Supporting Information

Achieving Superior Methanol Oxidation Electrocatalytic Performance by

Surface Reconstruction of PtNi Nanoalloys during Acid Etching Process

Xu Chen, Jinyu Zhao, Jie Lian, Xiaomin Wang*

College of Materials Science and Engineering, Taiyuan University of Technology,

030024, PR China

E-mail address: wangxiaomin@tyut.edu.cn (X. Wang)

The apparent activation energy (Ea) can be obtained from the fitting slope of Arrhenius diagram (ln j vs. 1/T), according to the following equation:

$$I = Ae - \frac{E_a}{RT}$$
 (1)

where A is the pre-exponential, R represents gas constant, and T is the reaction temperature.

The potential measured with a SCE electrode can be transferred according to the following equation:

$$E_{(RHE)} = E_{(SCE)} + 0.2415 \text{ V} + 0.05916 \times \text{pH}$$
 (2)

The hydrogen desorption region was used to integrate with the positive-going potential scan to obtain electrochemically active surface areas (ECSA) evaluated by the following equation:

$$ECSA = \frac{S}{MCv}$$
(3)

where S is the integral area of the hydrogen region obtained from the CV curve. M is the Pt loading on the surface of the electrode, and C is the H adsorption constant of Pt single crystal (0.21 mC cm⁻²), ν is the scanning speed (50 mV s⁻¹).

The mass activity and specific activity obtained from the following equations:

$$J_{k \text{ mass}} = \frac{J_k S}{M_{Pt}}$$
(4)
$$J_{k \text{ specific}} = \frac{J_k S}{ECSA M_{Pt}}$$
(5)

 J_k is the peak current density of catalysts obtained from the CV curves in 0.5 M H_2SO_4 containing 1 M CH₃OH solution. S is the geometric area of the GCE. M_{Pt} is the

Pt loading on the surface of the electrode.

Fig. S1 The SEM images of (a, d) Pt_{1.5}Ni-NGA, (b, e) PtNi₃-NGA (c, f) Pt-NGA, (g, h) rGO and

(i) PtNi₃-NGA precursor.

Fig. S2 HRTEM images of $Pt_{1.5}Ni$ -NGA catalysts.

Pt Ni O C N		10 10 10 10 10 10 10 10		4 5 6	● 分析開始数/2回 N N P P 7 8 9 keV
	Pt	Ni	O	C	N

Fig. S3 SEM and its corresponding EDS mapping images of $Pt_{1.5}Ni$ -NGA catalyst.

Fig. S4 SEM and its corresponding EDS elemental mapping images of the PtNi₃-NGA catalyst.

Sample	Pt (wt%)	Pt/Ni atomic ratio
Pt ₃ Ni-NGA	13.9	3:1
Pt ₂ Ni-NGA	13.5	1.98:1
PtNi-NGA	12.5	1:1
PtNi ₂ -NGA	10.8	1:2
PtNi ₃ -NGA	15.5	1:3.1

Table S1 ICP results of the obtained samples.

PtNi ₄ -NGA	8.4	1:4
Pt _{1.5} Ni-NGA	9.5	1.5:1
Pt-NGA	23.5	
PtNi ₃ -rGO	21	/
Pt/C	20	

Fig. S5 Pt/Ni atom ratio characterized by EDS and ICP-OES.

Samplas			Elem	ents (Wt %	6)	
Samples	Pt	Ni	0	С	Ν	Pt/Ni (at%)
Pt _{1.5} Ni-NGA	7.73	2.04	11.04	78.53	0.67	1.15
PtNi ₃ -NGA	4.11	7.45	6.37	82.06	0	0.17

Table S2 The Percentage of elements from EDS elemental mapping.

Fig. S6 (a) XRD patterns and (b) the corresponding magnified views of Pt_xNi_y-NGA samples with

different Ni contents.

Fig. S7 The deconvolution of the broad peaks (a) at 42-45° and (b) 48-52°.

Fig. S8 SAED diffraction speckle calibration of (a) PtNi₃-NGA and (b) Pt_{1.5}Ni-NGA.

Fig. S9 XPS survey spectra of Pt_{1.5}Ni-NGA, PtNi₃-NGA, Pt-NGA, PtNi₃-rGO and Pt/C catalysts.

Samplas	Elements (Atom %)					
Samples	Pt	Ni	С	Ν	Pt/Ni	
Pt _{1.5} Ni-NGA	0.42	0.31	96.11	3.17	1.35	
PtNi ₃ -NGA	0.60	1.12	96.17	2.11	0.54	
Pt-NGA	0.44	-	97.56	2	-	
PtNi ₃ -rGO	0.97	1.99	97.04	-	0.49	
Pt/C	2.32	-	97.68	-	-	

Table S3 The Percentage of elements obtained from XPS.

