |
| H(51B)-C(51)-H(51C) | 109.5     |
| C(49)-C(52)-H(52A)  | 109.5     |

| C(49)-C(52)-H(52B)  | 109.5     |
|---------------------|-----------|
| H(52A)-C(52)-H(52B) | 109.5     |
| C(49)-C(52)-H(52C)  | 109.5     |
| H(52A)-C(52)-H(52C) | 109.5     |
| H(52B)-C(52)-H(52C) | 109.5     |
| N(3)-C(53)-H(53A)   | 109.5     |
| N(3)-C(53)-H(53B)   | 109.5     |
| H(53A)-C(53)-H(53B) | 109.5     |
| N(3)-C(53)-H(53C)   | 109.5     |
| H(53A)-C(53)-H(53C) | 109.5     |
| H(53B)-C(53)-H(53C) | 109.5     |
| N(4)-C(54)-H(54A)   | 109.5     |
| N(4)-C(54)-H(54B)   | 109.5     |
| H(54A)-C(54)-H(54B) | 109.5     |
| N(4)-C(54)-H(54C)   | 109.5     |
| H(54A)-C(54)-H(54C) | 109.5     |
| H(54B)-C(54)-H(54C) | 109.5     |
| N(5)-C(55)-N(6)     | 106.7(8)  |
| N(5)-C(55)-Rh(2)    | 126.5(6)  |
| N(6)-C(55)-Rh(2)    | 126.8(6)  |
| C(69)-C(56)-N(6)    | 106.7(7)  |
| C(69)-C(56)-C(57)   | 122.2(9)  |
| N(6)-C(56)-C(57)    | 131.1(8)  |
| C(70)-C(57)-C(58)   | 118.9(9)  |
| C(70)-C(57)-C(56)   | 116.5(8)  |
| C(58)-C(57)-C(56)   | 124.6(10) |
| C(59)-C(58)-C(57)   | 122.2(12) |
| C(59)-C(58)-H(58)   | 118.9     |
| C(57)-C(58)-H(58)   | 118.9     |
| C(60)-C(59)-C(58)   | 117.5(11) |
| C(60)-C(59)-C(80)   | 122.3(11) |
| C(58)-C(59)-C(80)   | 120.3(13) |
| C(59)-C(60)-C(61)   | 123.1(11) |
| C(59)-C(60)-H(60)   | 118.4     |
| C(61)-C(60)-H(60)   | 118.4     |
| C(62)-C(61)-C(60)   | 121.3(10) |
| C(62)-C(61)-C(70)   | 120.2(10) |
| C(60)-C(61)-C(70)   | 118.6(11) |
|                     |           |

| C(63)-C(62)-C(61) | 120.9(10) |
|-------------------|-----------|
| C(63)-C(62)-H(62) | 119.5     |
| C(61)-C(62)-H(62) | 119.5     |
| C(62)-C(63)-C(64) | 122.0(10) |
| C(62)-C(63)-H(63) | 119.0     |
| C(64)-C(63)-H(63) | 119.0     |
| C(65)-C(64)-C(63) | 121.9(9)  |
| C(65)-C(64)-C(71) | 120.4(8)  |
| C(63)-C(64)-C(71) | 117.7(10) |
| C(66)-C(65)-C(64) | 121.8(8)  |
| C(66)-C(65)-H(65) | 119.1     |
| C(64)-C(65)-H(65) | 119.1     |
| C(67)-C(66)-C(65) | 116.9(9)  |
| C(67)-C(66)-C(84) | 123.3(9)  |
| C(65)-C(66)-C(84) | 119.8(9)  |
| C(66)-C(67)-C(68) | 124.5(8)  |
| C(66)-C(67)-H(67) | 117.7     |
| C(68)-C(67)-H(67) | 117.7     |
| C(67)-C(68)-C(69) | 125.3(8)  |
| C(67)-C(68)-C(71) | 118.2(8)  |
| C(69)-C(68)-C(71) | 116.4(8)  |
| C(56)-C(69)-N(5)  | 105.9(7)  |
| C(56)-C(69)-C(68) | 122.1(8)  |
| N(5)-C(69)-C(68)  | 132.0(8)  |
| C(57)-C(70)-C(61) | 119.7(9)  |
| C(57)-C(70)-C(71) | 121.3(8)  |
| C(61)-C(70)-C(71) | 119.0(10) |
| C(70)-C(71)-C(68) | 121.6(8)  |
| C(70)-C(71)-C(64) | 120.3(8)  |
| C(68)-C(71)-C(64) | 118.1(8)  |
| C(73)-C(72)-C(79) | 125.1(11) |
| C(73)-C(72)-Rh(1) | 71.4(6)   |
| C(79)-C(72)-Rh(1) | 109.7(7)  |
| C(73)-C(72)-H(72) | 114.2     |
| C(79)-C(72)-H(72) | 114.2     |
| Rh(1)-C(72)-H(72) | 114.2     |
| C(72)-C(73)-C(74) | 127.0(10) |
| C(72)-C(73)-Rh(1) | 72.5(5)   |

