Supporting Information for:

Integration of Chiral Phosphine Ligand and Ionic Liquids: Sustainable and Functionally Enhanced BINAP-Based Chiral Ru(II) Catalysts for Enantioselective Hydrogenation of β -Keto Esters

Fan Wang,^{a,b} Shuai Zhang,^b Sen Huang,^b Lin Zhu,^b Hongbing Song,^b Congxia Xie^a and Xin Jin^{*,b}

^a College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China

^b College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China

Corresponding Author:

* *E*-mail: Xin Jin, jinx1971@163.com

List of the contents

1 Experimental procedures

- 1.1 Synthesis and characterization of 2a
- 1.2 Synthesis and characterization of Ph(CH₂)₂OMs
- 1.3 Synthesis and characterization of 6
- 1.4 Synthesis and characterization of 3a
- 1.5 Synthesis and characterization of 7
- 1.6 Typical procedure for recycling CRTP-PolyIMILsRuBr2 catalysts under the HCBS system

2 NMR spectra

- 2.1 ¹H NMR spectrum of 2a (Figure S1)
- 2.2 ¹³C NMR spectrum of 2a (Figure S2)
- 2.3 ¹H NMR spectrum of 2b (Figure S3)
- 2.4 ¹³C NMR spectrum of 2b (Figure S4)
- 2.5 ¹H NMR spectrum of Ph(CH₂)₂OMs (Figure S5)
- 2.6 ¹H NMR spectrum of 6 (Figure S6)
- 2.7 ¹³C NMR spectrum of 6 (Figure S7)
- 2.8 ¹H NMR spectrum of 3a (Figure S8)
- 2.9 ¹³C NMR spectrum of **3a** (Figure S9)
- 2.10 ³¹P NMR spectrum of **3a** (Figure S10)
- 2.11 ¹H NMR spectrum of **3b** (Figure S11)
- 2.12 ¹³C NMR spectrum of 3b (Figure S12)
- 2.13 ³¹P NMR spectrum of **3b** (Figure S13)
- 2.14 ¹H NMR spectrum of **7** (Figure S14)
- 2.15 ¹³C NMR spectrum of 7 (Figure S15)
- 2.16 ³¹P NMR spectrum of 7 (Figure S16)
- 2.17 ¹H NMR spectrum of methyl (S)-3-hydroxybutyrate (5a) (Figure S17)
- 2.18 ¹H NMR spectrum of ethyl (S)-3-hydroxybutyrate (5b) (Figure S18)
- 2.19 ¹H NMR spectrum of methyl (S)-3-hydroxyvalerate (5c) (Figure S19)
- 2.20 ¹H NMR spectrum of isopropyl (S)-3-hydroxybutyrate (5d) (Figure S20)
- 2.21 ¹H NMR spectrum of tert-butyl (S)-3-hydroxybutyrate (5e) (Figure S21)
- 2.22 ¹H NMR spectrum of methyl (S)-2,2-dimethyl-3-hydroxybutyrate (5f) (Figure S22)
- 2.23 ¹H NMR spectrum of methyl (*R*)-4-chloro-3-hydroxybutyrate (5g) (Figure S23)
- 2.24 ¹H NMR spectrum of ethyl (*R*)-4,4,4-trifluoro-3-hydroxybutyrate (5h) (Figure S24)
- 2.25 ¹H NMR spectrum of ethyl (*R*)-3-hydroxy-3-phenylpropanoate (5i) (Figure S25)
- 2.26 ¹H NMR spectrum of ethyl (*R*)-3-methoxy-3-(4'-methoxyphenyl) propanoate (5j) (Figure S26)
- 2.27 ¹³C NMR spectrum of ethyl (R)-3-methoxy-3-(4'-methoxyphenyl) propanoate (5j) (Figure S27)

2.28 2D ¹H-¹H COSY NMR spectrum of **3a** (Figure S28)

