Electronic Supplementary Information

Efficient Photoelectrochemical C-C coupling at BiVO₄ Electrodes under Visible Light Irradiation

William A. Swansborough-Aston,^a Ayman Soltan,^a Ben Coulson,^b Andrew Pratt,^b Victor Chechik,^a Richard E. Douthwaite^a

^aDepartment of Chemistry, University of York, York, YO10 5DD, UK.

^bDepartment of Physics, University of York, Heslington, York, YO10 5DD, UK

Contents

Materials and methods	2
Powder x-ray diffraction	3
Energy dispersive spectroscopy	4
X-ray photoelectron spectroscopy	5
Diffuse reflectance spectroscopy	7
GC headspace analysis	8
(Photo)electrochemistry	9
Electrochemical Impedance Spectroscopy	12
Apparent quantum yield (AQY) calculation	15
LSV and CPE of phenylacetic acid derivatives	
CPE using a supporting electrolyte	19
GC calibration curves	20
References	

Materials and methods

General: Bismuth (III) 2-ethylhexanoate and vanadyl (IV) acetylacetonate were purchased from Alfa Aesar. Ferrocene (98%) was purchased from Aldrich and purified by sublimation. FTO glass, triethylamine (≥99.5 %), 2-methyl, 4-methyl, 4-methoxy and 3-methoxyphenylacetic acid, benzoic and hydrocinnamic acids were purchased from Sigma-Aldrich. Phenylacetic acid (98.5 %) was purchased from Acros Organics. 3-chloro, 4-chloro and 4-fluorophenylacetic acid, 2-phenylisobutyric and 2-phenylpropionic acids were all purchased from Fluorochem. Tetrabutylammonium hexafluorophosphate was purchased from Fluka and was recrystallised in ethanol prior to use.

Powder x-ray diffraction

Figure S1. Grazing incidence X-ray diffractogram of a $BiVO_4$ photoelectrode.

Energy dispersive spectroscopy

Figure S2. Energy dispersive X-ray spectrum of a BiVO₄ photoelectrode a) before use; b) after controlled potential electrolysis of 1 M PAA with 0.05 equiv Et₃N for 3h at +0.09 V vs Fc/Fc⁺.

X-ray photoelectron spectroscopy

2

Bi³⁺ 4f_{5/2}

Figure S3. XPS survey spectrum of a $BiVO_4$ photoelectrode prepared by electrostatic spray pyrolysis.

Figure S4. Bi 4f region and peak fitting of an XPS spectrum of a BiVO₄ photoelectrode.

Table S1. Summary of deconvoluted XPS signals in the Bi 4f region of the XPS spectrum.

		-	-	-	-
Region	Peak	Species	Peak Position / eV	Peak FWHM / eV	Percentage Integration
Bi 4f	1	Bi ³⁺ 4f _{7/2}	159.6	1.45	63.7

1.35

36.3

164.9

Figure S5. V 2p and O 1s regions and peak fitting of the XPS spectrum of a $BiVO_4$ photoelectrode.

Table S2. Summary of deconvoluted XPS signals in the V 2p and O 1s regions of the XPS spectrum.

Region	Peak	Species	Peak Position / eV	Peak FWHM / eV	Percentage Integration
V 2p	1	V ⁵⁺ 2p _{3/2}	517.6	1.47	28.6
	2	V ⁵⁺ 2p _{1/2}	524.8	2.54	14.8
O 1s	3	Metal Oxide	530.7	1.4	50.6
	4	Hydroxide/Water	533.1	2.35	6.1

Table S3. XPS quantification data of a $BiVO_4$ photoelectrode surface before controlled potential electrolysis of 1 M PAA with 0.05 equiv Et₃N for 3h at +0.09 V vs Fc/Fc⁺.

Peak	Centre	Integration	Factor	Int./Factor	Relative Quantity
Bi 4f	159.65	930	4.25	218	1
V 2p	517.6	551	1.3	424	1.93
O 1s	530.6	1138	0.66	1725	7.88

Table S4. XPS quantification data of a BiVO₄ photoelectrode surface after controlled potential electrolysis of 1 M PAA with 0.05 equiv Et₃N for 3h at +0.09 V vs Fc/Fc⁺.

Peak	Centre	Integration	Factor	Int./Factor	Relative Quantity
Bi 4f	159.85	952	4.25	224	1
V 2p	517.6	485	1.3	373	1.66
O 1s	530.6	1008	0.66	1528	6.82

Diffuse reflectance spectroscopy

Figure S6. Diffuse reflectance spectrum of a BiVO₄ photoelectrode.