| C(74)-C(73)-Rh(1)   | 108.8(6)  |
|---------------------|-----------|
| C(72)-C(73)-H(73)   | 113.5     |
| C(74)-C(73)-H(73)   | 113.5     |
| Rh(1)-C(73)-H(73)   | 113.5     |
| C(73)-C(74)-C(75)   | 113.9(10) |
| C(73)-C(74)-H(74A)  | 108.8     |
| C(75)-C(74)-H(74A)  | 108.8     |
| C(73)-C(74)-H(74B)  | 108.8     |
| C(75)-C(74)-H(74B)  | 108.8     |
| H(74A)-C(74)-H(74B) | 107.7     |
| C(76)-C(75)-C(74)   | 115.5(9)  |
| C(76)-C(75)-H(75A)  | 108.4     |
| C(74)-C(75)-H(75A)  | 108.4     |
| C(76)-C(75)-H(75B)  | 108.4     |
| C(74)-C(75)-H(75B)  | 108.4     |
| H(75A)-C(75)-H(75B) | 107.5     |
| C(77)-C(76)-C(75)   | 123.8(12) |
| C(77)-C(76)-Rh(1)   | 70.8(6)   |
| C(75)-C(76)-Rh(1)   | 110.9(7)  |
| C(77)-C(76)-H(76)   | 114.4     |
| C(75)-C(76)-H(76)   | 114.4     |
| Rh(1)-C(76)-H(76)   | 114.4     |
| C(76)-C(77)-C(78)   | 128.1(12) |
| C(76)-C(77)-Rh(1)   | 73.0(6)   |
| C(78)-C(77)-Rh(1)   | 106.3(7)  |
| C(76)-C(77)-H(77)   | 113.5     |
| C(78)-C(77)-H(77)   | 113.5     |
| Rh(1)-C(77)-H(77)   | 113.5     |
| C(79)-C(78)-C(77)   | 113.8(12) |
| C(79)-C(78)-H(78A)  | 108.8     |
| C(77)-C(78)-H(78A)  | 108.8     |
| C(79)-C(78)-H(78B)  | 108.8     |
| C(77)-C(78)-H(78B)  | 108.8     |
| H(78A)-C(78)-H(78B) | 107.7     |
| C(78)-C(79)-C(72)   | 115.3(9)  |
| C(78)-C(79)-H(79A)  | 108.5     |
| C(72)-C(79)-H(79A)  | 108.4     |
| C(78)-C(79)-H(79B)  | 108.5     |

| 108.5     |
|-----------|
| 107.5     |
| 111.8(10) |
| 107.1(12) |
| 112.3(13) |
| 106.9(14) |
| 110.5(10) |
| 108.0(11) |
| 109.5     |
| 109.5     |
| 109.5     |
| 109.5     |
| 109.5     |
| 109.5     |
| 109.5     |
| 109.5     |
| 109.5     |
| 109.5     |
| 109.5     |
| 109.5     |
| 109.5     |
| 109.5     |
| 109.5     |
| 109.5     |
| 109.5     |
| 109.5     |
| 113.0(8)  |
| 109.5(8)  |
| 107.7(9)  |
| 109.0(8)  |
| 108.2(9)  |
| 109.5(9)  |
| 109.5     |
| 109.5     |
| 109.5     |
| 109.5     |
| 109.5     |
| 109.5     |
|           |