3 MS spectra

- 3.1 Mass spectrum (ESI positive) of 2a (Figure S29)
- 3.2 Mass spectrum (ESI negative) of 2a (Figure S30)
- 3.3 Mass spectrum (ESI positive) of 2b (Figure S31)
- 3.4 Mass spectrum (ESI negative) of 2b (Figure S32)
- 3.5 Mass spectrum (ESI positive) of 6 (Figure S33)
- 3.6 Mass spectrum (ESI negative) of ${\bf 6}$ (Figure S34)
- 3.7 Mass spectrum (ESI positive) of 3a (Figure S35)
- 3.8 Mass spectrum (ESI negative) of 3a (Figure S36)
- 3.9 Mass spectrum (ESI positive) of **3b** (Figure S37)
- 3.10 Mass spectrum (ESI negative) of 3b (Figure S38)
- 3.11 Mass spectrum (ESI positive) of 7 (Figure S39)
- 3.12 Mass spectrum (ESI negative) of 7 (Figure S40)
- 3.13 Mass spectrum (ESI positive) of ethyl (R)-3-methoxy-3-(4'-methoxyphenyl) propanoate (5j) (Figure S41)
- 4 DSC and TG profiles of 3a and 3b (Figure S42)
- 5³¹P NMR spectra of Ru-1 and Ru-3b catalysts (Figure S43)
- 6 ³¹P 2D-DOSY NMR spectrum of Ru-3b catalysts (Figure S44)
- 7 ³¹P DOSY NMR spectra of Ru-1 and Ru-3b catalysts (Figure S45)
- 8 Solvent polarity parameters as linear free-energy relationships (Figure S46)
- 9 GC spectra of asymmetric hydrogenation of β -Keto esters (Figure S47)
- 10 Proposed catalytic cycle for enantioselective hydrogenation of ethyl benzoylacetate (**4i**) catalyzed by the Ru-**3b** or Ru-(*S*)-BINAP catalyst (Figure S48)
- 11 Effect of excessive hydrobromic acid on activity of the neutral Ru-(*S*)-BINAP catalyst in enantioselective hydrogenation of MAA (Table S1)
- 12 Recycling experiment of Ru-BINAP/MeOH system for enantioselective hydrogenation of MAA (Table S2)
- 13 Comparison of our HCBS system with state-of-the-art systems for enantioselective hydrogenation of β -keto esters (Table S3)

1 Experimental Procedures

1.1 Synthesis and characterization of 2a

Under an argon atmosphere, Me(EO)₁₆OMs (10.0 g, 12.3 mmol) and N-methyl imidazole (1.35 g, 16.4 mmol) were mixed in toluene (30 mL), and then the mixture was heated to 95 °C and stirred for 30 h. After removing the solvent under reduced pressure, the excess N-methyl imidazole was extracted with methyl tert-butyl ether (5 × 10 mL). The residual solvent was removed to obtained [Me(EO)₁₆MIM][OMs] (**2a**) as an orange-yellow viscous liquid. Yield: 9.7 g, 88%. Characterization: ¹H NMR (500.0 MHz, CDCl₃): δ (ppm) = 9.780 (s, 1H, CH_{im}), 7.666 (s, 1H, CH_{im}), 7.396 (s, 1H, CH_{im}), 4.519 (t, 2H, *J* = 5 Hz, N-CH₂CH₂), 4.010 (s, 3H, N-CH₃), 3.874 (t, 2H, *J* = 5 Hz, N-CH₂CH₂), 3.658-3.540 (m, 68H, OCH₂CH₂O), 3.379 (s, 3H, OCH₃), 2.784 (s, 3H, CH₃SO₃); ¹³C NMR (150.9 MHz, CDCl₃): δ (ppm) = 138.232, 123.663, 122.871, 71.944, 70.614-70.496, 70.391, 70.216, 59.046, 49.565, 39.624, 36.288; MS (ESI positive): *m/z* = 801.51, calcd for C₃₇H₇₃O₁₈N₂ ([Me(EO)₁₆MIM]⁺): 801.98; MS (ESI negative): *m/z* = 94.98, calcd for CH₃O₃S ([CH₃SO₃]): 94.98.

