## Selective hydrogenolysis of bio-renewable tetrahydrofurfurylamine to piperidine on $ReO_x$ -modified Rh catalysts

Cheng-Bin Hong, † Guoliang Li † and Haichao Liu\*

<sup>†</sup> These authors contributed equally to this work.

Beijing National Laboratory for Molecular Sciences, College of Chemistry and

Molecular Engineering, Peking University, Beijing 100871, China.

Email: hcliu@pku.edu.cn

## Contents

## Experimental section: general procedure for synthesis of N,N,N-trimethyl-1-(tetrahydrofuran-2-yl)methanaminium chloride.

Fig. S1 Transmission electron microscopy (TEM) micrographs (scale bar = 20 nm) and histograms of metal particle size distribution for (a) Rh-ReO<sub>x</sub>/C (2 wt% Rh, 2.2 wt% Re), (b) Rh-ReO<sub>x</sub>/ZrO<sub>2</sub> (2 wt% Rh, 2.2 wt% Re) and (c) Rh-ReO<sub>x</sub>/Nb<sub>2</sub>O<sub>5</sub> (2 wt% Rh, 2.2 wt% Re).

Fig. S2 Transmission electron microscopy (TEM) micrographs (scale bar = 20 nm) and histograms of metal particle size distribution for Rh-ReO<sub>x</sub>/SiO<sub>2</sub> (2 wt% Rh, (a) 0.1 wt% Re, (b) 0.3 wt% Re, (c) 0.9 wt% Re, (d) 1.4 wt% Re and (e) 2.7 wt% Re).

**Fig. S3** High angle annular dark field scanning transmission electron microscopy (HAADF-STEM) micrographs (scale bar = 20 nm) and electron dispersive X-ray (EDX) microanalyses of Rh-ReO<sub>x</sub>/SiO<sub>2</sub> (2 wt% Rh, (a) 0.1 wt% Re, (b) 0.3 wt% Re, (c) 0.9 wt% Re, (d) 1.4 wt% Re and (e) 2.7 wt% Re).

**Fig. S4** XRD patterns of Rh-ReO<sub>x</sub>/SiO<sub>2</sub> (2 wt% Rh, (a) 0.1 wt% Re, (b) 0.3 wt% Re, (c) 0.9 wt% Re, (d) 1.4 wt% Re, (e) 2.2 wt% Re, (f) 2.7 wt% Re) and (g) the spent Rh-

ReO<sub>x</sub>/SiO<sub>2</sub> (2 wt% Rh, 1.4 wt% Re).

**Fig. S5** Transmission electron microscopy (TEM) micrographs (scale bar = 20 nm) and histograms of metal particle size distribution for (a)  $\text{Ir-ReO}_x/\text{SiO}_2$  (2 wt% Ir, 2.2 wt% Re), (b) Pd-ReO<sub>x</sub>/SiO<sub>2</sub> (2 wt% Pd, 2.2 wt% Re) and (c) Pt-ReO<sub>x</sub>/SiO<sub>2</sub> (2 wt% Pt, 2.2 wt% Re).

**Fig. S6** FT-IR spectrum of pyridine adsorbed at 250 °C on Rh-ReO<sub>x</sub>/SiO<sub>2</sub> (2 wt% Rh, 2.2 wt% Re).

Fig. S7 Conversion and selectivity in THFAM conversion to piperidine on Rh- $ReO_x/SiO_2$  (2 wt% Rh, 1.4 wt% Re) for four reaction cycles. Reaction conditions: 1 mmol THFAM, 1 mmol HCl, 0.1 g catalyst, 10 mL H<sub>2</sub>O, 2.0 MPa H<sub>2</sub>, 200 °C, 3 h.

**Fig. S8** Transmission electron microscopy (TEM) micrographs (scale bar = 20 nm) and histograms of metal particle size distribution for the spent Rh-ReO<sub>x</sub>/SiO<sub>2</sub> (2 wt% Rh, 1.4 wt% Re) catalyst.

**Table S1** Turnover rate and selectivity in 5-amino-1-pentanol (APO) aminationon various supported catalysts.

General procedure for synthesis of N,N,N-trimethyl-1-(tetrahydrofuran-2yl)methanaminium chloride. N,N,N-Trimethyl-1-(tetrahydrofuran-2yl)methanaminium chloride (TMTHFAM) was synthesized by treatment of THFAM with iodomethane in ethanol. Iodomethane  $(4.00 \times 10^{-2} \text{ mol})$  was added to an ethanol solution (20 mL) of THFAM (1.00×10<sup>-2</sup> mol) and sodium bicarbonate  $(3.00 \times 10^{-2} \text{ mol})$  with vigorous stirring at 25 °C. After reaction at 25 °C for 12 h, the resulting precipitate N,N,N-trimethyl-1-(tetrahydrofuran-2yl)methanaminium iodide was collected by filtration, washing with diethyl ether and drying at 60 °C and ambient atmosphere. Afterward, N,N,N-trimethyl-1-(tetrahydrofuran-2-yl)methanaminium iodide was exchanged with 5.0 g Amberlite IRA402-Cl three times in water at 25 °C for 12 h. The reaction mixture was filtrated and the filtrate of TMTHFAM was evaporated to dryness at 65 °C under vacuum. The resulting powder TMTHFAM was dried in a vacuum at 60 °C.

