Supporting Information

Chemical Upcycling of Poly(bisphenol A carbonate) to Vinylene Carbonates through Organocatalysis

Killian Onida,^a Mohamad Fayad,^a Sébastien Norsic,^b Olivier Boyron^b and Nicolas Duguet^{a,*}

^a Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, INSA-Lyon, CPE-Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS, UMR 5246, Equipe CAtalyse, SYnthèse et ENvironnement (CASYEN), Bâtiment Lederer, 1 rue Victor Grignard, F-69100 Villeurbanne, France.

^b Univ. Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS UMR 5128, Laboratory of Catalysis Polymerization Processes and Materials (CP2M), Bat 308F, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.

E-mail: nicolas.duguet@univ-lyon1.fr

Table of contents

1. General Information	S2
2. GC Method	S2
3. General procedure for the preparation of vinylene carbonates from α -hydroxyketone and poly(bisphenol A carbonate)	S2
4. Scale-up procedure for the preparation vinylene carbonate from poly(bisphenol A carbonate) S	S2
5. Procedures for the preparation vinylene carbonate from waste materials	S3
6. Characterization data of vinylene carbonates	S5
7. NMR spectra of vinylene carbonates	10
8. NMR Mechanistic studies	25
9. Mechanism proposal	31
10. High-resolution mass spectrometry of vinylene carbonates	32
11. Size-exclusion chromatography (SEC)	43

1. General Information

All reagents and solvents were commercially available and used without any further purification. Poly(Bisphenol A carbonate) was purchased from Sigma Aldrech ($M_w = 45,000 \text{ g.mol}^{-1}$, D = 1.77). Nuclear magnetic resonance spectra were recorded on a Brüker DRX 300, Brüker ALS 300 (¹H: 300 MHz, ¹³C: 75 MHz), Brüker ADVANCEIII 500, Brüker BBO probe, Brüker BBI probe (¹H: 500 MHz, ¹³C: 125 MHz). Chemical shifts are given with reference to residual CHCl₃ central peaks: 7.26 ppm for proton, 77.16 ppm for carbon, respectively. J values are given in Hertz (Hz). Abbreviations are defined as follows: s = singlet, d = doublet, dd = doublet of doublets, t = triplet, q = quadruplet, hept = heptuplet, m = multiplet.

2. GC Method

GC method Gas chromatography (GC) analyses were performed using Schimadzu GC (GC-2025) apparatus equipped with a ZB-5-MS capillary column (30m length, 0.25 mm i.d., 0.50 μ m film thickness). The carrier gas was N₂ at a total flow of 169.7 mL/min, a column flow at 1.65 mL/min and the injection mode is split (ratio 1:100). The column temperature was initially at 100°C for 1 min, and then was gradually increased to 260°C (25°C/min) and the temperature was kept at 260°C during 2.5 min. Finally, the temperature was increased to 315°C (45°C/min) and kept at 315°C during 5 min. The injector and FID temperature were respectively set at 300°C and 315°C.

3. General procedure for the preparation of vinylene carbonates from α -hydroxyketone and poly(bisphenol A carbonate)

The benzoin (1 mmol), poly(bisphenol A polycarbonate) (BPA-PC) ($M_w = 45,000 \text{ g.mol}^{-1}$, D = 1.77, 2 mmol of carbonate functionality based on the repeating unit), 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) (0.1 mmol, 10 mol %) and 2-MeTHF (2mL) were introduced into a (10 mL) sample tube. The reaction mixture was stirred at room temperature for 16 h. Ethyl acetate (5 mL) was added to the reaction mixture. The resulting mixture was washed three times with 1M NaOH (5 mL) and twice with brine (5 mL). The organic layer was dried over anhydrous MgSO₄, filtered and the filtrate was concentrated under reduced pressure. The crude product was purified by column chromatography.

4. Scale-up procedure for the preparation vinylene carbonate from poly(bisphenol A carbonate)

Benzoin (10 mmol), poly(bisphenol A polycarbonate) (BPA-PC) (20 mmol of carbonate functionality based on the repeating unit), 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) (1 mmol, 10 mol %) and 2-MeTHF (40 mL) were introduced into a reaction flask. The reaction mixture was stirred at room temperature for 16 h. Ethyl acetate (50 mL) was added to the reaction mixture. The resulting mixture was washed three times with 1M NaOH (50 mL) and twice with brine (50 mL). The organic layer was dried over anhydrous MgSO₄, filtered and the filtrate was concentrated under reduced pressure. The crude vinylene carbonate was purified by recrystallization (EtOH). A solution of hydrochloric acid (5 M) was added to the aqueous layer until the pH reaches 1. The resulting mixture was extracted three times with ethyl acetate (50 mL). The resulting organic layer was dried over anhydrous MgSO₄, filtered and the filtrate was dried over anhydrous MgSO₄, filtered and the pH reaches 1. The resulting mixture was extracted three times with ethyl acetate (50 mL). The resulting organic layer was dried over anhydrous MgSO₄, filtered and the filtrate was dried over anhydrous MgSO₄, filtered and the filtrate was dried over anhydrous MgSO₄, filtered and the filtrate was dried over anhydrous MgSO₄, filtered and the filtrate was dried over anhydrous MgSO₄, filtered and the filtrate was dried over anhydrous MgSO₄, filtered and the filtrate was dried over anhydrous MgSO₄, filtered and the filtrate was concentrated under reduced pressure. The crude bisphenol A was also purified by recrystallization (EtOH).