1.2 Synthesis and characterization of Ph(CH₂)₂OMs

A solution of methanesulfonyl chloride (6.7 ml, 86.1 mmol) in toluene (30 mL) was added dropwise to a vigorously stirred solution of Ph(CH₂)₂OH (10.5 g, 86.1 mmol), Et₃N (12.0 ml, 86.1 mmol) and toluene (40 mL) at 0 °C. After adding MsCl, the mixture was stirred at 30°C for 24, followed by a filtration. The filtrate was evaporated under vacuum to afford Ph(CH₂)₂OMs as a light yellow liquid. Yield: 16.2 g, 99%. Characterization: ¹H NMR (500.0 MHz, CDCl₃): δ (ppm) = 7.314 (t, 2H, *J* = 7.5 Hz, Ph-H), 7.262-7.218 (m, 3H, Ph-H), 4.398 (t, 2H, *J* = 7.0 Hz, PhCH₂CH₂OMs), 3.033 (t, 2H, *J* = 7.0 Hz, PhCH₂CH₂OMs), 2.806 (s, 3H, OSO₂CH₃). 1.3 Synthesis and characterization of **6**

Under an argon atmosphere, Ph(CH₂)₂OMs (2.88 g, 14.4 mmol) and N-methyl imidazole (1.54 g, 18.8 mmol) were mixed in toluene (30 mL), and then the mixture was heated to 95 °C and stirred for 48 h. After removing the solvent under reduced pressure, the excess N-methyl imidazole was extracted with methyl tert-butyl ether (5 × 10 mL). The residual solvent was removed to obtained [Ph(CH₂)₂MIM][OMs] (**6**) as an orange-red viscous liquid. Yield: 4.0 g, 98%. Characterization: ¹H NMR (500.0 MHz, DMSO-d₆): δ (ppm) = 9.060 (s, 1H, CH_{im}), 7.730 (s, 1H, CH_{im}), 7.674 (s, 1H, CH_{im}), 7.312 (t, 2H, *J* = 7.5 Hz, Ph-H), 7.258-7.210 (m, 3H, Ph-H), 4.431 (t, 2H, *J* = 7.5 Hz, PhCH₂CH₂N), 3.816 (s, 3H, N-CH₃), 3.127 (t, 2H, *J* = 7.5 Hz, PhCH₂CH₂N), 2.306 (s, 3H, CH₃SO₃⁻); ¹³C NMR (125.7 MHz, CDCl₃): δ (ppm) = 137.599, 136.169, 128.902, 128.807, 127.277, 123.297, 122.320, 50.790, 39.711, 36.358, 36.247; HRMS (ESI positive): *m*/*z* = 187.1232, calcd for C₁₂H₁₅N₂ ([Ph(CH₂)₂MIM]⁺): 187.1230; HRMS (ESI negative): *m*/*z* = 94.9811, calcd for CH₃O₃S ([CH₃SO₃⁻): 94.9808.

1.4 Synthesis and characterization of 3a

Under an argon atmosphere, [Me(EO)₁₆MIM][OMs] (1.0 g, 1.1 mmol) and (S)-BINAP-(SO₃Na)₂·5H₂O (0.6 g, 0.65 mmol) were