| C(84)-C(86)-H(86A)  | 109.5     |
|---------------------|-----------|
| C(84)-C(86)-H(86B)  | 109.5     |
| H(86A)-C(86)-H(86B) | 109.5     |
| C(84)-C(86)-H(86C)  | 109.5     |
| H(86A)-C(86)-H(86C) | 109.5     |
| H(86B)-C(86)-H(86C) | 109.5     |
| C(84)-C(87)-H(87A)  | 109.5     |
| C(84)-C(87)-H(87B)  | 109.5     |
| H(87A)-C(87)-H(87B) | 109.5     |
| C(84)-C(87)-H(87C)  | 109.5     |
| H(87A)-C(87)-H(87C) | 109.5     |
| H(87B)-C(87)-H(87C) | 109.5     |
| N(5)-C(88)-H(88A)   | 109.5     |
| N(5)-C(88)-H(88B)   | 109.5     |
| H(88A)-C(88)-H(88B) | 109.5     |
| N(5)-C(88)-H(88C)   | 109.5     |
| H(88A)-C(88)-H(88C) | 109.5     |
| H(88B)-C(88)-H(88C) | 109.5     |
| N(6)-C(89)-H(89A)   | 109.5     |
| N(6)-C(89)-H(89B)   | 109.5     |
| H(89A)-C(89)-H(89B) | 109.5     |
| N(6)-C(89)-H(89C)   | 109.5     |
| H(89A)-C(89)-H(89C) | 109.5     |
| H(89B)-C(89)-H(89C) | 109.5     |
| N(8)-C(90)-N(7)     | 107.3(8)  |
| N(8)-C(90)-Rh(2)    | 127.6(7)  |
| N(7)-C(90)-Rh(2)    | 125.1(6)  |
| C(104)-C(91)-N(8)   | 106.5(8)  |
| C(104)-C(91)-C(92)  | 122.8(11) |
| N(8)-C(91)-C(92)    | 130.7(12) |
| C(93)-C(92)-C(91)   | 123.5(12) |
| C(93)-C(92)-C(105)  | 122.3(11) |
| C(91)-C(92)-C(105)  | 114.2(12) |
| C(92)-C(93)-C(94)   | 119.5(15) |
| C(92)-C(93)-H(93)   | 120.2     |
| C(94)-C(93)-H(93)   | 120.2     |
| C(95)-C(94)-C(93)   | 118.7(17) |
| C(95)-C(94)-C(107)  | 125.5(17) |
|                     |           |

| C(93)-C(94)-C(107)   | 115.5(19) |
|----------------------|-----------|
| C(96)-C(95)-C(94)    | 123.4(14) |
| C(96)-C(95)-H(95)    | 118.3     |
| C(94)-C(95)-H(95)    | 118.3     |
| C(95)-C(96)-C(105)   | 122.1(15) |
| C(95)-C(96)-C(97)    | 124.8(14) |
| C(105)-C(96)-C(97)   | 113.0(15) |
| C(98)-C(97)-C(96)    | 123.4(12) |
| C(98)-C(97)-H(97)    | 118.3     |
| C(96)-C(97)-H(97)    | 118.3     |
| C(97)-C(98)-C(99)    | 121.8(13) |
| C(97)-C(98)-H(98)    | 119.1     |
| C(99)-C(98)-H(98)    | 119.1     |
| C(100)-C(99)-C(98)   | 123.1(12) |
| C(100)-C(99)-C(106)  | 116.6(12) |
| C(98)-C(99)-C(106)   | 120.2(13) |
| C(101)-C(100)-C(99)  | 124.8(12) |
| C(101)-C(100)-H(100) | 117.6     |
| C(99)-C(100)-H(100)  | 117.6     |
| C(100)-C(101)-C(102) | 118.2(16) |
| C(100)-C(101)-C(111) | 121.7(12) |
| C(102)-C(101)-C(111) | 120.1(15) |
| C(101)-C(102)-C(103) | 119.9(14) |
| C(101)-C(102)-H(102) | 120.0     |
| C(103)-C(102)-H(102) | 120.0     |
| C(106)-C(103)-C(102) | 120.0(12) |
| C(106)-C(103)-C(104) | 116.2(12) |
| C(102)-C(103)-C(104) | 123.7(10) |
| C(91)-C(104)-N(7)    | 108.1(9)  |
| C(91)-C(104)-C(103)  | 122.5(10) |
| N(7)-C(104)-C(103)   | 129.4(12) |
| C(106)-C(105)-C(92)  | 122.2(10) |
| C(106)-C(105)-C(96)  | 123.9(13) |
| C(92)-C(105)-C(96)   | 113.9(13) |
| C(103)-C(106)-C(105) | 122.0(11) |
| C(103)-C(106)-C(99)  | 120.4(13) |
| C(105)-C(106)-C(99)  | 117.6(11) |
| C(109)-C(107)-C(108) | 108(2)    |
|                      |           |