Figure S7. Tauc plot of a BiVO₄ photoelectrode showing a band gap of approximately 2.5 eV.

GC headspace analysis

Figure S8. Gas chromatogram of the cell headspace after controlled potential electrolysis of 1 M PAA with 0.05 equiv Et_3N for 1h at +0.09 V vs Fc/Fc⁺.

(Photo)electrochemistry

Figure S9. Average linear sweep voltammogram across 15 photoelectrodes in 1 M PAA and 0.05 equiv NEt₃ vs Fc/Fc+ under illumination with AM 1.5G. Note all other experiments were performed using a blue LED array which gives larger photocurrents.

Figure S10. Controlled potential electrolyses of 2 M (black), 1 M (red), 0.5 M (blue) and 0.25 M (green) PAA electrolytes and 0.05 equiv Et₃N at +0.09 V vs Fc/Fc⁺.

Figure S11. Linear sweep voltammograms of BiVO₄ photoelectrodes in electrolytes containing 1 M PAA with 0.1 (black), 0.05 (red), 0.025 (blue) and 0 equiv Et₃N (green). Voltammograms were recorded in the dark (dashed) and under blue LED illumination (solid). Scan rate 10 mV s⁻¹.

Figure S12. Controlled potential electrolyses of 1 M PAA solutions partially neutralised by addition of 0.1 (black), 0.05 (red) and 0.025 (blue) equiv Et_3N at +0.09 V vs Fc/Fc⁺.

Figure S13. Linear sweep voltammogram in the absence of illumination of a $BiVO_4$ photoelectrode in 1 M PAA with 0.05 equiv Et₃N.

Figure S14. Controlled potential electrolysis in the absence of illumination of a BiVO₄ photoelectrode in 1 M PAA with 0.05 equiv Et₃N at 2.5 V vs Fc/Fc⁺.

Figure S15. Cell voltage measured during controlled potential electrolyses of 1 M PAA solution partially neutralised by addition of 0.05 equiv Et₃N at +0.09 V vs Fc/Fc⁺.

Electrochemical Impedance Spectroscopy

Impedance spectra were initially fitted using a modified Randles cell, with cell series resistance, R_s , bulk capacitance, C_{bulk} , and bulk charge transfer resistance, $R_{ct,bulk}$, elements to model charge transfer within the semiconductor. A second constant phase element and resistor in parallel were added to model charge transfer resistance, R_{ct} , and space-charge capacitance, Q_{sc} , at the electrode surface.

Capacitance values can be calculated from constant-phase elements using:

$$C_{SC} = \frac{(Q_{SC}R_{ct})^{1/n}}{R_{ct}}$$

Where C_{SC} is the space-charge capacitance and n is the constant phase element exponent, extracted from fitting of impedance data.¹The impedance response of porous films can be understood through the use of transmission line models, however correlating a large number of model parameters to real chemical processes is often difficult.^{2, 3} Similar equivalence cells have been used to model Fe₂O₃ photoelectrodes in photoelectrochemical C-H amination reactions in non-aqueous media.⁴

For the fitting of impedance spectra in 50 mM 4-CI-PAA solutions, a similar equivalence cell as before was used, though a Warburg diffusion element, W_H , was included to account for the linear behaviour observed at low frequency caused by diffusion within the Helmholtz layer.

Figure S16. Total cell resistance (R_{tot}) calculated from linear sweep voltammograms of a BiVO₄ photoelectrode in 1 M 4-CI-PAA electrolyte (black line). R_{tot} estimated from fitting of impedance spectra (red squares). The validity of impedance fitting using the equivalence cell shown in Fig. 5a was tested by comparison of total resistance, R_{tot}, measured by LSV and calculated from Table S6.⁵ For impedance measurements, R_{tot} was taken as the summation of all resistances (R_s + R_{ct,bulk} + R_{ct}). R_{tot} for LSV measurements was calculated using:

$$R_{tot} = \left(A_S \frac{dJ}{dV}\right)^{-1}$$

Where A_S is the electrode area, and dJ/dV is the differentiated voltammogram.

Figure S17. Mott-Schottky plots of a BiVO₄ photoelectrode in a) 1 M 4-CI-PAA with 0.05 equiv Et₃N at 142 (black), 112 (red) and 89 Hz (blue); b) Mott-Schottky plot of a BiVO₄ photoelectrode in 0.05 M 4-CI-PAA solutions containing 0.1 M TBAPF₆. Due to the prevalence of the Warburg diffusion element at low frequency, Mott-Schottky plot was acquired at 1.23 kHz.

