Supporting Information

Hydrodeoxygenation of guaiacol to phenol using endogenous hydrogen induced by chemo-splitting of water over a versatile nano-porous Ni catalyst

Xiaohong Ren^{a,e}, Zhuohua Sun^b*, Jiqing Lu^a, Jinling Cheng^c, Panwang Zhou^d, Xiaoqiang Yu^a, Zeming Rong^a*, Changzhi Li^e*

- a. State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116012, P. R. China
- b. Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
- c. Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- d. Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
- e. CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China

Email address of corresponding authors:

Z. Sun (sunzhuohua@bjfu.edu.cn), Z. Rong (zeming@dlut.edu.cn), C. Li (licz@dicp.ac.cn)

Materials

Nickel, Iron, Cobalt, Copper and Aluminum metal powders of high purity and superfine were purchased from Nangong Xinshi Alloy Welding Material Spraying Co., Ltd. Ni(NO₃)₂·6H₂O was purchased from Tianjin Damao Chemical Reagent Factory and used as a nickel precursor. (NH₄)₂CO₃ was purchased Guangdong Guanghua Sci-Tech Co., Ltd. Support materials (Ni/MgO, Ni/Al₂O₃, Ni/SiO₂, Ni/HZSM-5, Ni/TiO₂) were purchased from Wuxi Zehui Chemical Co., LTD. Pt/C, Pd/C, Ru/C were purchased from Xi 'an Catalyst Chemical Co., LTD. Methanol was purchased from Tianjin Fuyu Fine Chemical Co., Ltd. NaOH was purchased from Guangdong Xilong Chemical Co., Ltd. Guaiacol, 2-amyl alcohol, cyclohexane, isopropanol and phenol were purchased from Sinopharm Chemical Reagent Co., Ltd. 4-methyl-guaiacol, 4-ethyl-guaiacol and 4-propyl – guaiacol were purchased from Aladdin Reagent Co., LTD. Nitrogen and hydrogen were supplied by Air Liquide company. Deionized water was obtained from a Millipore system. All chemicals were analytical grade and used as received without further purification.

Preparation of catalyst

Preparation of nano-porous metal catalysts

The alloy powder was prepared by a microplanetary high energy ball mill (LUVERISETTE7). First, pure nickel(iron,cobalt and copper) powder , aluminum powder and modified metal powder with a certain quality were weighed and added into the ball milling tank made of zirconia. In the mechanical alloying process, the cold welding between metal powders would affect the mechanical alloying, so 0.4 mL ethanol was added as the process control agent. The air in the ball mill tank was replaced with argon gas for 6 times, and the planetary ball mill was run at room temperature. The grinding ball used in the experiment was a zirconia ball with a diameter of 3 mm. The total mass of the metal powder was kept at 4 g, and the mass ratio of the grinding ball to the metal powder was 15. When the ball mill is running at the set time, open it in a glove box filled with N_2 (to avoid spontaneous combustion) and oxidize it fully in the air, then remove the alloy powder and put it into the sample tube.

The programmed heat treatment is carried out in a self-made tubular furnace to make the metal components in the alloy powder form stable intermetallic compounds. 1 g of alloy powder prepared by mechanical alloying was weighed in a small quartz boat, and then the boat was placed in the middle part of the tube furnace for programmed heating in a nitrogen atmosphere. The temperature was heated to 600 °C at a rate of 10 °C•min⁻¹ and held for 2 h. After cooling slowly to room temperature in the tubular furnace, the alloy powder is taken out and ground in a mortar, then loaded into the sample tube and stored in the dryer.

2.224 g of NaOH was weighed in a 25 mL beaker and 10.8 mL of deionized water was added to prepare an alkaline solution with a mass concentration of 17 wt.%. Then, 0.5 g of alloy powder was weighed and slowly added into the NaOH aqueous solution at 50 °C for several times. Then, the alloy was dealloyed at 90 °C for 1 h. After the dealloying process is completed, the beaker is cooled in a bath of ice water and the catalyst is washed several times with a large amount of deionized water until the aqueous solution is neutral.

