- Supporting Information-

Promoting the production of 5-hydroxymethylfurfual from high-concentration fructose by creating microreactors in a mixed solvent

Yexin Hu, Hui Li, Ping Hu, Linzhen Li, Di Wu, Zhidan Xue, Changwei Hu, and Liangfang Zhu*

Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China.

*E-mail: <u>zhulf@scu.edu.cn</u>; Fax: +86 28 85411105; Tel: +86 28 85411105.

F			Conv.		Yield	/%		TCB ^[b]	ACB ^[c]	(100-TCB)	(TCB-ACB)
Entry		t/min	/%	HMF	FA	LA	FF	/%	/%	/%	%
1	-	1	50.8	1.6	-	-	-	50.8	50.8	49.2	-
2	-	2	78.9	6.6	-	-	0.1	27.8	27.8	72.2	-
3	-	3	82.3	12.4	0.4	-	0.2	30.7	30.3	69.3	0.3
4	-	5	85.9	23.0	2.0	0.8	0.5	39.5	38.5	60.5	1.0
5	-	10	86.9	28.5	3.5	1.2	0.5	45.5	43.6	54.5	1.9
6	-	15	94.2	47.3	6.0	3.6	1.3	60.1	58.1	39.9	2.0
7	70	1	53.2	4.2	-	-	-	51.0	51.0	49.0	-
8	70	2	80.8	18.2	-	-	0.1	37.5	37.5	62.5	-
9	70	3	88.1	39.2	-	-	0.1	51.2	51.2	48.8	-
10	70	5	91.0	50.3	0.5	-	0.2	60.0	59.6	40.0	0.4
11	70	10	92.1	60.5	1.5	0.6	0.3	70.2	69.4	29.9	0.8
12	70	15	97.8	70.3	1.7	0.8	0.3	74.5	73.7	25.5	0.8

Table S1. Product distributions with time for the fructose dehydration in the absence or presence of CTAB.^[a]

^[a] Reaction conditions: 500 mg/mL of fructose, 21 mM of H₂SO₄, 5 mL of solvent (V_{DIO}/V_{H2O} =95/5), 140 °C, under a N₂ atmosphere. ^[b] TCB [mol%] = (output of carbon + carbon in degraded fructose) / (input of carbon) × 100%. ^[c] ACB [mol%] = (output of carbon) / (input of carbon) × 100%.

m/z	Possible structural formula	m/z	Possible structural formula
203	[Fru+Na]⁺	545	[4Fru-11H ₂ O+Na] ⁺
173	[Fru-FA+K] ⁺	527	[4Fru-12H ₂ O+Na] ⁺
249	[3Fru-FA-2H ₂ O+H+K] ²⁺	491	[4Fru-14H ₂ O+Na] ⁺
252	$[3Fru-FA-2H_2O+2Na]^{2+}$	344	[4Fru-4H ₂ O+H+K] ²⁺
445	[3Fru-FA-4H ₂ O+Na] ⁺	335	[4Fru-5H ₂ O+H+K] ²⁺
365	[2Fru-H₂O+Na]⁺	326	[4Fru-6H ₂ O+H+K] ²⁺
347	[2Fru-2H ₂ O+Na] ⁺	317	[4Fru-7H ₂ O+H+K] ²⁺
311	[2Fru-4H ₂ O+Na] ⁺	308	[4Fru-8H ₂ O+H+K] ²⁺
273	[2Fru-7H₂O+K]⁺	299	[4Fru-9H ₂ O+H+K] ²⁺
257	[2Fru-7H ₂ O+Na] ⁺	290	[4Fru-10H ₂ O+H+K] ²⁺
146	[2Fru-6H ₂ O+H+K] ²⁺	281	[4Fru-11H ₂ O+H+K] ²⁺
527	[3Fru-2H ₂ O+Na] ⁺	263	[4Fru-13H ₂ O+H+K] ²⁺
525	[3Fru-3H ₂ O+K] ⁺	254	[4Fru-14H ₂ O+H+K] ²⁺
509	$[3Fru-3H_2O+Na]^+$	398	[5Fru-8H ₂ O+H+K] ²⁺
473	[3Fru-5H ₂ O+Na] ⁺	389	[5Fru-9H ₂ O+H+K] ²⁺
455	[3Fru-6H ₂ O+Na] ⁺	380	[5Fru-10H ₂ O+H+K] ²⁺
437	$[3Fru-7H_2O+Na]^+$	371	[5Fru-11H ₂ O+H+K] ²⁺
419	[3Fru-8H ₂ O+Na] ⁺	362	[5Fru-12H ₂ O+H+K] ²⁺
401	$[3Fru-9H_2O+Na]^+$	353	[5Fru-13H ₂ O+H+K] ²⁺
245	[3Fru-5H ₂ O+H+K] ²⁺	515	$[6Fru-5H_2O+H+K]^{2+}$
236	[3Fru-6H ₂ O+H+K] ²⁺	506	[6Fru-6H ₂ O+H+K] ²⁺
227	[3Fru-7H ₂ O+H+K] ²⁺	488	$[6Fru-8H_2O+H+K]^{2+}$
218	[3Fru-8H ₂ O+H+K] ²⁺	479	[6Fru-9H ₂ O+H+K] ²⁺
209	[3Fru-9H ₂ O+H+K] ²⁺	470	[6Fru-10H ₂ O+H+K] ²⁺
200	[3Fru-10H ₂ O+H+K] ²⁺	461	[6Fru-11H ₂ O+H+K] ²⁺
671	[4Fru-4H ₂ O+Na] ⁺	452	[6Fru-12H ₂ O+H+K] ²⁺
617	[4Fru-7H ₂ O+Na] ⁺	443	[6Fru-13H ₂ O+H+K] ²⁺
599	[4Fru-8H ₂ O+Na] ⁺	434	[6Fru-14H ₂ O+H+K] ²⁺
581	[4Fru-9H ₂ O+Na] ⁺	425	[6Fru-15H ₂ O+H+K] ²⁺
563	[4Fru-10H ₂ O+Na] ⁺	416	[6Fru-16H ₂ O+H+K] ²⁺
545	$[4Fru-11H_2O+Na]^+$		