Table S5: Flat band potentials and donor densities of BiVO₄ photoelectrodes extracted from Mott-Schottky analysis. Donor density values were calculated using geometric area in absence of active surface area and a relative permittivity of ε = 86.

[4-CI PAA] ^a / M	Frequency / Hz	Flat Band Potential vs Fc/Fc ⁺ / V	N _D (x10 ¹⁹)/ cm ⁻³
1.0	142	-0.645	1.18
1.0	112	-0.644	1.48
1.0	89	-0.649	1.82
0.05 ^{a, b}	1230	-1.10	0.28

 a with added 0.05 equiv Et₃N, b with added 0.1 M TBAPF₆

Table S6. Comparison of parameters extracted from the fitting of impedance spectra for an illuminated BiVO₄ photoelectrode in 1 M and 0.05 M 4-CI-PAA electrolyte.

[4-CI PAA] ^a / M	V / V	Rs / Ω	C _{bulk} / µF	R _{ct,bulk} / Ω	C _{SC} / µF	R _{ct} / Ω
1.0	-0.26	53.12	0.972	8.226	380.8	280.8
1.0	-0.06	52.84	0.912	9.971	150.5	94.52
1.0	0.14	52.33	0.844	10.52	117.8	84.26
0.05 ^{a, b}	-0.06	19.64	39.5	6.37	422.4	430.9

 $^{\rm a}$ with added 0.05 equiv Et_3N, $^{\rm b}$ with added 0.1 M TBAPF_6

Apparent quantum yield (AQY) calculation

4-chlorophenylacetic acid (1.71 g, 10 mmol) was dissolved in dry, degassed MeCN (10 mL) and 0.05 equiv triethylamine (0.07 mL, 0.5 mmol) was added. 8 mL of this solution was added to a photoelectrochemical cell, with a 3-electrode configuration using a BiVO₄ working electrode, a Pt counter electrode, and an Ag wire reference electrode isolated in a Luggin capillary. Controlled potential electrolyses were undertaken at +0.09 V vs Fc/Fc⁺ for 1 min under blue LED illumination (λ = 450 nm, 32 mW cm⁻²). Incident photon to current efficiency (IPCE) was calculated as the ratio of photocurrent to the total number of photons irradiating the electrode.

Number of Electrons = $\frac{ItN_A}{F}$

Where i = photocurrent, t = time, $N_A =$ Avogadro's number and F = Faraday constant

Number of Incident Photons = $\frac{Y_e A \lambda}{hc}$

Where Y_e = irradiance at the photoelectrode, A = geometric electrode area, λ = incident photon wavelength (450 nm), h = Planck's constant, and c = speed of light in a vacuum.

The apparent quantum yield (AQY) was calculated as the product of IPCE and Faradaic Efficiency for the Kolbe product.

For the electrolysis of 1 M 4-CI-PAA under 32.2 mW cm⁻² irradiance:

$$Number of \ Electrons = \frac{2.1 \ mA \ \times 1 \ s \ \times 6.022 \ \times 10^{23}}{96485 \ s \ A \ mol^{-1}} = 1.31 \ \times 10^{16}$$
$$Number of \ Incident \ Photons = \frac{32.2 \ mW \ cm^{-2} \ \times 1.5 \ cm^2 \ \times 450 \ \times 10^{-9} \ m}{6.63 \ \times 10^{-34} \ m^2 \ kg \ s^{-1} \ 3 \ \times 10^8 \ m \ s^{-1}} = 1.085 \ \times 10^{17}$$

$$IPCE = \frac{1.3 \times 10^{16}}{1.085 \times 10^{17}} \times 100\% = 12.1\%$$
$$AOY = 12.1\% \times 0.99 = 12.0\%$$

For context an IPCE = 100%, gives a theoretical i = 17.4 mA and j = 11.6 mA cm⁻².

Table S7. Light intensity dependence of 1 M PAA with 0.05 equiv. NEt₃ in acetonitrile.

Irradiance / mW cm ⁻²	Ave. Photocurrent @	Photon-to-Current
	+0.09 V vs Fc/Fc+/ mA	Efficiency / %
32.2	2.10	12.1
16.5	1.81	20.2
9.70	1.28	24.2

LSV and CPE of phenylacetic acid derivatives

Figure S18. Linear sweep voltammograms of $BiVO_4$ photoelectrodes in 1 M of substituted phenylacetic acids with 0.05 equiv Et₃N compared to 1 M PAA (black). Voltammograms were recorded in the presence (solid) and absence (dashed) of blue LED illumination.