mixed in acetonitrile (15 mL) with vigorous stirring at ambient temperature for 144 h, followed by a filtration. The filtrate was evaporated to obtained [Me(EO)₁₆MIM]₂[(*S*)-BINAP-(SO₃)₂] (**3a**) as a yellow viscous liquid. Yield: 1.3 g, 97%. The ¹H NMR spectrum analysis revealed that the mass fractions of residual CH₃SO₃Na in **3a** was 1.1%. Characterization: $[a]_{6}^{14}$ = -20.08 (*c* 0.05, CH₃OH); ¹H NMR (500.0 MHz, CDCl₃): δ (ppm) = 9.776 (s, 2H, CH_{im}), 9.054 (d, 2H, *J* = 9.0 Hz, 4,4¹-H), 8.087 (t, 2H, *J* = 4.0 Hz, 7,7¹-H), 7.574 (s, 2H, CH_{im}), 7.476 (d, 2H, *J* = 9.0 Hz, 3,3¹-H), 7.226 (s, 2H, CH_{im}), 7.158-7.032 (m, 20H, Ph-H), 6.834 (d, 4H, *J* = 4.0 Hz, 6,6¹-H and 8,8¹-H), 4.450 (t, 4H, *J* = 4.5 Hz, N-CH₂CH₂O), 3.899 (s, 6H, N-CH₃), 3.811 (t, 4H, *J* = 4.5 Hz, N-CH₂CH₂O), 3.657-3.539 (m, 141H, OCH₂CH₂O), 3.378 (s, 6H, OCH₃); ¹³C NMR (150.9 MHz, CDCl₃): δ (ppm) = 145.568 (m, 1,1¹-C), 141.851 (s, 5,5¹-C), 137.952, 137.902 (s, 2,2¹-C), 137.360 (m, a-C), 135.148 (d, 9,9¹-C), 134.112 (m, d-C), 133.014 (m, c-C), 131.641 (s, 3,3¹-H), 130.276 (s, 8,8¹-C), 129.566 (s, 10,10¹-C), 128.383 (s, b-C), 128.177-128.080 (m, c-C), 127.644 (s, b-C), 127.101 (s, 4,4¹-C), 126.205 (s, 6,6¹-C), 124.213 (s, 7,7¹-C), 123.580, 122.840, 71.953, 70.607-70.480, 70.364, 70.197, 69.056, 49.632, 39.601, 36.347; ³¹P NMR (202.4 MHz, D₂O): δ (ppm) = -16.127; HRMS (ESI positive): *m/z* = 801.4952, calcd for C₃₇H₇₃O₁₆N₂ ([Me(EO)₁₆MIM]⁺): 801.4955; HRMS (ESI negative): *m/z* = 781.1022, calcd for C₄₄H₃₁O₆P₂S₂ [((S)-BINAP-(SO₃)₂ + H]⁺): 781.1043.