Preparation of different nickle-based catalysts

The supported nickel catalysts were prepared according to the deposition–precipitation (DP) method and the experimental procedure is as follows. Firstly, the support was added into an aqueous

solution containing nickel salt. Then the suspension was heated to 50 °C in constant stirring for 1 h and a little silica sol was added into the suspension for another 1 h. The precipitant solution was dripped into the above mixture. After a given time of deposition–precipitation, the suspension was cooled to 25 °C and then filtered. The sample was washed with distilled water and ethanol to remove the possible adsorbed ions and dried at 60 C for 24 h. The dried precursor was heated to 500 °C at a heating rate of 7.5 °C min⁻¹ under N₂ and reduced for 4 h in 20 mL· min⁻¹ of H₂. The catalyst was cooled to room temperature under N₂ and gradually exposed to air in 10 min for further usage.

		C		Sel. (%)		
Cat.	Atmosphere)	Cyclohexanone	Cyclohexanol	2-methoxy cyclohexanol	Phenol
Blank	N_2	0	0	0	0	0
	N_2	0	0	0	0	0
NP-Cu ^₀	H_2	69.2	1.0	70.3	18.6	10.1
ND E b	N_2	1.9	0	0	0	100
NP-Fe ^o	H_2	34.9	6.4	42.0	0	51.6
ND C-h	N ₂	1.6	0	0	0	100
NP-C0 ⁶	H_2	52.2	11.8	46.8	7.2	34.2
NP-Ni ^a	N ₂	47.2	13.3	17.3	0	69.4
ND NC	N_2	41.5	0	0	0	100
INP-INI°	H_2	95.2	3.1	81.8	14.2	0.9
Spent NP- Ni	N_2	3.5	0	0	0	100
Spent NP- Ni	H ₂	90.3	0.8	94.0	1.0	4.2
Commercial Raney Ni ^a	N ₂	33.5	12.2	20.5	0	67.3
Commercial Raney Ni ^b	N_2	28.2	0	0	0	100
	N_2	24.3	0	0	0	100
N1/MgO	H_2	73.5	0	39.7	0	60.3
NE/HZOM 5	N ₂	4.8	0	0	0	100
NI/HZSM-3	H_2	27.6	4.9	7.1	0	88
N:/S:O	N_2	6.6	0	0	0	100
NI/SIO ₂	H_2	31.0	9.7	33.3	0	57.0
NF/ALO	N_2	4.2	0	0	0	100
NI/AI ₂ O ₃	H_2	31.8	12.4	29.5	0	58.1
NJ/TJO	N_2	1.6	0	0	0	100
11/1102	H_2	31.1	9.1	13.6	0	77.3
Pt/C	N_2	0	0	0	0	0
Pd/C	N_2	0	0	0	0	0
Pd/C	H_2	55.5	2.1	4.4	92.2	1.3
Au/C	N_2	0	0	0	0	0
Ru/C	N_2	0	0	0	0	0

Table S1 Activity performance tests of different catalysts.

Reaction conditions: 2 mmol guaiacol, 15 mL H₂O, (a:200 mg wet Cat., b:200 mg dry cat.), 160 °C, initial 0.5 MPa (N₂ or H₂), 2 h.

Ni loading amount /wt%
37.3
40.6
35.8
40.1
36.2

 Table S2 ICP-AES analusis results

Solvent	Time (h)	C_{onv} ($0/$)	Sel.(%)			
Solvent	Time (II)	$\operatorname{Conv.}(70) =$	Cyclohexanone	Cyclohexanol	Phenol	
THF	2	0				
	6	0				
THF&H ₂ O	2	26.3	0	0	100	
THF&IPA	2	89.6	1.2	75.1	23.7	

Table S3 Comparison of different solvents.

Reaction conditions: 2 mmol guaiacol, 15 mL mixed solvent, 200 mg Cat., 160 °C, initial 0.5 MPa N_2 , 2 h.

Characterista	Conv.(%	Productivity		Sel.(%)				
Soustrate.)	$(\text{mmol}_{\text{H2}}.g_{\text{cat}}, -^{1}h^{-1})$	Cyclohexanone	Cyclohexanol	Phenol			
Guaiacol	41.5	2.10	0	0	100			
Catechol	0	0	0	0	0			
Phenol	5.1	0.51	100	0	-			
Reaction conditions: 2 mmol Substrate, 15 mL H ₂ O, 200 mg Cat., 160 °C initial 0.5 MPa N ₂ , 2 h.								