5. Procedures for the preparation vinylene carbonate from waste materials

Vinylene carbonates from a compact disk (CD)

A compact disk was cut into 1-2 cm pieces. Then, 508 mg of the CD (2 mmol of the monomer unit hypothesizing that the CD is composed of 100% PC-BPA) was introduced in a 10-mL reaction tube along with benzoin (1 mmol), 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) (0.1 mmol, 10 mol%) and 2-methylTHF (2mL). The reaction mixture was stirred at 50°C for 16 h. Ethyl acetate (5 mL) was added to the reaction mixture. The resulting mixture was washed three times with 1M NaOH (5 mL) and twice with brine (5 mL). The organic layer was dried over anhydrous MgSO₄, filtered and the filtrate was concentrated under reduced pressure. The crude product was purified by recrystallization (EtOH) to give vinylene carbonate **2**. A solution of hydrochloric acid (5M) was added to the aqueous layer until the pH reaches 1. The resulting mixture was extracted three times with ethyl acetate (5 mL). The second organic layer was dried over anhydrous MgSO₄, filtered and the filtrate was concentrated under reduced pressure. The crude product was purified by recrystallization (EtOH).

Vinylene carbonates from safety glasses

Used safety glasses were cut into small pieces (about 2 * 10 mm). The polycarbonate pieces (508 mg, 2 mmol of the monomer unit hypothesizing that the safety glasses are composed of 100% PC-BPA) were introduced in a 10-mL reaction tube and suspended in 2-methylTHF (2 mL). Benzoin (212 mg, 1 mmol) and 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) (13.9 mg, 0.1 mmol, 10 mol%) were next introduced. The reaction tube was sealed and the reaction mixture was stirred at 50°C for 16 h. Ethyl acetate (10 mL) was added to the reaction mixture. The resulting mixture was washed three times with 1M NaOH (10 mL) and twice with brine (10 mL). The organic layer was dried over anhydrous MgSO₄, filtered and the filtrate was concentrated under reduced pressure to give a yellow oil. The crude product was purified by column chromatography (pentane/Et₂O 90:10) to give vinylene carbonate **2** (157 mg, 66%) as a yellowish solid. A solution of hydrochloric acid (5 M) was added to the aqueous layer until the pH reaches 1. The resulting mixture was extracted three times with ethyl acetate (10 mL). The combined organic layers were washed twice with brine (10 mL), dried over anhydrous MgSO₄, filtered and the filtrate was concentrated under reduced pressure to give BPA (177 mg, 78% yield based on the limiting reagent) as a slightly orange solid.

Before reaction

After reaction

Vinylene carbonates from a polycarbonate plate

A polycarbonate plate was cut into small pieces (about 2 * 10 mm). Benzoin (212 mg, 1 mmol) and 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) (13.9 mg, 0.1 mmol, 10 mol%) were introduced in a 10-mL reaction tube and dissolved in 2-methylTHF (4 mL). The polycarbonate pieces (508 mg, 2 mmol of the monomer unit hypothesizing that the safety glasses are composed of 100% PC-BPA) were progressively introduced in the tube. The reaction tube was sealed and the reaction mixture was stirred at 70°C for 24 h. Ethyl acetate (10 mL) was added to the reaction mixture. The resulting mixture was washed three times with 1M NaOH (10 mL) and twice with brine (10 mL). The organic layer was dried over anhydrous MgSO₄, filtered and the filtrate was concentrated under reduced pressure to give a yellow oil. The crude product was purified by column chromatography (pentane/Et₂O 90:10) to give vinylene carbonate **2** (88 mg, 37%) as a yellowish solid. A solution of hydrochloric acid (5 M) was added to the aqueous layer until the pH reaches 1. The resulting mixture was extracted three times with ethyl acetate (10 mL). The combined organic layers were washed twice with brine (10 mL), dried over anhydrous MgSO₄, filtered and the filtrate was concentrated under reduced pressure to give BPA (99 mg, 43% yield based on the limiting reagent) as a white solid.

Figure S2. Depolymerisation of polycarbonate contained in a polycarbonate plate.

6. Characterization data of vinylene carbonates

4,5-Diphenyl-1,3-dioxol-2-one (2). The title compound was prepared using benzoin (212 mg, 1 mmol), BPA-PC (508 mg, 2 mmol), TBD (14 mg, 0.1 mmol, 10 mol%) and 2-methylTHF (2 mL) following the general procedure. The product was purified by flash chromatography (ether/pentane 10:90) to give **2** (231 mg, 97%) as a white solid. Mp = 72-74 °C. ¹H NMR (300 MHz, CDCl₃): δ_{H} 7.61 – 7.49 (m, 4H), 7.48 – 7.38 (m, 6H). ¹³C NMR (75 MHz, CDCl₃): δ_{C} 151.87 (C=O), 137.20 (2 Cq), 130.22 (2 CH^{Ar}), 129.10 (4 CH^{Ar}), 126.61 (4 CH^{Ar}), 125.67 (2 Cq). **MS (HRMS)**: C₁₅H₁₁O₃ [M+H]⁺ Meas. m/z = 239.0702 for 239.0703, C₁₅H₁₀NaO₃ [M+Na]⁺ Meas. m/z = 261.0522 for 261.0522, C₃₀H₂₀NaO₆ [2M+Na]⁺ Meas. m/z = 499.1153 for 499.1152.