Figure S19. Controlled potential electrolyses of 1 M electrolytes of substituted phenylacetic acids with 0.05 equiv Et₃N at +0.09 V vs Fc/Fc⁺ compared to 1 M PAA (black).

Figure S20. Linear sweep voltammograms of BiVO₄ photoelectrodes in 1 M 2-phenylpropionic (2-PPA, red) and 2-phenylisobutyric acids (2-PIBA, blue) with 0.05 equiv Et₃N compared with 1 M PAA (black). Voltammograms were recorded in the presence (solid lines) and absence (dashed lines) of blue LED illumination.

Figure S21. Controlled potential electrolyses of 1 M 2-phenylpropionic (red) and 2-phenylisobutryic acid (blue) with 0.05 equiv Et₃N at +0.09 V vs Fc/Fc⁺ comparted with 1 M PAA (black).

Figure S22. Linear sweep voltammograms of a BiVO₄ photoelectrode in 1 M 3-phenyl propanoic (red) and benzoic (blue) acids with 0.05 equiv Et_3N compared to 1 M PAA (black). Voltammograms were recorded in the presence (solid) and absence (dashed) of blue LED illumination.

Figure S23. Controlled potential electrolyses of 1 M hydrocinnamic (red) and benzoic (blue) acids with 0.05 equiv Et₃N at +0.09 V vs Fc/Fc⁺ compared to 1 M PAA (black).

CPE using a supporting electrolyte

Figure S24. Controlled potential electrolyses using three electrodes of electrolytes containing 0.1 M TBAPF₆, 0.05 M 4-CI-PAA and 0.05 equiv Et₃N at +0.25 V vs Fc/Fc⁺ under blue LED illumination.

GC calibration curves

Bibenzyl, benzyl alcohol and benzaldehyde were dissolved in 1:1 CH_2Cl_2 :MeOH and chromatograms recorded in triplicate at each concentration.

Figure S25. GC calibration curves for bibenzyl, benzyl alcohol, and benzaldehyde.

Acid	Aldehyde r.t. / min	Alcohol r.t. / min	C-C Kolbe r.t. / min	Acid r.t. / min	
PAA	4.57	5.08	8.84	6.24	
4-OMe-PAA	7.12	7.32	nd	8.50	
3-OMe-PAA	6.22	6.55	nd	8.35	
4-CI-PAA	nd ^a	nd	11.94	7.79	
2-Me-PAA	5.71	5.96	10.34	7.05	
4-Me-PAA	5.81	6.22	10.22	7.02	
3-CI-PAA	5.82	6.83	11.73	7.76	
4-F-PAA	4.46	5.13	8.71	6.13	
2-PPA	nd	nd	9.26, 9.36 ^b	6.45	
2-PIBA	nd	nd	10.95	6.81	
Benzoic	nd	nd	nd	5.47	
Hydrocinnamic	nd	5.43	nd	6.88	
allong detected h	rotantian times of dias	toroomoro			

Table S8. GC retention times of acid starting materials, Kolbe and non-Kolbe products

^aNone detected. ^bretention times of diastereomers.

Figure S26. Example chromatogram of 4-CI-PAA electrolysis products after 3 h at +0.09 V vs Fc/Fc^{+} .

References

- 1. M. E. Orazem and B. Tribollet, *Electrochim. Acta*, 2008, **53**, 7360-7366.
- 2. J. Bisquert, G. Garcia-Belmonte, F. Fabregat-Santiago, N. S. Ferriols, P. Bogdanoff and E. C. Pereira, *J. Phys. Chem. B*, 2000, **104**, 2287-2298.
- 3. F. Fabregat-Santiago, G. Garcia-Belmonte, J. Bisquert, A. Zaban and P. Salvador, *J. Phys. Chem. B*, 2002, **106**, 334-339.
- 4. L. Zhang, L. Liardet, J. Luo, D. Ren, M. Grätzel and X. Hu, *Nat. Catal.*, 2019, **2**, 366-373.
- 5. B. Klahr, S. Gimenez, F. Fabregat-Santiago, T. Hamann and J. Bisquert, *J. Am. Chem. Soc.*, 2012, **134**, 4294-4302.