Catalysta	Pt ⁰	Pt ²⁺
Catalysis	Binding energy (eV)	Binding energy (eV)
	71.92	73.63
Pt _{1.5} MI-NGA	75.23	76.93
DINI NGA	71.65	73.18
PtN1 ₃ -NGA	74.98	76.51
Dt NGA	71.11	73.03
rt-NOA	74.44	76.01
PtNi ₃ -rGO	71.70	73.50
	75.03	76.83
Pt/C	71.20	72.40
	74.53	75.73

Table S4 Binding energies and surface components for Pt 4f core level region of all catalysts.

Table S5 Contents of nitrogen based on N 1s high-resolution XPS analysis for different samples.

	Configuration	of nitrogen (%)	
Pyridinic N (%)	Pyrrolic N (%)	Graphitic N (%)	Oxidized N (%)
32.7	14.0	23.7	29.6
26.6	43.7	20.3	9.4
38.6	22.2	36.3	2.9
	Pyridinic N (%) 32.7 26.6 38.6	Configuration Pyridinic N (%) Pyrrolic N (%) 32.7 14.0 26.6 43.7 38.6 22.2	Configuration of nitrogen (%) Pyridinic N (%) Pyrrolic N (%) Graphitic N (%) 32.7 14.0 23.7 26.6 43.7 20.3 38.6 22.2 36.3

Fig. S10 (a) N₂ adsorption/desorption isotherms, (b) corresponding pore distribution, (c) the BET and the pore volume distribution histograms of prepared catalysts.

Samples	S_{BET} (m ² /g)	V _t (cm ³ /g)
Pt _{1.5} Ni-NGA	29.2779	0.106306
PtNi ₃ -NGA	27.8300	0.104293
Pt-NGA	19.0169	0.093555
PtNi ₃ -rGO	14.2000	0.065207

Table S6 The BET and total pore volume of all samples.

Fig. S11 Catalytic activity characterizations. (a) CV curves in 0.5 M H_2SO_4 solution at a scan rate of 50 mV s⁻¹ and (b) CV curves in 0.5 M $H_2SO_4 + 1.0$ M CH₃OH solution at a scan rate of 50 mV

s⁻¹.

Fig. S12 CV curves of PtNi₃-NGA acid etching (a) for 1 h from 40 °C to 80 °C, (b) at 60 °C for

0.5-1.5 h in 0.5 M H₂SO₄ + 1.0 M CH₃OH.

Sample	ESCA (m ² g ⁻¹)	Mass activity (A mg ⁻¹)	Specific activity (mA cm ⁻²)
Pt _{1.5} Ni-NGA	205.10	1.88	0.93
PtNi ₃ -NGA	155.79	0.98	0.92
Pt-NGA	78.62	0.79	0.81
PtNi ₃ -rGO	59.93	0.58	0.97
Pt/C	50.78	0.30	0.59

Table S7 The comparison of ESCA, Mass activity and Specific activity of all samples.

Table S8 Comparison of the MOR performance for recently reported Pt-based electrocatalysts in

acid electrolytes.

Catalysts	Mass activity	Flectrolyte	References	
Catalysis	$(A mg_{Pt}^{-1})$	Licenoryte		
Pt _{1.5} Ni-NGA	1.88	0.5 M H ₂ SO ₄ +1.0 M CH ₃ OH	This work	
$Pd_{59}Fe_{27}Pt_{14}$	1.61	0.1 M HClO ₄ +0.5 M CH ₃ OH	[1]	
PtNiNF-NGA	1.65	0.1 M HClO ₄ +1.0 M CH ₃ OH	[2]	
PtFe (1:2) @a-FeO _x /NC-C	1.48	$0.5 \text{ M H}_2\text{SO}_4 + 1.0 \text{ M CH}_3\text{OH}$	[3]	
CuNi@Pt-Cu nano-octahedra	0.99	0.1 M HClO ₄ +1.0 M CH ₃ OH	[4]	
PtFe@PtRuFe	0.69	0.1 M HClO ₄ +0.5 M CH ₃ OH	[5]	
d-Pt@Ru dodecahedra	0.80	$0.5 \text{ M H}_2\text{SO}_4 + 1.0 \text{ M CH}_3\text{OH}$	[6]	
ae-P ₃ Te ₆ Co ₂ nanorods	1.47	0.1 M HClO ₄ +0.5 M CH ₃ OH	[7]	
PtCo nanocrosses	0.69	$0.5 \text{ M H}_2\text{SO}_4 + 1.0 \text{ M CH}_3\text{OH}$	[8]	
Ir-Pt-Cu	1.04	0.1 M HClO ₄ +0.5 M CH ₃ OH	[9]	
0.5%Sn/Pt ₃ Mn	0.65	$0.5 \text{ M H}_2\text{SO}_4 + 2.0 \text{ M CH}_3\text{OH}$	[10]	
Hollow PtCu nanotube	1.33	0.5 M H ₂ SO ₄ +1.0 M CH ₃ OH	[11]	

Fig. S13 (a) LSV curves of all catalysts in 0.5 M H₂SO₄ + 1.0 M CH₃OH at a sweeping rate of 5

mV s⁻¹. (b) CO-stripping curves obtained in 0.5 M H_2SO_4 at a scan rate of 50 mV s⁻¹. (c)

Histograms of Rct derived from the electrochemical impedance plots.