4,5-Bis(4-fluorophenyl)-1,3-dioxol-2-one (3). The title compound was synthesized from 4,4'-difluorobenzoin (248 mg, 1 mmol), TBD (14 mg, 0.1 mmol, 10 mol%) and 2-methylTHF (2 mL) following the general procedure. The product was purified by flash chromatography (ether/pentane 10:90) to give **3** (151 mg, 55%) as a white solid. Mp = 66 °C. ¹H NMR (300 MHz, CDCl₃): δ_{H} 7.57 – 7.48 (m, 4H), 7.16 – 7.07 (m, 4H). ¹³C NMR (75 MHz, CDCl₃): δ_{C} 163.64 (d, ¹*J*_{C-F}=252 Hz, 2 C_q-F), 151.47 (C=O), 136.22 (2 C_q), 128.80 (d, ³*J*_{C-F} = 8.5 Hz, 4 CH), 121.69 (d, ⁴*J*_{C-F}= 3.5 Hz), 116.57 (d, ²*J*_{C-F} = 22.2 Hz). ¹⁹F NMR (282 MHz, CDCl₃): δ_{F} -108.69 (s, 2 F_{Ar}). **MS (HRMS)**: C₁₅H₈F₂NaO₃ [M+Na]⁺ Meas. m/z = 297.0331 for 297.0334, C₁₅H₁₀F₂NaO₄ [M+Na+H₂O] ⁺ Meas. m/z = 315.0436 for 315.0439.

4,5-Bis(4-chlorophenyl)-1,3-dioxol-2-one (**4**). The title compound was synthesized from 4,4'dichlorobenzoin (281 mg, 1 mmol), TBD (14 mg, 0.1 mmol, 10 mol%) and 2-methylTHF (2 mL) following the general procedure by following the general procedure. The product was purified by flash chromatography (ether/pentane 10:90) to give **4** (209 mg, 68%) as a white solid. Mp = 141°C. ¹H NMR (300 MHz, CDCl₃): δ_{H} 7.51 – 7.45 (m, 4H), 7.43 – 7.38 (m, 4H). ¹³C NMR (75 MHz, CDCl₃): δ_{C} 151.25 (C=O), 136.51 (2 Cq), 129.63 (4 CH^{Ar}), 127.89 (4 CH^{Ar}), 123.86 (2 Cq). **MS (HRMS)**: C₁₅H₉Cl₂O₃ [M+H]⁺ Meas. m/z = 306.9924 for 306.9923, C₁₅H₈Cl₂NaO₃ [M+Na]⁺ Meas. m/z = 328.9742 for 328.9743, C₁₅H₁₀Cl₂NaO₄ [M+Na+H₂O]⁺ Meas. m/z = 346.9849 for 346.9848.

4,5-Bis(4-bromophenyl)-1,3-dioxol-2-one (5). The title compound was synthesized from 4,4'-dibromobenzoin (370 mg, 1 mmol), TBD (14 mg, 0.1 mmol, 10 mol%) and 2-methylTHF (2 mL) following the general procedure. The product was purified by flash chromatography (ether/pentane 10:90) to give **5** (329 mg, 83%) as a white solid. Mp = 152 °C. ¹H NMR (300 MHz, CDCl₃): δ H 7.57 (d, *J* = 8.6 Hz, 4H), 7.42 (d, *J* = 8.6 Hz, 4H). ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ 151.21 (C=O), 136.63 (2 Cq), 132.59 (4 CH^{Ar}), 128.04 (4 CH^{Ar}), 124.78 (2 Cq), 124.32 (2 Cq). **MS (HRMS):** C₁₅H₈Br₂NaO₃ [M+Na]⁺ Meas. m/z = 416.8732 for 416.8732.

4,5-Di-p-tolyl-1,3-dioxol-2-one (6). The title compound was synthesized from 4,4'-dimethylbenzoin (240 mg, 1 mmol), TBD (14 mg, 0.1 mmol, 10 mol%) and 2-methylTHF (2 mL) following the general procedure. The product was purified by flash chromatography (ether/pentane 10:90) to give **6** (176 mg, 66%) as a white solid. Mp = 132 °C. ¹H NMR (300 MHz, CDCl₃): δ_{H} 7.47-7.42 (m, 4H), 7.23-7.18 (m, 4H), 2.39 (s, 6H). ¹³C NMR (75 MHz, CDCl₃): δ_{c} 152.06 (C=O), 140.33 (2 Cq), 136.89 (2 Cq), 129.72 (4 CH^{Ar}), 126.46 (4 CH^{Ar}), 122.91 (2 Cq), 21.58 (2 CH₃). **MS (HRMS):** C₁₇H₁₅O₃ [M+H]⁺ Meas. m/z = 267.1013 for 267.1016, C₁₇H₁₄NaO₃ [M+Na]⁺Meas. m/z = 289.0833 for 289.0835, C₃₄H₂₈NaO₆ [2M+Na]⁺ Meas. m/z = 555.1779 for 555.1778.