| C(109)-C(107)-C(94)  | 115(3)    |
|----------------------|-----------|
| C(108)-C(107)-C(94)  | 117(2)    |
| C(109)-C(107)-C(110) | 98(3)     |
| C(108)-C(107)-C(110) | 105(3)    |
| C(94)-C(107)-C(110)  | 112(2)    |
| C(107)-C(108)-H(10A) | 109.5     |
| C(107)-C(108)-H(10B) | 109.5     |
| H(10A)-C(108)-H(10B) | 109.5     |
| C(107)-C(108)-H(10C) | 109.5     |
| H(10A)-C(108)-H(10C) | 109.5     |
| H(10B)-C(108)-H(10C) | 109.5     |
| C(107)-C(109)-H(10D) | 109.5     |
| C(107)-C(109)-H(10E) | 109.5     |
| H(10D)-C(109)-H(10E) | 109.5     |
| C(107)-C(109)-H(10F) | 109.5     |
| H(10D)-C(109)-H(10F) | 109.5     |
| H(10E)-C(109)-H(10F) | 109.5     |
| С(107)-С(110)-Н(11А) | 109.5     |
| C(107)-C(110)-H(11B) | 109.5     |
| H(11A)-C(110)-H(11B) | 109.5     |
| С(107)-С(110)-Н(11С) | 109.5     |
| H(11A)-C(110)-H(11C) | 109.5     |
| H(11B)-C(110)-H(11C) | 109.5     |
| C(101)-C(111)-C(114) | 113.8(15) |
| C(101)-C(111)-C(112) | 116.0(13) |
| C(114)-C(111)-C(112) | 105.4(19) |
| C(101)-C(111)-C(113) | 107.6(17) |
| C(114)-C(111)-C(113) | 105.3(18) |
| C(112)-C(111)-C(113) | 108.1(18) |
| C(111)-C(112)-H(11D) | 109.5     |
| С(111)-С(112)-Н(11Е) | 109.5     |
| H(11D)-C(112)-H(11E) | 109.5     |
| C(111)-C(112)-H(11F) | 109.5     |
| H(11D)-C(112)-H(11F) | 109.5     |
| H(11E)-C(112)-H(11F) | 109.5     |
| С(111)-С(113)-Н(11G) | 109.5     |
| С(111)-С(113)-Н(11Н) | 109.5     |
| H(11G)-C(113)-H(11H) | 109.5     |