Fig. S14 (a-c) MOR CV curves at various scan rate of PtNi3-rGO, Pt-NGA and Pt/C. (d-f) MOR

CV curves of PtNi₃-rGO, Pt-NGA and Pt/C catalysts at 50 mV/s from 20 $^\circ$ C to 35 $^\circ$ C in 0.5 M

 $H_2SO_4 + 1.0 M CH_3OH.$

Fig. S15 MOR CV curves of (a) Pt-NGA, (b) PtNi₃-rGO and (c) Pt/C, recorded before (solid line)

and after (dotted line) 10000 s i-t test.

Fig. S16 SEM images of Pt_{1.5}Ni-NGA catalyst after 10000 s i-t test.

References

[1] Luo, X., C. Liu, X. Wang, Q. Shao, Y. Pi, T. Zhu, Y. Li, and X. Huang. "Spin Regulation on 2D Pd-Fe-Pt Nanomeshes Promotes Fuel Electrooxidations." Nano Lett, 20, 2020, 1967-73.

[2] Yang, J., R. Hubner, J. Zhang, H. Wan, Y. Zheng, H. Wang, H. Qi, et al. "A Robust PtNi Nanoframe/N-Doped Graphene Aerogel Electrocatalyst with Both High Activity and Stability." Angew Chem Int Ed Engl, 60, 17, 2021, 9590-97.

[3] Zhao, W., L. Ma, M. Gan, X. Li, Y. Zhang, X. Hua, and L. Wang. "Engineering Intermetallic-Metal Oxide Interface with Low Platinum Loading for Efficient Methanol Electrooxidation." J Colloid Interface Sci, 604, 2021, 52-60.

[4] Li, C., X. Chen, L. Zhang, S. Yan, A. Sharma, B. Zhao, A. Kumbhar, G. Zhou, and J. Fang. "Synthesis of Core@Shell Cu-Ni@Pt-Cu Nano-Octahedra and Their Improved Mor Activity." Angew Chem Int Ed Engl, 60, 14, 2021, 7675-80.

[5] Wang, Qingmei, Siguo Chen, Pan Li, Shumaila Ibraheem, Jia Li, Jianghai Deng, and Zidong Wei. "Surface Ru Enriched Structurally Ordered Intermetallic PtFe@PtRuFe Core-Shell Nanostructure Boosts Methanol Oxidation Reaction Catalysis." Applied Catalysis B: Environmental, 252, 2019, 120-27.

[6] Bai, X., J. Geng, S. Zhao, H. Li, and F. Li. "Tunable Hollow Pt@Ru Dodecahedra Via Galvanic Replacement for Efficient Methanol Oxidation." ACS Appl Mater Interfaces, 12, 20, 2020, 23046-50.

[7] Li, Jie, Cheng Wang, Hongyuan Shang, Yuan Wang, Huaming You, Hui Xu, and Yukou Du. "Metal-Modified PtTe₂ Nanorods: Surface Reconstruction for Efficient Methanol Oxidation Electrocatalysis." Chemical Engineering Journal, 424, 2021.

[8] Li, Zhijuan, Xian Jiang, Xiaoru Wang, Jinrui Hu, Yuanyuan Liu, Gengtao Fu, and Yawen Tang. "Concave PtCo Nanocrosses for Methanol Oxidation Reaction." Applied Catalysis B: Environmental, 277 2020.

[9] Peng, K., W. Zhang, N. Bhuvanendran, Q. Ma, Q. Xu, L. Xing, L. Khotseng, and H. Su. "Pt-Based (Zn, Cu) Nanodendrites with Enhanced Catalytic Efficiency and Durability toward Methanol Electro-Oxidation Via Trace Ir-Doping Engineering." J Colloid Interface Sci, 598, 2021, 126-35.

[10] Li, Yunrui, Yao Wang, Shuna Li, Mingxuan Li, Yujie Liu, Xu Fang, Xiaoping Dai, and Xin Zhang. "Pt₃Mn Alloy Nanostructure with High-Index Facets by Sn Doping Modified for Highly Catalytic Active Electro-Oxidation Reactions." Journal of Catalysis, 395, 2021, 282-92.

[11] Xu, F., S. Cai, B. Lin, L. Yang, H. Le, and S. Mu. "Geometric Engineering of Porous PtCu Nanotubes with Ultrahigh Methanol Oxidation and Oxygen Reduction Capability." Small, 2022, e2107387.