4,5-Bis(4-methoxyphenyl)-1,3-dioxol-2-one (7): The title compound was synthesized from 4,4'-dimethoxybenzoin (272 mg, 1 mmol), TBD (14 mg, 0.1 mmol, 10 mol%) and 2-methylTHF (2 mL) following the general procedure. The product was purified by flash chromatography (ether/pentane 10:90) to give **7** (194 mg, 65%) as a white solid. Mp = 143 °C. ¹H NMR (300 MHz, CDCl₃): δ_{H} = 7.47 (d, *J*=8.9 Hz, 4H^{Ar}), 6.92 (d, *J*=8.9 Hz, 4H^{Ar}), 3.84 (s, 6H, OCH₃).¹³C NMR (75 MHz, CDCl₃): δ_{C} = 160.76 (2 OCq), 152.16 (C=O), 136.15 (2 Cq), 128.07 (4 CH), 118.15 (2 Cq), 114.52 (4 CH), 55.50 (2 OCH₃). MS (HRMS): C₁₇H₁₅O₅ [M+H]⁺ Meas. m/z = 299.0927 for 299.0914, C₁₇H₁₄NaO₅ [M+Na]⁺ Meas. m/z = 321.0745 for 321.0733, C₃₄H₂₈NaO₁₀ [2M+Na]⁺ Meas. m/z = 619.1592 for 619.1575.

4,5-Di([1,1'-biphenyl]-4-yl)-1,3-dioxol-2-one (8). The title compared was prepared using 1,2-di([1,1'-biphenyl]-4-yl)-2-hydroxyethan-1-one), BPA-PC (508 mg, 2 mmol), TBD (14 mg, 0.1 mmol, 10 mol%) and 2-methylTHF (2 mL) following the general procedure. The product was purified by flash chromatography (ether/pentane 10:90) to give **8** (117 mg, 30%) as white powder. Mp= 85°C. ¹H NMR (300 MHz, CDCl₃) δ_{H} 7.73-7.59 (m, 12H, CH^{Ar}), 7.52-7.37 (m, 6H, CH^{Ar}). ¹³C NMR (75 MHz, CDCl₃) δ_{C} 143.02 (C=O), 140.0 (4 Cq), 137.17 (2 Cq), 129.14 (4 CH), 128.20 (2 CH), 127.77 (4 CH), 127.20 (4 CH), 127.06 (4 CH), 124.56 (2 Cq). MS (HRMS): C₂₇H₁₉O₃ [M+H]⁺ Meas. m/z = 391.1348 for 391.1329, C₅₄H₃₇O₆ [2M+H]⁺ Meas. m/z = 781.2621 for 781.2585, C₅₄H₃₆NaO₆ [2M+Na]⁺ Meas. m/z = 803.2442 for 803.2404.

4,5-Bis(4-isopropylphenyl)-1,3-dioxol-2-one (9). The title compared was prepared using 2-hydroxy-1,2-bis(4-isopropylphenyl)ethan-1-one (296, 1 mmol), TBD (14 mg, 0.1 mmol, 10 mol%) and 2-methylTHF (2 mL) following the general procedure. The product was purified by flash chromatography (ether/pentane 10:90) to give **9** (225 mg, 70%) as colorless oil. ¹H NMR (300 MHz, CDCl₃) $\delta_{\rm H}$ 7.52–7.44 (m, 4H), 7.28–7.21 (m, 4H), 2.92 (hept, *J* = 6.9 Hz, 2H), 1.25 (d, *J* = 6.9 Hz, 12H). ¹³C NMR (75 MHz, CDCl₃) $\delta_{\rm C}$ 151.19 (C=O), 136.98 (2 Cq), 130.33 (2 Cq), 127.15 (4 CH^{Ar}), 126.59 (4 CH^{Ar}), 123.29 (2 Cq), 34.23 (2 CH), 23.87 (4 CH₃). **MS (HRMS)** C₂₁H₂₂NaO₃ [M+Na]⁺ Meas. m/z = 345.1456 for 345.1461, C₄₂H₄₄NaO₆ [2M+Na]⁺ Meas. m/z = 667.3027 for 667.3030.

4,5-Di(furan-2-yl)-1,3-dioxol-2-one (10). The title compound was prepared using 1,2-di(furan-2-yl)-2-hydroxyethan-1-one (192 mg, 1 mmol), BPA-PC (508 mg, 2 mmol), TBD (14 mg, 0.1 mmol, 10 mol%) and 2-methylTHF (2 mL) following the general procedure. The product was purified by flash chromatography (ether/pentane 10:90) to give **10** (156 mg, 70%) as white powder. Mp = 140°C. ¹H **NMR** (300 MHz, CDCl₃) $\delta_{\rm H}$ 7.58 (dd, *J* = 1.8, 0.8 Hz, 2H, CH^{Ar}), 6.91 (dd, *J* = 3.5, 0.8 Hz, 2H, CH^{Ar}), 6.57 (dd, *J* = 3.5, 1.8, 2H, CH^{AR}). ¹³C NMR (75 MHz, CDCl₃) $\delta_{\rm C}$ 150.48 (C=O), 144.40 (2 CH), 140.05 (2 C_q), 128.98 (2 C_q), 112.06 (2 CH), 111.48 (2 CH). **MS (HRMS)**: C₁₁H₇O₅ [M+H]⁺ Meas. m/z = 219.0288 for 219.0288; C₁₁H₆NaO₅ [M+Na]⁺ Meas. m/z = 241.0107 for 241.0107.