Table S4Performance of nano-porous nickel for hydrodeoxygenation of different substrates.

Entry	Conv.(%	D(MD _a)	Productivity(mmol _{phenol} .g _{cat.} ⁻¹ h ⁻		Sel.(%)	
•)	r (Ivir a)	1)	Cyclohexanone	Cyclohexanol	Phenol
1	41.5	$0.5(N_2)$	2.07	0	0	100
2	18.1	1/625(H ₂)	0.86	1.9	2.5	95.6
3	32.1	1/25(H ₂)	1.45	5.1	4.1	90.8

Table S5 Effect of hydrogen pressure on guaiacol hydrodeoxygenation

Reaction conditions: 2 mmol guaiacol , 15 mL H₂O, 200 mg Cat.,160 °C ,2 h

n (mm al)	$C_{omy}(0/)$	Draduativity(mmal a -lh-l)	Sel.(%)			
n.(mmol)	COIIV.(70)	Productivity(IIIII01 _{phenol} .g _{cat.} III)	Cyclohexanone	Cyclohexanol	Phenol	
0	41.5	2.07	0	0	100	
0.5	28.7	1.21	9.8	6.3	84.0	
1	24.6	1.06	8.9	5.3	85.8	
4	18.5	0.56	13.5	26.5	60.0	
8	9.2	0.26	10.9	33.7	55.4	

Table S6 Effect of methanol content on guaiacol hydrodeoxygenation

Reaction conditions: 2 mmol guaiacol, 15 mL H₂O, 200 mg Cat., 160 °C, initial 0.5 MPa N₂, 2 h

I dole of								
T (°C)	$C_{opt}(0/)$	Productivity	Sel.(%)					
1.(0) 0	Conv.(%)	$(\text{mmol}_{\text{phenol}}.g_{\text{cat}}, -1h^{-1})$	Cyclohexanone	Cyclohexanol	Phenol			
120	6.5	0.33	-	-	100			
140	11.5	0.29	-	-	100			
160	41.5	2.07	-	-	100			
180	79.3	3.56	5.3	4.9	89.8			
200	90.9	3.58	12.7	8.5	78.8			

Table S7Effect of temperature on hydrodeoxygenatio of guaiacol.

Reaction conditions: 2 mmol guaiacol, 15 mL H₂O, 200 mg Cat., initial 0.5 MPa N₂, 2 h.

Time (h)	$C_{opv}(0/)$	Productivity	Sel.(%)			
Time (n)	Conv. (76)	$(\text{mmol}_{\text{phenol}}.g_{\text{cat}} \circ {}^{-1}h^{-1})$	Cyclohexanone	Cyclohexanol	Phenol	
0	0	0.00	0	0	0	
0.5	7.5	1.50	0	0	100	
1	13.8	1.38	0	0	100	
2	41.5	2.07	0	0	100	
4	49.6	1.07	7.6	5.8	86.6	
6	50.8	0.69	9.9	8.7	81.4	
8	51.1	0.48	12.7	12.7	74.6	
10	53.7	0.41	12.4	12.4	75.6	
12	53.4	0.32	14.0	14.8	71.2	

Table S8Effect of reaction time hydrodeoxygenatio of guaiacol.

Reaction conditions: 2 mmol guaiacol, 15 mL H₂O, 200 mg Cat., 160 °C, initial 0.5 MPa N₂.

Catalyst/Sbustrate	$C_{opt}(0/)$	Productivity	Sel.(%)				
	Collv.(76)	$(\text{mmol}_{\text{phenol}}.g_{\text{cat}} \circ {}^{-1}h^{-1})$	Cyclohexanone	Cyclohexanol	Phenol		
0.5:1	7.5	0.75	0	0	100		
1:1	41.5	2.07	0	0	100		
2:1	27.2	0.68	0	0	100		
3:1	22.3	0.37	0	0	100		

 Table S9
 Effect of amount of catalyst on hydrodeoxygenatio of guaiacol.