1.5 Synthesis and characterization of 7

Under an argon atmosphere, [Ph(CH₂)₂MIM][OMs] (0.81 g, 2.9 mmol) and (S)-BINAP-(SO₃Na)₂·5H₂O (1.7 g, 1.8 mmol) were mixed in acetonitrile (15 mL) with vigorous stirring at ambient temperature for 72 h, followed by a filtration. After the filtrate was evaporated, chloroform (10 ml) was added and the mixture was stirred at ambient temperature for 0.5 h until a white precipitate was formed. The precipitate was filtered and washed with chloroform (1 mL×2) to obtained [Ph(CH₂)₂MIM]₂[(S)-BINAP-(SO₃)₂] (7) as a white solid powder. Yield: 0.2 g, 12%. The ¹H NMR spectrum analysis revealed that the mass fractions of residual CH₃SO₃Na in **7** was 1.0%. Characterization: [*α*]₀²⁰ = -65.92 (*c* 0.05, CH₃OH); ¹H NMR (500.0 MHz, CD₃OD): δ (ppm) = 8.928 (d, 2H, *J* = 9.0 Hz, 4,4'-H), 8.702 (s, 1H, N=CH-N, active hydrogen), 7.984 (d, 2H, J = 6.5 Hz, 6,6'-H), 7.503-7.469 (m, 6H, CH_{im} and 3,3'-H), 7.276 (t, 4H, J = 7.5 Hz, (CH₂)₂Ph-H), 7.243-7.192 (m, 10H, (CH₂)₂Ph-H and P-Ph-H), 7.147-7.090 (m, 12H, (CH₂)₂Ph-H and P-Ph-H), 7.010 (t, 4H, J = 7.0 Hz, P-Ph-H), 6.801 (t, 2H, J = 8.5 Hz, 7,7'-H), 6.744 (d, 2H, J = 8.5 Hz, 8,8'-H), 4.434 (t, 4H, J = 7.0 Hz, PhCH₂CH₂N), 3.818 (s, 6H, N-CH₃), 3.137 (t, 4H, J = 7.0 Hz, PhCH₂CH₂N); ¹³C NMR (150.9 MHz, CD₃OD): δ (ppm) = 146.248 (m, 1,1'-C), 142.088 (s, 5,5'-C), 139.069-138.985 (m, a-C), 137.867, 137.796-137.713 (m, a-C), 137.777, 137.550 (d, 2,2'-C), 135.465 (m, d-C), 135.252 (m, 9,9'-C), 133.973 (m, c-C), 132.206 (s, 3,3'-C), 131.391 (s, 8,8'-C), 130.492 (s, 10,10'-C), 129.952, 129.880 (s, b-C), 129.795, 129.435-129.385 (m, c-C), 129.327-129.291 (m, c-C), 129.072 (s, b-C), 128.328, 127.936 (s, 4,4'-C), 127.269, 125.352, 124.812 (s, 6,6'-C), 123.705 (s, 7,7'-C), 51.967, 37.156, 36.332; ³¹P NMR (202.4 MHz, CD₃OD): δ (ppm) = -15.293; HRMS (ESI positive): m/z = 187.1235, calcd for $C_{12}H_{15}N_2$ ([Ph(CH₂)₂MIM]⁺): 187.1230; HRMS (ESI negative): m/z = 187.1235, calcd for $C_{12}H_{15}N_2$ ([Ph(CH₂)₂MIM]⁺): 187.1230; HRMS (ESI negative): m/z = 187.1235, calcd for $C_{12}H_{15}N_2$ ([Ph(CH₂)₂MIM]⁺): 187.1230; HRMS (ESI negative): m/z = 187.1235, calcd for $C_{12}H_{15}N_2$ ([Ph(CH₂)₂MIM]⁺): 187.1230; HRMS (ESI negative): m/z = 187.1235, calcd for $C_{12}H_{15}N_2$ ([Ph(CH₂)₂MIM]⁺): 187.1230; HRMS (ESI negative): m/z = 187.1235, calcd for $C_{12}H_{15}N_2$ ([Ph(CH₂)₂MIM]⁺): 187.1230; HRMS (ESI negative): m/z = 187.1235, calcd for $C_{12}H_{15}N_2$ ([Ph(CH₂)₂MIM]⁺): 187.1230; HRMS (ESI negative): m/z = 187.1235, calcd for $C_{12}H_{15}N_2$ ([Ph(CH₂)₂MIM]⁺): 187.1230; HRMS (ESI negative): m/z = 187.1235, calcd for $C_{12}H_{15}N_2$ ([Ph(CH₂)₂MIM]⁺): 187.1230; HRMS (ESI negative): m/z = 187.1235, calcd for $C_{12}H_{15}N_2$ ([Ph(CH₂)₂MIM]⁺): 187.1230; HRMS (ESI negative): m/z = 187.1235, calcd for $C_{12}H_{15}N_2$ ([Ph(CH₂)₂MIM]⁺): 187.1230; HRMS (ESI negative): m/z = 187.1235, calcd for $C_{12}H_{15}N_2$ ([Ph(CH₂)₂MIM]⁺): 187.1230; HRMS (ESI negative): m/z = 187.1235, calcd for $C_{12}H_{15}N_2$ ([Ph(CH₂)₂MIM]⁺): 187.1230; HRMS (ESI negative): m/z = 187.1235, calcd for $C_{12}H_{15}N_2$ ([Ph(CH₂)₂MIM]⁺): 187.1230; HRMS (ESI negative): m/z = 187.1235, calcd for $C_{12}H_{15}N_2$ ([Ph(CH₂)₂MIM]⁺): 187.1230; HRMS (ESI negative): m/z = 187.1235, calcd for $C_{12}H_{15}N_2$ ([Ph(CH₂)₂MIM]⁺): 187.1235 ([Ph(CH₂)₂MIM]⁺): 187.1235 ([Ph(CH₂)₂MIM]⁺): 187.1235) 390.0486 (z=2), calcd for C₄₄H₃₀O₆P₂S₂ ([(S)-BINAP-(SO₃)₂]²⁻): 390.0485.