4,5-Di(thiophen-2-yl)-1,3-dioxol-2-one (11). The title compound was prepared using 2-hydroxy-1,2-di(thiophen-2-yl)ethan-1-one (224 mg, 1 mmol), BPA-PC (508 mg, 2 mmol), TBD (14 mg, 0.1 mmol, 10 mol%) and 2-methylTHF (2 mL) following the general procedure. The product was purified by flash chromatography (ether/pentane 10:90) to give **11** (138 mg, 55%) as a pink solid. Mp = 150°C. ¹H NMR (300 MHz, CDCl₃) $\delta_{\rm H}$ 7.49 (dd, J = 3.8, 1.3 Hz, 2H^{Ar}), 7.47 (dd, J = 5.2, 1.3 Hz, 2H^{Ar}), 7.14 (dd, J = 5.1, 3.7 Hz, 2H^{Ar}). ¹³C NMR (75 MHz, CDCl₃) $\delta_{\rm C}$ 150.74 (C=O), 132.37 (2 C_q), 128.40 (2 CH), 128.31 (2 CH), 127.88 (2 CH), 125.72 (2 C_q). **MS (HRMS)**: C₁₁H₇O₃S₂ [M+H]⁺ Meas. m/z = 250.9828 for 250.983 ; C₁₁H₆NaO₃S₂ [M+Na]⁺ Meas. m/z = 272.9647 for 272.9651.

4-Ethyl-5-phenyl-1,3-dioxol-2-one (13). The title compound was prepared using 2-hydroxy-1-phenylbutan-1-one (164 mg, 1 mmol), BPA-PC (508 mg, 2 mmol), TBD (14 mg, 0.1 mmol, 10 mol%) and 2-methylTHF (2 mL) following the general procedure. The product was purified by flash chromatography (ether/pentane 10:90) to give **13** (124 mg, 65%) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) $\delta_{\rm H}$ 7.48-7.33 (m, 5H^{Ar}), 2.73 (q, *J* = 7.5 Hz, 2H, CH₂), 1.30 (t, *J* = 7.5 Hz, 3H, CH₃). ¹³C NMR (75 MHz, CDCl₃) $\delta_{\rm C}$ 152.50 (C=O), 140.17 (C_q), 136.89 (C_q), 129.22 (CH), 129.11 (2 CH), 125.74 (Cq), 125.39 (2 CH), 18.60 (CH₂), 11.55 (CH₃).

4,5-Dimethyl-1,3-dioxol-2-one (14). The title compared was prepared using 3-hydroxybutan-2-one (88 mg, 1 mmol), BPA-PC (508 mg, 2 mmol), TBD (14 mg, 0.1 mmol, 10 mol%) and 2-methylTHF (2 mL) following the general procedure. The product was purified by flash chromatography (ether/pentane 10:90) to give **14** (91 mg, 80%) as a white solid. Mp = 79-80 °C. ¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 2.02 (s, 6H, 2 CH₃). ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ 153.27 (C=O), 134.85 (2 Cq), 9.04 (2 CH₃).

4,5-Diisobutyl-1,3-dioxol-2-one (15). The title compared was prepared using 5-hydroxy-2,7-dimethyloctan-4-one (172 mg, 1 mmol), BPA-PC (508 mg, 2 mmol), TBD (14 mg, 0.1 mmol, 10 mol%) and 2-methylTHF (2 mL) following the general procedure. The product was purified by flash chromatography (ether/pentane 10:90) to give to give **15** (149 mg, 75%) as a colorless oil. ¹H NMR (300 MHz, CDCl₃): δ_{H} 2.20 (d, J = 7.0 Hz, 4H, 2 <u>CH₂</u>), 1.93 (thept, J = 6.5, 6.8 Hz, 2H, 2 CH), 0.94 (d, J = 6.7 Hz, 12H, 4 CH₃). ¹³C NMR (75 MHz, CDCl₃): δ_{C} 153.51 (C=O), 138.63 (2 Cq), 32.52 (2 CH), 26.74 (2 CH₂), 22.23 (4 CH₃). **MS (HRMS)**: C₁₁H₁₈NaO₃ [M+Na]⁺ Meas. m/z = 221.1142 for 221.1148, C₂₂H₃₆NaO₆ [2M+Na]⁺ Meas. m/z = 419.2392 for 419.2404.