Reaction conditions: 2 mmol guaiacol, 15 mL H₂O, 160 °C, initial 0.5 MPa N₂, 2 h.

Entry $C_{ony}(0/)$		Tem.	Time	Sel. (%)		
Entry	Conv.(%)	(°C)	(h)	Cyclohexanone	Cyclohexanol	Phenol
1	41.5	160	2	0	0	100
2	49.6	160	4	7.6	5.8	86.6
3ª	6.2	180	4	69.4	30.6	-
4 ^a	7.6	190	3	67.1	32.9	-
5 ^b	31.8	160	2	44.3	55.7	-
6	43.3	180	1	4.2	3.0	92.8
7	79.3	180	2	5.3	4.9	89.8
8	94.5	180	4	10.6	8.5	80.9
9°	57.3	180	2	2.9	2.2	94.9
10 ^c	88.9	180	4	7.2	5.2	87.6
11	96.3	190	3	11.7	10.4	77.9
12°	90.5	190	3	5.0	4.7	90.3
13	90.9	200	2	12.7	8.5	78.8

Table S10 Results for the hydrodeoxygenation of guaiacol under different conditions.

Reaction Conditions: unless otherwise specified, 2 mmol guaiacol, 15 mL H₂O, initial 0.5 MPa N₂.

- a. The substrate is 2 mmol phenol.
- b. The substrate is a mixture of 2 mmol phenol and 2 mmol methanol.
- c. Methanol is separated during the reaction by opening the relief valves.

Table S11 Ni/Al ratio of fresh catalyst and waste catalyst obtained by ICP analysis.

Cat.	Ni(mg/L)	Al(mg/L)	Ni/Al	Al(mg)
Fresh catalyst	1012	115.7	8.8	20.4
Spent catalyst	722.5	59.9	12.1	15.3

Fresh catalyst:200 mg

Spent catalyst:200 mg

Entry	Sbustrate	Conv.(%)		Sel.(%)	
1	())-он	5.1	\bigcirc	1 00	— —он
2	⊘−осн₃	1.2	100		
3	осн _з осн _з	3.9			50.5
4	но-√осн₃	4.6			100
5	H ₂ C=Он	50.7	осн3	он	ОСН3
6	о он	39.5	77.7 нон₂с-√осн₃ 51.8	16.8 н ₃ с-, осн ₃ он 38.8	5.5 н₃с-√он 9.4

Table S12 In-situ HDO of phenolic monomers over nano-porous Ni in water.

Reaction conditions: 2 mmol sbustrate,15 mL H_2O, 200 mg Cat.,160 °C, initial 0.5 MPa N_2, 2 h.

			Tem	H_2			C		
Entry	Catalyst	Reactor		Pre.	Solvent	Substrate	Conv	Product (Sel.	Ref.
			(°C)	(bar)			. (%)	%)	
1	MoN/SBA15	Batch	300	50	Decalin	Guaiacol	44	Phenol (26)	1
2	MoN-A	Batch	300	50	Decalin	Guaiacol	95	Phenol (90)	2
3	1Mo/C	Fixed-bed	350	40	No	Guaiacol		Phenol (78.5)	3
					Solvent		74.1		
4	NiMo/Al ₂ O ₃	Packed- bed	450	20.7	No	4-	~95	4-propylphenol	4
					Solvent	propylguaiacol		(~70)	
5	α-MoC _{1-x} /AC	Batch	340	-	Tetralinª	Guaiacol	53	Phenol (84)	5
6	MoWBO _x /AC	Fixed-bed	400	40	Methanol	Vanillic acid + Syringic acid	100	p-	
								hydroxybenxoic	6
								acid (71.6)	
7	MoC _x / C	Batch	300	5	Hexane	Guaiacol	99	Phenol (76)	7
8	MoC _x / C	Batch	300	5	Hexane	Syringol	91	Phenol (37)	7
9	Re/ZrO ₂	Batch	300	50	Decalin	Guaiacol	~50	Phenol (~35)	8
10	WP/SiO ₂	Packed	300	50	No	Guaiacol	60	Phenol (100)	9
		bed			Solvent				
11	Fe/CeO ₂	Fixed-bed	400	1	No	Guaiacol	61.6	Phenol (57.6)	10
					Solvent				
12	Au/TiO ₂	Batch	300	65	Toluene	Guaiacol	100	Phenol (49.6)	11
13	Ru/TiO ₂	Batch	240	4	Water	Guaiacol	83.6	Phenol (70.4)	12
14	Ni/CeO ₂ -C	Batch	250	-	Water	Guaiacol	22	Catechol (20)	13
15	Ru/C	Batch	250	-	Water	Guaiacol	25.1	Catechol (12)	14
16	α-2Mo1Sn	Batch	300	4	n-hexane	Guaiacol	100	Phenol (92.5%)	15
17ª	NP-Ni	Batch	160	-	Water	Guaiacol	41.5	Phenol (100)	This
									work
18ª	NP-Ni	Batch	180	-	Water	Guaiacol	79.3	Phenol (89.8)	This
									work
19 ^b	NP-Ni	Batch	180	-	Water	Guaiacol	88.9	Phenol (87.6)	This
									work
20 ^b	NP-Ni	Batch	190	-	Water	Guaiacol	90.5	Phenol (90.3)	This
									work
21 ^b	NP-Ni	Batch	200	-	Water	4-propyl	75.8	4-propyl –	This
						-guaiacol		phenol (87.1)	work