| C(111)-C(113)-H(11I) | 109.5     |
|----------------------|-----------|
| H(11G)-C(113)-H(11I) | 109.5     |
| H(11H)-C(113)-H(11I) | 109.5     |
| C(111)-C(114)-H(11J) | 109.5     |
| C(111)-C(114)-H(11K) | 109.5     |
| H(11J)-C(114)-H(11K) | 109.5     |
| C(111)-C(114)-H(11L) | 109.5     |
| H(11J)-C(114)-H(11L) | 109.5     |
| H(11K)-C(114)-H(11L) | 109.5     |
| N(7)-C(115)-H(11M)   | 109.5     |
| N(7)-C(115)-H(11N)   | 109.5     |
| H(11M)-C(115)-H(11N) | 109.5     |
| N(7)-C(115)-H(11O)   | 109.5     |
| H(11M)-C(115)-H(11O) | 109.5     |
| H(11N)-C(115)-H(11O) | 109.5     |
| N(8)-C(116)-H(11P)   | 109.5     |
| N(8)-C(116)-H(11Q)   | 109.5     |
| H(11P)-C(116)-H(11Q) | 109.5     |
| N(8)-C(116)-H(11R)   | 109.5     |
| H(11P)-C(116)-H(11R) | 109.5     |
| H(11Q)-C(116)-H(11R) | 109.5     |
| C(118)-C(117)-C(124) | 129.1(11) |
| C(118)-C(117)-Rh(2)  | 73.1(6)   |
| C(124)-C(117)-Rh(2)  | 108.1(7)  |
| C(118)-C(117)-H(117) | 112.8     |
| C(124)-C(117)-H(117) | 112.8     |
| Rh(2)-C(117)-H(117)  | 112.8     |
| C(117)-C(118)-C(119) | 123.2(12) |
| C(117)-C(118)-Rh(2)  | 70.3(5)   |
| C(119)-C(118)-Rh(2)  | 110.1(7)  |
| C(117)-C(118)-H(118) | 114.9     |
| C(119)-C(118)-H(118) | 114.9     |
| Rh(2)-C(118)-H(118)  | 114.9     |
| C(120)-C(119)-C(118) | 113.5(9)  |
| C(120)-C(119)-H(11S) | 108.9     |
| C(118)-C(119)-H(11S) | 108.9     |
| C(120)-C(119)-H(11T) | 108.9     |
| C(118)-C(119)-H(11T) | 108.9     |

| H(11S)-C(119)-H(11T) | 107.7     |
|----------------------|-----------|
| C(121)-C(120)-C(119) | 113.5(9)  |
| С(121)-С(120)-Н(12А) | 108.9     |
| С(119)-С(120)-Н(12А) | 108.9     |
| С(121)-С(120)-Н(12В) | 108.9     |
| С(119)-С(120)-Н(12В) | 108.9     |
| H(12A)-C(120)-H(12B) | 107.7     |
| C(122)-C(121)-C(120) | 127.6(10) |
| C(122)-C(121)-Rh(2)  | 72.5(6)   |
| C(120)-C(121)-Rh(2)  | 105.9(7)  |
| С(122)-С(121)-Н(121) | 113.9     |
| С(120)-С(121)-Н(121) | 113.9     |
| Rh(2)-C(121)-H(121)  | 113.9     |
| C(121)-C(122)-C(123) | 125.0(10) |
| C(121)-C(122)-Rh(2)  | 71.5(6)   |
| C(123)-C(122)-Rh(2)  | 111.0(7)  |
| С(121)-С(122)-Н(122) | 113.9     |
| С(123)-С(122)-Н(122) | 113.9     |
| Rh(2)-C(122)-H(122)  | 113.9     |
| C(122)-C(123)-C(124) | 112.4(9)  |
| С(122)-С(123)-Н(12С) | 109.1     |
| С(124)-С(123)-Н(12С) | 109.1     |
| C(122)-C(123)-H(12D) | 109.1     |
| C(124)-C(123)-H(12D) | 109.1     |
| H(12C)-C(123)-H(12D) | 107.9     |
| C(117)-C(124)-C(123) | 113.0(9)  |
| C(117)-C(124)-H(12E) | 109.0     |
| C(123)-C(124)-H(12E) | 109.0     |
| C(117)-C(124)-H(12F) | 109.0     |
| C(123)-C(124)-H(12F) | 109.0     |
| H(12E)-C(124)-H(12F) | 107.8     |
| Cl(1)-C(125)-Cl(3)   | 112.6(13) |
| Cl(1)-C(125)-Cl(2)   | 108.2(9)  |
| Cl(3)-C(125)-Cl(2)   | 107.9(9)  |
| Cl(1)-C(125)-H(125)  | 109.4     |
| Cl(3)-C(125)-H(125)  | 109.4     |
| Cl(2)-C(125)-H(125)  | 109.4     |
| Cl(5)-C(126)-Cl(4)   | 112.1(12) |

| Cl(5)-C(126)-Cl(6)  | 103.5(9)  |
|---------------------|-----------|
| Cl(4)-C(126)-Cl(6)  | 109.3(10) |
| Cl(5)-C(126)-H(126) | 110.6     |
| Cl(4)-C(126)-H(126) | 110.6     |
| Cl(6)-C(126)-H(126) | 110.6     |
| Cl(7)-C(127)-Cl(9)  | 103.4(16) |
| Cl(7)-C(127)-Cl(8)  | 112.8(14) |
| Cl(9)-C(127)-Cl(8)  | 121.3(16) |
| Cl(7)-C(127)-H(127) | 106.1     |
| Cl(9)-C(127)-H(127) | 106.1     |
| Cl(8)-C(127)-H(127) | 106.1     |
|                     |           |



Fig. S196. Crystal structure of rhodium complex 4b.