Diphenylcarbonate / TBD 1:1 adduct. The title compound was obtained by mixing 0.5 mL of a 0.2 M solution of diphenyl carbonate in d_6 -DMSO with 0.5 mL of a 0.2 M solution of TBD in d_6 -DMSO. The resulting solution was stirred at room temperature and a portion was transferred to an NMR tube. ¹H **NMR** (300 MHz, d_6 -DMSO) δ_H 9.52 (br s, 1H, NH), 7.26-7.18 (m, 1H), 7.17-7.07 (m, 5H), 6.79-6.67 (m, 4H), 3.62 (t, J = 6.4, 2H), 3.31 (t, J = 5.7, 2H), 3.18 (t, J = 5.8, 2H), 3.13 (t, J = 6.2, 2H), 1.92 (p, J = 6.3, 2H), 1.75 (p, J = 5.8, 2H). ¹³C **NMR** (75 MHz, d_6 -DMSO) δ_C 157.77 (Cq), 152.76 (Cq), 151.27 (Cq), 145.79 (Cq), 129.27 (2 CH^{Ar} + CH^{Ar}), 125.20 (CH^{Ar}), 121.60 (2 CH^{Ar}), 118.38 (2 CH^{Ar}), 115.32 (2 CH^{Ar}), 47.87 (N-CH₂), 47.44 (N-CH₂), 43.71 (N-CH₂), 43.21 (N-CH₂), 23.42 (CH₂), 21.54 (CH₂).

7. NMR spectra of vinylene carbonates

¹H NMR (300 MHz, CDCl₃) of 4,5-diphenyl-1,3-dioxol-2-one (2).

 ^1H NMR (300 MHz, CDCl₃) of 4,5-bis(4-fluorophenyl)-1,3-dioxol-2-one (3).

 ^{19}F NMR (282 MHz, CDCl_3) of 4,5-bis(4-fluorophenyl)-1,3-dioxol-2-one (3).

io 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -2 f1 (ppm)

 ^1H NMR (300 MHz, CDCl_3) of 4,5-bis(4-chlorophenyl)-1,3-dioxol-2-one (4)

¹³C-NMR (75 MHz, CDCl₃) of 4,5-bis(4-chlorophenyl)-1,3-dioxol-2-one (4)

¹H NMR (300 MHz, CDCl₃) of 4,5-bis(4-bromophenyl)-1,3-dioxol-2-one (5).

 $^{13}\mbox{C-NMR}$ (75 MHz, $\mbox{CDCI}_3\mbox)$ of 4,5-bis(4-bromophenyl)-1,3-dioxol-2-one (5).

¹H NMR (300 MHz, CDCl₃) of 4,5-di-p-tolyl-1,3-dioxol-2-one (6).

¹H NMR (300 MHz, CDCl₃) of 4,5-bis(4-methoxyphenyl)-1,3-dioxol-2-one (7).

 ${}^{1}\text{H NMR (300 MHz, CDCl_{3}) of 4,5-Di([1,1'-biphenyl]-4-yl)-1,3-dioxol-2-one (8).}$

 ${}^{13}\text{C-NMR} \ (75 \ \text{MHz}, \text{CDCl}_3) \ \text{of} \ 4,5\text{-Di}([1,1'\text{-biphenyl}]\text{-}4\text{-}y\text{l})\text{-}1,3\text{-}dioxo\text{l}\text{-}2\text{-}one \ (8).$

¹H NMR (300 MHz, CDCl₃) of 4,5-bis(4-isopropylphenyl)-1,3-dioxol-2-one (9).

¹H NMR (300 MHz, CDCl₃) of 4,5-Di(thiophen-2-yl)-1,3-dioxol-2-one (11).

^1H NMR (300 MHz, CDCl₃) of 4-ethyl-5-phenyl-1,3-dioxol-2-one (13).

¹H NMR (300 MHz, CDCl₃) of 4,5-dimethyl-1,3-dioxol-2-one (14).

¹H NMR (300 MHz, CDCl₃) of 4,5-diisobutyl-1,3-dioxol-2-one (15).

8. NMR Mechanistic studies

8.1. NMR of benzoin / TBD mixtures

A 0.2 M mother solution of *benzoin* was prepared by dissolving 127.2 mg (0.6 mmol) of benzoin in 3 mL of d_6 -DMSO.

A 0.2 M mother solution of *TBD* was prepared by dissolving 41.7 mg (0.3 mmol) of benzoin in 1.5 mL of d_6 -DMSO.

Five (5) solutions of benzoin / TBD mixtures in d_6 -DMSO were prepared as follows and the solutions were transferred in NMR tubes to record ¹H and ¹³C NMR.

Ве	nzoin		TBD	d ₆ -DMSO	Total volume	Molar benzoin / TBD ratio
Volume (mL)	n (mmol)	Volume (mL)	n (mmol)	Volume (mL)	(mL)	
0.5	0.1	0	0	0.5	1	1:0
0.5	0.1	0.125	0.025	0.375	1	1:0.25
0.5	0.1	0.25	0.05	0.25	1	1:0.5
0.5	0.1	0.375	0.075	0.125	1	1:0.75
0.5	0.1	0.5	0.1	0	1	1:0

Figure S3. Picture of the solutions of benzoin / TBD mixtures in d_{6} -DMSO (before transferring to NMR tubes)

Figure S4. Superimposition of ¹H NMR (300 MHz, d₆-DMSO) spectra of benzoin / TBD mixtures.