Table S13 Comparation of different catalytic systems for HDO of guaiacol and other ligninmonomers to phenolics.

a. Unless otherwise specified, the reaction condition is: 2 mmol guaiacol, 15 mL H₂O, initial 0.5 MPa N₂.

b. Methanol is separated during the reaction by opening the relief valves.

Fig. S1 Mass spectrogram of the products after reaction in D_2O .

Fig. S2 (a) Gas chromatograms of H_2 (b) Gas chromatograms of H_2 and CO_2 . Reaction conditions: (a) 15 mL H_2O , 160 °C, initial 0.5 MPa N_2 , 2 h. Reaction conditions: (b) 2 mmol methanol, 15 mL H_2O , 160 °C, initial 0.5 MPa N_2 , 2 h.

Fig. S3 Liquid mass spectrometry of hydrodeoxygenation products of guaiacol.

Fig. S4 (a) N_2 adsorption-desorption of fresh catalyst, (b) N_2 adsorption-desorption of spent catalyst.

Fig. S5 XPS spectra of the regenerative catalyst.

References:

- Tyrone Ghampson, I.; Sepúlveda, C.; Garcia, R.; García Fierro, J. L.; Escalona, N.; Desisto, W. J. Comparison of Alumina- and SBA-15-Supported Molybdenum Nitride Catalysts for Hydrodeoxygenation of Guaiacol. *Appl. Catal. A Gen.* 2012, *435–436*, 51–60. https://doi.org/10.1016/j.apcata.2012.05.039.
- Ghampson, I. T.; Sepúlveda, C.; Garcia, R.; Frederick, B. G.; Wheeler, M. C.; Escalona, N.; DeSisto, W. J. Guaiacol Transformation over Unsupported Molybdenum-Based Nitride Catalysts. *Appl. Catal. A Gen.* 2012, *413–414*, 78–84. https://doi.org/10.1016/j.apcata.2011.10.050.
- Chang, J.; Danuthai, T.; Dewiyanti, S.; Wang, C.; Borgna, A. Hydrodeoxygenation of Guaiacol over Carbon-Supported Metal Catalysts. *ChemCatChem* 2013, *5*, 3041–3049. https://doi.org/10.1002/cctc.201300096.
- Joshi, N.; Lawal, A. Hydrodeoxygenation of 4 Propylguaiacol (2-Methoxy-4- Propylphenol) in a Microreactor : Performance and Kinetic Studies. *Ind. Eng. Chem. Res.* 2013, *52*, 4049–4058.
- (5) Ma, R.; Cui, K.; Yang, L.; Ma, X.; Li, Y. Selective Catalytic Conversion of Guaiacol to Phenols over a Molybdenum Carbide Catalyst. *Chem. Commun.* 2015, *51*, 10299–10301. https://doi.org/10.1039/c5cc01900a.
- (6) Bai, Z.; Phuan, W. C.; Ding, J.; Heng, T. H.; Luo, J.; Zhu, Y. Production of Terephthalic Acid from Lignin-Based Phenolic Acids by a Cascade Fixed-Bed Process. ACS Catal. 2016, 6, 6141–6145. https://doi.org/10.1021/acscatal.6b02052.
- (7) Cao, Z.; Engelhardt, J.; Dierks, M.; Clough, M. T.; Wang, G. H.; Heracleous, E.; Lappas, A.; Rinaldi, R.; Schuth, F. Catalysis Meets Nonthermal Separation for the Production of (Alkyl)Phenols and Hydrocarbons from Pyrolysis Oil. *Angew. Chemie Int. Ed.* 2017, *56*, 2334–2339. https://doi.org/10.1002/anie.201610405.