## 13. The calculated steric bulkiness of oligomer analogues.

The percent buried volumes ( $%V_{bur}$ ) and steric maps of complexes **3**, **4b** were calculated by SambVca 2.1. With this hint in our mind, the steric bulkiness around Rh center in the possible oligomer analogues with unit number (n = 3, 5, and 7) was calculated using PBE /LANL2DZ with D3BJ dispersion correction.



Fig. S197. Percent buried volumes and steric maps of oligomer-3Rh analogue.



Fig. S198. Percent buried volumes and steric maps of oligomer-5Rh analogue.



Fig. S199. Percent buried volumes and steric maps of oligomer-7Rh analogue.

## 14. References

- [1]. S. Gonell and E. Peris, ACS Catal., 2014, 4, 2811-2817.
- [2]. S. Ibanez, A. Guerrero, M. Poyatos and E. Peris, Chem. Eur. J., 2015, 21, 10566-10575.
- [3]. J. Chen, J. Lin and J. Xiao. Chem. Commun., 2018, 54, 7034-7037.
- [4]. M. T. Peruzzi, Q. Mei, S. J. Lee and M. R. Gagne, Chem. Commun., 2018, 54, 5855-5858.
- [5]. N. A. Larionova, J. M. Ondozabal, E. G. Smith and X. C. Cambeiro, Org. Lett., 2021, 23, 5383-5388.
- [6]. Z. Lu, Q. Zheng, S. Yang, C. Qian, Y. Shen and T. Tu, ACS Catal., 2021, 11, 10796-10801.
- [7]. T. Satoh, A. Osawa, T. Ohbayashi and A. Kondo, Tetrahedron., 2006, 62, 7892-7901.
- [8]. H. Liu, D. Yang, D.-L.Wang, P. Wang, Y. Lu, V.-T. Giang and Y. Liu, Chem. Commun., 2018, 54, 7979-7982.
- [9]. Z.-C. Wang, D. Shen, J. Gao, X. Jia, Y. Xu and S.-L. Shi, Chem. Commun., 2019, 55, 8848-8851.
- [10] H. Reed, T. R. Paul and William J. Chain, J. Org. Chem., 2018, 83, 11359-11368.
- [11]. A. Wetzel, S. Wöckel, M. Schelwies, M. K. Brinks, F. Rominger, P. Hofmann and M. Limbach, Org. Lett., 2013, 15, 2-5.
- [12]. H. Chung and Y. K. Chung, J. Org. Chem., 2018, 83, 8533-8542.
- [13]. S. M. Bronner and R. H. Grubbs, Chem. Sci., 2014, 5, 101-106.
- [14]. J. Yang, F. G. Delolo, A. Spannenberg, R. Jackstell and M. Beller. Angew. Chem., Int. Ed., 2022, 61, e202112597.
- [15]. I. Sorribes, J. R. Cabrero-Antonino, C. Vicent, K. Junge and M. Beller, J. Am. Chem. Soc., 2015, 137, 13580-13587.
- [16]. Y. Ogiwara, W. Shimoda, K. Ide, T. Nakajima and N. Sakai, *Eur. J. Org. Chem.*, 2017, 20, 2866-2870.
- [17]. T. J. Brown, M. Cumbes, L. J. Diorazio, G. J. Clarkson and M. Wills, J. Org. Chem., 2017, 82, 10489-10503.
- [18]. S. K. Pedersen, H. G. Gudmundsson, D. U. Nielsen, B. S. Donslund, H. C. D. Hammershøj, K. Daasbjerg and T. Skrydstrup, *Nat. Catal.*, 2020, 3, 843-850.