Figure S5. Superimposition of ¹³C NMR (75 MHz, *d*₆-DMSO) spectra of benzoin / TBD mixtures.

Figure S6. Superimposition of ¹³C NMR (75 MHz, *d*₆-DMSO) spectra of benzoin / TBD mixtures (stacked, zoom 1 of the carbonyl region).

Figure S7. Superimposition of ¹³C NMR (75 MHz, d_6 -DMSO) spectra of benzoin / TBD mixtures (stacked, zoom 2 of the CH region).

8.2. NMR of diphenyl carbonate / TBD mixtures

A 0.2 M mother solution of *diphenyl carbonate* was prepared by dissolving 128.4 mg (0.6 mmol) of benzoin in 3 mL of d_6 -DMSO.

A 0.2 M mother solution of *TBD* was prepared by dissolving 41.7 mg (0.3 mmol) of benzoin in 1.5 mL of d_6 -DMSO.

Five (5) solutions of diphenyl carbonate / TBD mixtures in d_6 -DMSO were prepared as follows and the solutions were transferred in NMR tubes to record ¹H and ¹³C NMR.

Dipheny	l carbonate		TBD	d ₆ -DMSO	Total volume	Molar benzoin / TBD ratio
Volume	n (mmol)	Volume	n (mmol)	Volume	(mL)	
(mL)		(mL)		(mL)		
0.5	0.1	0	0	0.5	1	1:0
0.5	0.1	0.125	0.025	0.375	1	1:0.25
0.5	0.1	0.25	0.05	0.25	1	1:0.5
0.5	0.1	0.375	0.075	0.125	1	1:0.75
0.5	0.1	0.5	0.1	0	1	1:0

Figure S8. Picture of the solutions of diphenyl carbonate / TBD mixtures in d₆-DMSO (before transferring to NMR tubes)

2.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 fl (ppm)

Figure S9. Superimposition of ¹H NMR (300 MHz, *d*₆-DMSO) spectra of diphenyl carbonate / TBD mixtures.

Figure S10. Superimposition of ¹³C NMR (75 MHz, *d*₆-DMSO) spectra of diphenyl carbonate / TBD mixtures.

¹H NMR (300 MHz, *d*₆-DMSO) of diphenyl carbonate / TBD 1:1 adduct

9. Mechanism proposal

Figure S11. Mechanism proposal 1: Transcarbonation through carbonate activation (preferred).

Figure S12. Mechanism proposal 2: Transcarbonation through dual (benzoin/carbonate) activation (alternative)

10. High-resolution mass spectrometry of vinylene carbonates

Bruker Compass DataAnalysis 5.2

Analysis Info

Acquisition Parameter

Analysis Method Comment

	00021.0
Tune_pos_Standard.m	1

ESI Active 50 m/z 1200 m/z

		Instrument / Ser#	impact II	0.45.05	825265.1
Ion Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	Positive 4500 V -500 V 750.0 Vpp	Set Nebulizer Set Dry Heate Set Dry Gas Set Divert Val	er Ive	0.3 Bar 200 °C 4.0 l/min Source	001

	Positive	Set Nebulizer	0.3 Bar	
	4500 V	Set Dry Heater	200 °C	
Offset	-500 V	Set Dry Gas	4.0 l/min	
ell RF	750.0 Vpp	Set Divert Valve	Source	

Acquisition Date E/7/2021 9:45:05 AM

Bruker Compass DataAnalysis 5.2

Analysis Info

Analys Metho Cor

is Name	Impact2_210301_06_KO-335-P.d
d	Tune_pos_Standard.m

Method Comment	Tune_pos_Standard.m			Acquisition Date Instrument / Ser#	3/1/2021 11:23:41 AM impact II 1825265.1
Acquisition Para Source Type Focus Scan Begin Scan End	ESI Active 110 m/z 1000 m/z	Ion Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	Positive 4500 V -500 V 750.0 Vpp	Set Nebulizer Set Dry Heate Set Dry Gas Set Divert Va	2001 2 0.3 Bar 200 °C 4.0 l/min lve Source

Bruker Compass DataAnalysis 5.2

Analysis Info

Source Type Focus

Acquisition Parameter

Impact2_210303_03_LI-2-P.d Analysis Name Method Tune_pos_Standard.m Comment

ESI

Acquisition Date 3/3/2021 8:27:07 AM Instrument / Ser# impact II 1825265.1 0081 Ion Polarity Positive 4500 V Set Nebulizer 0.3 Bar Set Capillary Set End Plate Offset Set Collision Cell RF Active Set Dry Heater 200 °C 4.0 l/min Set Dry Gas

Bruker Compass DataAnalysis 5.2

Analysis Info

Analysis Name Method Comment

Name Impact2_210510_01_KO-397-P.d Tune_pos_Standard.m

Acquisition Date 5/10/2021 10:42:13 AM Instrument / Ser# impact II 1825265.1 0081

Acquisition Parameter						
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	0.3 Bar	
Focus	Active	Set Capillary	1200 V	Set Dry Heater	200 °C	
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	4.0 l/min	
Scan End	1200 m/z	Set Collision Cell RF	750.0 Vpp	Set Divert Valve	Source	