- (8) Ruiz, P. E.; Leiva, K.; Garcia, R.; Reyes, P.; Fierro, J. L. G.; Escalona, N. Relevance of Sulfiding Pretreatment on the Performance of Re/ZrO2 and Re/ZrO2-Sulfated Catalysts for the Hydrodeoxygenation of Guayacol. *Appl. Catal. A Gen.* 2010, *384*, 78–83. https://doi.org/10.1016/j.apcata.2010.06.009.
- (9) Zhao, H. Y.; Li, D.; Bui, P.; Oyama, S. T. Hydrodeoxygenation of Guaiacol as Model Compound for Pyrolysis Oil on Transition Metal Phosphide Hydroprocessing Catalysts. *Appl. Catal. A Gen.* 2011, 391, 305–310. https://doi.org/10.1016/j.apcata.2010.07.039.
- (10) Li, C.; Nakagawa, Y.; Tamura, M.; Nakayama, A.; Tomishige, K. Hydrodeoxygenation of Guaiacol to Phenol over Ceria-Supported Iron Catalysts. ACS Catal. 2020, 10 (24), 14624– 14639. https://doi.org/10.1021/acscatal.0c04336.
- (11) Mao, J.; Zhou, J.; Xia, Z.; Wang, Z.; Xu, Z.; Xu, W.; Yan, P.; Liu, K.; Guo, X.; Zhang, Z. C. Anatase TiO2 Activated by Gold Nanoparticles for Selective Hydrodeoxygenation of Guaiacol to Phenolics. ACS Catal. 2017, 7, 695–705. https://doi.org/10.1021/acscatal.6b02368.
- Wang, X.; Wang, Z.; Zhou, L.; Liu, Y.; Yang, Y.; Zhang, L.; Shang, Z.; Li, H.; Xiao, T.; Zhang, C.; Zhao, F. Efficient Hydrodeoxygenation of Guaiacol to Phenol over Ru/Ti–SiO2 Catalysts: The Significance of Defect-Rich TiOx Species. *Green Chem.* 2022. https://doi.org/10.1039/D2GC01714H.
- (13) Jin, W.; Pastor-Pérez, L.; Villora-Picó, J. J.; Sepúlveda-Escribano, A.; Gu, S.; Reina, T. R. Investigating New Routes for Biomass Upgrading: "H₂-Free" Hydrodeoxygenation Using Ni-

Based Catalysts. *ACS Sustain. Chem. Eng.* **2019**, *7* (19), 16041–16049. https://doi.org/10.1021/acssuschemeng.9b02712.

- Jin, W.; Santos, J. L.; Pastor-Perez, L.; Gu, S.; Centeno, M. A.; Reina, T. R. Noble Metal Supported on Activated Carbon for "Hydrogen Free" HDO Reactions: Exploring Economically Advantageous Routes for Biomass Valorisation. *ChemCatChem* 2019, *11* (17), 4434–4441. https://doi.org/https://doi.org/10.1002/cctc.201900841.
- (15) Diao, X.; Ji, N.; Li, T.; Jia, Z.; Jiang, S.; Wang, Z.; Song, C.; Liu, C.; Lu, X.; Liu, Q. Rational design of oligomeric MoO₃ in SnO₂ lattices for selective hydrodeoxygenation of lignin derivatives into monophenols. *J. Catal.* **2021**, 401, 234-251. https://doi.org/10.1016/j.jcat.2021.07.029.