Table S2. The possible ionic species deconvoluted from the ESI-MS spectra of the reaction mixture in absence of CTAB.^[a]

^[a] In the above structural formula, [Fru-3H₂O] could also be assigned to [HMF].

Note: structural formulas marked by green represented FA-related species, those marked by pink represented dimerized fructose-related species, those marked by blue represented trimerized fructose-related species, those marked by purple represented tetramerized fructose-related species, those marked by yellow represented pentamerized fructose-related species, and those marked by brown represented hexamerized fructose-related species.

m/z	Possible structural formula	m/z	Possible structural formula
203	[Fru+Na] ⁺	527	$[4Fru-12H_2O+Na]^+$
173	[Fru-FA+K] ⁺	491	$[4Fru-14H_2O+Na]^+$
381	[2Fru-H ₂ O+K] ⁺	344	[4Fru-4H ₂ O+H+K] ²⁺
365	$[2Fru-H_2O+Na]^+$	335	[4Fru-5H ₂ O+H+K] ²⁺
347	[2Fru-2H ₂ O+Na] ⁺	326	[4Fru-6H ₂ O+H+K] ²⁺
311	$[2Fru-4H_2O+Na]^+$	317	[4Fru-7H ₂ O+H+K] ²⁺
146	[2Fru-6H ₂ O+H+K] ²⁺	308	[4Fru-8H ₂ O+H+K] ²⁺
527	[3Fru-2H ₂ O+Na] ⁺	299	[4Fru-9H ₂ O+H+K] ²⁺
525	[3Fru-3H ₂ O+K] ⁺	398	[5Fru-8H ₂ O+H+K] ²⁺
509	[3Fru-3H ₂ O+Na] ⁺	389	[5Fru-9H ₂ O+H+K] ²⁺
473	[3Fru-5H ₂ O+Na] ⁺	380	[5Fru-10H ₂ O+H+K] ²⁺
455	[3Fru-6H₂O+Na]⁺	371	[5Fru-11H ₂ O+H+K] ²⁺
437	[3Fru-7H ₂ O+Na] ⁺	362	[5Fru-12H ₂ O+H+K] ²⁺
419	[3Fru-8H ₂ O+Na] ⁺	353	[5Fru-13H ₂ O+H+K] ²⁺
401	[3Fru-9H ₂ O+Na] ⁺	515	[6Fru-5H ₂ O+H+K] ²⁺
245	[3Fru-5H ₂ O+H+K] ²⁺	506	[6Fru-6H ₂ O+H+K] ²⁺
236	[3Fru-6H ₂ O+H+K] ²⁺	488	[6Fru-8H ₂ O+H+K] ²⁺
227	[3Fru-7H ₂ O+H+K] ²⁺	470	[6Fru-10H ₂ O+H+K] ²⁺
218	[3Fru-8H ₂ O+H+K] ²⁺	461	[6Fru-11H ₂ O+H+K] ²⁺
209	[3Fru-9H ₂ O+H+K] ²⁺	452	[6Fru-12H ₂ O+H+K] ²⁺
200	[3Fru-10H ₂ O+H+K] ²⁺	443	[6Fru-13H ₂ O+H+K] ²⁺
671	$[4Fru-4H_2O+Na]^+$	434	[6Fru-14H ₂ O+H+K] ²⁺
635	[4Fru-6H ₂ O+Na] ⁺	425	[6Fru-15H ₂ O+H+K] ²⁺
617	[4Fru-7H ₂ O+Na] ⁺	416	[6Fru-16H ₂ O+H+K] ²⁺
599	[4Fru-8H₂O+Na]⁺	407	[6Fru-17H ₂ O+H+K] ²⁺
581	[4Fru-9H ₂ O+Na] ⁺		

Table S3. The possible ionic species deconvoluted from the ESI-MS spectra of the reaction mixture in presence of CTAB.^[a]

^[a] In the above structural formula, [Fru-3H₂O] could also be assigned to [HMF].