<sup>1</sup>H and <sup>13</sup>C NMR data for N,N,N-trimethyl-1-(tetrahydrofuran-2yl)methanaminium chloride: <sup>1</sup>H NMR (600 MHz, Deuterium Oxide)  $\delta$  4.48 (dt, J = 11.5, 5.7 Hz, 1H), 3.93 – 3.80 (m, 2H), 3.50 – 3.42 (m, 2H), 3.18 (s, 9H), 2.23 – 2.13 (m, 1H), 1.99 – 1.83 (m, 2H), 1.60 (dq, J = 12.7, 8.0 Hz, 1H); <sup>13</sup>C NMR (151 MHz, Deuterium Oxide)  $\delta$  72.93, 69.38, 69.36, 69.34, 68.83, 54.11, 54.09, 54.06, 29.97, 24.49.



**Fig. S1** Transmission electron microscopy (TEM) micrographs (scale bar = 20 nm) and histograms of metal particle size distribution for (a) Rh-ReO<sub>x</sub>/C (2 wt% Rh, 2.2 wt% Re), (b) Rh-ReO<sub>x</sub>/ZrO<sub>2</sub> (2 wt% Rh, 2.2 wt% Re) and (c) Rh-ReO<sub>x</sub>/Nb<sub>2</sub>O<sub>5</sub> (2 wt% Rh, 2.2 wt% Re).



**Fig. S2** Transmission electron microscopy (TEM) micrographs (scale bar = 20 nm) and histograms of metal particle size distribution for Rh-ReO<sub>x</sub>/SiO<sub>2</sub> (2 wt% Rh, (a) 0.1 wt% Re, (b) 0.3 wt% Re, (c) 0.9 wt% Re, (d) 1.4 wt% Re and (e) 2.7 wt% Re).





**Fig. S3** High angle annular dark field scanning transmission electron microscopy (HAADF-STEM) micrographs (scale bar = 20 nm) and electron dispersive X-ray (EDX) microanalyses of Rh-ReO<sub>x</sub>/SiO<sub>2</sub> (2 wt% Rh, (a) 0.1 wt% Re, (b) 0.3 wt% Re, (c) 0.9 wt% Re, (d) 1.4 wt% Re and (e) 2.7 wt% Re).



**Fig. S4** XRD patterns of Rh-ReO<sub>x</sub>/SiO<sub>2</sub> (2 wt% Rh, (a) 0.1 wt% Re, (b) 0.3 wt% Re, (c) 0.9 wt% Re, (d) 1.4 wt% Re, (e) 2.2 wt% Re, (f) 2.7 wt% Re) and (g) the spent Rh-ReO<sub>x</sub>/SiO<sub>2</sub> (2 wt% Rh, 1.4 wt% Re).



**Fig. S5** Transmission electron microscopy (TEM) micrographs (scale bar = 20 nm) and histograms of metal particle size distribution for (a)  $\text{Ir-ReO}_x/\text{SiO}_2$  (2 wt% Ir, 2.2 wt% Re), (b) Pd-ReO<sub>x</sub>/SiO<sub>2</sub> (2 wt% Pd, 2.2 wt% Re) and (c) Pt-ReO<sub>x</sub>/SiO<sub>2</sub> (2 wt% Pt, 2.2 wt% Re).



Fig. S6 FT-IR spectrum of pyridine adsorbed at 250 °C on Rh-ReO<sub>x</sub>/SiO<sub>2</sub> (2 wt% Rh, 2.2 wt% Re).



Fig. S7 Conversion and selectivity in THFAM conversion to piperidine on Rh-ReO<sub>x</sub>/SiO<sub>2</sub> (2 wt% Rh, 1.4 wt% Re) for four reaction cycles. Reaction conditions: 1 mmol THFAM, 1 mmol HCl, 0.1 g catalyst, 10 mL H<sub>2</sub>O, 2.0 MPa H<sub>2</sub>, 200 °C, 3 h.



**Fig. S8** Transmission electron microscopy (TEM) micrographs (scale bar = 20 nm) and histograms of metal particle size distribution for the spent Rh-ReO<sub>x</sub>/SiO<sub>2</sub> (2 wt% Rh, 1.4 wt% Re) catalyst.

| Entry | Catalyst                              | Turnover rate<br>( mol <sub>piperidine</sub> mol <sub>surface-Rh</sub> <sup>-1</sup> h <sup>-1</sup> ) | Molar selectivity (%) |             |
|-------|---------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------|-------------|
|       |                                       |                                                                                                        | Piperidine            | Pentylamine |
| 1     | ReO <sub>x</sub> /SiO <sub>2</sub>    | 0 ь                                                                                                    | -                     | -           |
|       | (5 wt% Re)                            |                                                                                                        |                       |             |
| 2     | Rh/SiO <sub>2</sub>                   | 79.6                                                                                                   | 94.1                  | 1.5         |
|       | (2 wt% Rh)                            |                                                                                                        |                       |             |
| 3     | Rh-ReO <sub>x</sub> /SiO <sub>2</sub> | 152.5                                                                                                  | 97.4                  | 0.7         |
|       | (2 wt% Rh, 2.2 wt% Re)                |                                                                                                        |                       |             |
| 4     | Ir-ReO <sub>x</sub> /SiO <sub>2</sub> | 92.5                                                                                                   | 75.6                  | 20.5        |
|       | (2 wt% Ir, 2.2 wt% Re)                |                                                                                                        |                       |             |

**Table S1** Turnover rate and selectivity in 5-amino-1-pentanol (APO) amination onvarious supported catalysts <sup>a</sup>

<sup>a</sup>Reaction conditions: 1 mmol APO, 1 mmol HCl, 0.05 g catalysts, 10 mL H<sub>2</sub>O, 2 MPa H<sub>2</sub>, 200 °C. 20-30% APO conversions obtained by varying reaction time. <sup>b</sup>No products were detected at 200 °C for 10 h.