A	hand in 1	I - i - i
Ana	VSIS	into

Analysis Name Method Comment	Impact2_201204_13_KO-217.d Tune_pos_Standard.m					
Acquisition Par	ameter					
Source Type	ESI	Ion Polarity	Positive			

Comment				Instrument / Ser# impa	act II 1825265.1
Acquisition Par	rameter				0001
Source Type	ESI	Ion Polarity	Positive	Set Nebultzer	0.3 Bar
Focus	Active	Set Capillary	1500 V	Set Dry Heater	200 °C
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	4.0 l/min
Scan End	1200 m/z	Set Collision Cell RF	750.0 Vpp	Set Divert Valve	Source

Acquisition Date

12/4/2020 5:14:59 PM

Bruker Compass DataAnalysis 5.2

Analysis Info Analysis Name Impact2_210427_27_KO-378-P.d Method Tune_pos_Standard.m Acquisition Date 4/27/2021 6:06:11 PM Instrument / Ser# impact II 1825265.1 Comment 0081 Acquisition Parameter ESI Source Type Ion Polarity Positive Set Nebulizer 0.3 Bar Active 50 m/z Set Capillary Set End Plate Offset Set Collision Cell RF Set Dry Heater Set Dry Gas Set Divert Valve 200 °C 4.0 l/min Focus Scan Begin Scan End 3500 V -500 V 1200 m/z 750.0 Vpp Source Intens. Impact2_210427_27_KO-378-P.d: +MS, 0.5±0.1min #20-34 1+ [M+H]+ 391.1348 0

Bruker Compass DataAnalysis 5.2

Page 1 of 1

S38

Analysis Info

Analysis Name Impact2_210701_06_KO-446-p.d Method Tune_pos_Standard.m

Comment				Instrument / Ser# i	impact II	1825265.1
Acquisition Para	meter				,	001
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	0.3 Bar	
Focus	Active	Set Capillary	1500 V	Set Dry Heater	r 200 °C	
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	4.0 l/min	1
Scan End	1200 m/z	Set Collision Cell RF	750.0 Vpp	Set Divert Valv	/e Source	

Acquisition Date 7/1/2021 6:09:30 PM

Bruker Compass DataAnalysis 5.2

Analysis Name Method	Impact2_220603_04_MF-95.d Tune pos_Standard.m			Acquisition Date	6/3/2022 2:5	6:55 PM
Comment				Instrument / Ser# j	mpact II	1825265.1
Acquisition Par	rameter					0081
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	0.3	Bar
Focus	Active	Set Capillary	1500 V	Set Dry Heater	r 200	0°C
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	4.0	l/min
Seen End	1000 m/z	Set Collision Cell RE	750.0 Vnn	Set Divert Valv	e Sou	Irce

Analysis Info

Analysis Name Impact2_220630_01_MF-97.d Method Tune_pos_Standard.m

Comment	-			Instrument / Ser# impact	II 1825265.1
Acquisition Para	meter				0001
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	0.3 Bar
Focus	Active	Set Capillary	4500 V	Set Dry Heater	200 °C
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	4.0 l/min
Scan End	1000 m/z	Set Collision Cell RF	750.0 Vpp	Set Divert Valve	Source

Acquisition Date 6/30/2022 10:22:54 AM

Bruker Compass DataAnalysis 5.2

Bruker Compass DataAnalysis 5.2

Analysis Info

Page 1 of 1

S42

11. Size-exclusion chromatography (SEC)

Molecular weight measurements were performed using a size exclusion chromatography (SEC) from Malvern Panalytical (Viscotek TDA). Stabilized THF was used as the mobile phase at a flow rate of 1 mL min⁻¹ at 40 °C. Samples were injected at a concentration of about 3 mg mL⁻¹ after filtration through a 0.45 μ m PTFE membrane. Separation was performed on three Agilent mixed C columns (SDVB, 5 μ m, 300 x 7.5 mm). Molecular weights were determined using a conventional calibration curve based on certified PS standards (Polymer Standards Service) from 470 to 2,500,000 g mol⁻¹. Omnisec 5.12 (Malvern Panalytical) software was used for data acquisition and processing.

SEC of commercially available BPA-PC (Sigma-Aldrich, M_w of about 45,000 g/mol).

Figure S13. Chromatogram and molar mass distributions of commercially available BPA-PC obtained by SEC.

Sample Id	Mw (g mol⁻¹)	Mn (g mol⁻¹)
BPA-PC (Sigma-Aldrich)	42,560	7,290

Table S1. Average molecular weight values of commercially available BPA-PC (M_n , number average molecular weight and M_w , weight average molecular weight).

Figure S14. Molar mass distributions of BPA-polycarbonate contained in CD, safety glasses and polycarbonate plate obtained by SEC.

Sample Id	Mw (g mol⁻¹)	Mn (g mol⁻¹)
PC plate	133,986	72,545
PC glasses	49,163	21,704
PC CD	32,805	16,200

Table S2. Average molecular weight values of BPA-polycarbonate contained in CD, safety glasses and polycarbonate plate $(M_n, number average molecular weight and <math>M_w$, weight average molecular weight).