Note: structural formulas marked by green represented FA-related species, those marked by pink represented dimerized fructose-related species, those marked by blue represented trimerized fructose-related species, those marked by purple represented tetramerized fructose-related species, those marked by yellow represented pentamerized fructose-related species, and those marked by brown represented hexamerized fructose-related species.

Entry	Stirring	Conv	Yield/%				TCB[b]		100 TCP	TCB-
	speed /rpm	/%	HMF	F A	LA	FF	/%	/%	/%	ACB
				ΓA						/%
1	300	97.4	64.8	2.3	1.1	0.3	70.0	69.1	30.0	1.0
2	600	97.8	70.3	1.7	0.8	0.3	74.5	73.7	25.5	0.8
3	1200	97.5	70.2	1.7	0.9	0.4	74.8	74.1	25.2	0.7

Table S4. Effect of stirring speed on the product distributions of fructose dehydration in the presence of CTAB.^[a]

^[a] Reaction conditions: 50.0 wt.% fructose, 21 mM H₂SO₄, 70 mM CTAB, 5 mL of DIO-H₂O ($V_{\text{DIO}}/V_{\text{H2O}}$ = 95/5), 140 °C, 15 min, under a N₂ atmosphere. ^[b] TCB [mol%] = (output of carbon + carbon in degraded fructose) / (input of carbon) × 100%. ^[c] ACB [mol%] = (output of carbon) / (input of carbon) × 100%.

	,			•				
Entry	Modifier	Conv.	Yie	ld/%	TCB ^[b]	ACB ^[c]	(100%-	(TCB-
	/mM	/% FA		LA	/%	/%	TCB) /%	ACB) %
1	-	12.1	7.3	3.2	95.2	91.8	4.8	3.4
2	СТАВ, 70	2.8	2.0	0.9	99.2	98.3	0.8	0.9
3	NaBr, 70	6.9	3.9	1.2	97.0	94.8	3.0	2.3

Table S5. Stability of HMF in the absence or presence of CTAB. [a]

^[a] Reaction conditions: 1.4 M of HMF, 21 mM of H₂SO₄, 5 mL of solvent (V_{DIO}/V_{H2O} =95/5), 140 °C, 15 min, under a N₂ atmosphere. ^[b] TCB [mol%] = (output of carbon + carbon in degraded HMF) / (input of carbon) × 100%. ^[c] ACB [mol%] = (output of carbon) / (input of carbon) × 100%.

E a tar	Fructose	СТАВ	HMF yield	TOF
Entry	/ wt.%	/ mM	/ %	/ h ⁻¹
1	10.0	14	68.0	36.0
2	20.0	14	67.5	71.4
3	30.0	14	63.1	100.2
4	40.0	14	62.5	132.3
5	50.0	14	63.3	167.5
6	60.0	14	56.2	178.4
7	50.0	28	64.6	170.9
8	50.0	42	67.2	177.8
9	50.0	56	67.8	179.4
10	50.0	70	70.3	186.0

Table S6. The HMF yields and TOFs for the fructose-to-HMF dehydration with various concentrations of fructose and CTAB.^[a]

^[a] Reaction conditions: 21 mM of H₂SO₄, 5 mL of solvent (V_{DIO}/V_{H2O} =95/5), 140 °C, 15 min, under a N₂ atmosphere.

Entry	Org.	СТАВ	Conv.		Yield	/%		TCB ^[b]	ACB ^[c]	100-TCB	TCB-ACB
		/mM	/%	HMF	FA	LA	FF	/%	/%	/%	/%
1	THF	-	80.6	22.3	8.8	0.9	0.5	50.9	44.3	49.1	6.6
2	THF	70	82.5	33.0	5.8	0.6	0.3	56.6	52.2	43.4	4.4
3	NMP	-	82.8	28.7	1.7	0.9	0.1	47.7	47.0	52.3	0.7
4	NMP	70	87.9	45.0	0.6	0.4	0.1	57.7	57.6	42.3	0.1

Table S7. Effect of CTAB on the product distributions of fructose dehydration in various organic solvent/water mixed solvents.^[a]

^[a] Reaction conditions: 50.0 wt.% fructose, 21 mM H₂SO₄, 5 mL of solvent (V_{org}/V_{H2O} = 95/5), 140 °C, 15 min, under a N₂ atmosphere. ^[b] TCB [mol%] = (output of carbon + carbon in degraded fructose) / (input of carbon) × 100%. ^[c] ACB [mol%] = (output of carbon) / (input of carbon) × 100%.

Figure S1. TEM images of a) 28 mM CTAB in DIO-H₂O ($V_{\text{DIO}}/V_{\text{H2O}}$ = 95/5), and b) 14 mM CTAB in DIO-H₂O ($V_{\text{DIO}}/V_{\text{H2O}}$ = 80/20) at room temperature. The inset in each image shows the respective histogram of the micellar diameter distribution (abscissa) with percentage as the ordinate.