1.6 Typical procedure for recycling CRTP-PolyIMILsRuBr2 catalysts under the HCBS system

Typically, **3b** (7.9 mg, 0.00313 mmol) and [Ru(COD)(2-methylallyl)₂] (1.0 mg, 0.00313 mmol) were dissolved in a mixed solvent of 0.5 mL degassed acetone and 0.5 mL degassed methanol under an argon atmosphere. To this mixture was added 5.5 μ L methanol solution of HBr (1.91 M, 0.0105 mmol) and the solution was stirred at ambient temperature for 30 min. Removing solvents provided Ru-**3b** as an orange-yellow viscous liquid, which was immediately used for enantioselective hydrogenation of MAA. The preceding Ru-**3b** catalyst (0.00313 mmol) and 0.34 mL MAA (3.13 mmol) were dissolved in 2 mL degassed methanol. This solution was transferred to a 60 mL stainless-steel autoclave under Ar, and H₂ was charged into the reactor and the pressure was allowed to reach 4.0 MPa. The reactor was heated to 60 °C simultaneously with stirring at 400 rpm. The reactor was kept at 60 °C for 20 h and cooled to room temperature, and the excess hydrogen was carefully vented. The reaction solution was transferred to a Schlenk flask under Ar and the methanol was evaporated under vacuum, and *n*-hexane (2 × 4 mL) was added to extract the product. The system was cooled to below 10 °C by ice water, the upper organic phase was submitted to GC through a liquid-solid phase separation for the analysis of conversion and enantioselectivity, while the catalyst phase solidified at the bottom was supplemented with fresh methanol and MAA before the next run.

2 NMR Spectra

2.1 ¹H NMR spectrum of 2a

Figure S1. ¹H NMR spectrum of [Me(EO)₁₆MIM][OMs] (2a) (500.0 MHz, CDCI₃)

2.2 ¹³C NMR spectrum of 2a

Figure S2. ¹³C NMR spectrum of [Me(EO)₁₆MIM][OMs] (2a) (150.9 MHz, CDCl₃)

Figure S3. ¹H NMR spectrum of [Ph(EO)₁₆MIM][OMs] (**2b**) (500.0 MHz, D₂O)

Figure S4. ¹³C NMR spectrum of the [Ph(EO)₁₆MIM][OMs] (2b) (125.7 MHz, CDCl₃)

Figure S5. ¹H NMR spectrum of Ph(CH₂)₂OMs (500.0 MHz, CDCl₃)

2.6 ¹H NMR spectrum of 6

Figure S6. ¹H NMR spectrum of [Ph(CH₂)₂MIM][OMs] (500.0 MHz, DMSO-d₆)

Figure S7. ¹³C NMR spectrum of [Ph(CH₂)₂MIM][OMs] (125.7 MHz, CDCl₃)

2.8 ¹H NMR spectrum of 3a

Figure S8. ¹H NMR spectrum of [Me(EO)₁₆MIM]₂[(S)-BINAP-(SO₃)₂] (3a) (500.0 MHz, CDCl₃)

Figure S9. ¹³C NMR spectrum of [Me(EO)₁₆MIM]₂[(S)-BINAP-(SO₃)₂] (3a) (150.9 MHz, CDCl₃)

2.10 ³¹P NMR spectrum of 3a

Figure S10. ³¹P NMR spectrum of [Me(EO)₁₆MIM]₂[(S)-BINAP-(SO₃)₂] (3a) (202.4 MHz, D₂O)

Figure S11. ¹H NMR spectrum of [Ph(EO)₁₆MIM]₂[(S)-BINAP-(SO₃)₂] (**3b**) (500.0 MHz, DMSO-d₆)

2.12 ¹³C NMR spectrum of 3b

Figure S12. ¹³C NMR spectrum of [Ph(EO)₁₆MIM]₂[(S)-BINAP-(SO₃)₂] (3b) (150.9 MHz, CDCl₃)

- -16.314

Figure S13. ³¹P NMR spectrum of [Ph(EO)₁₆MIM]₂[(S)-BINAP-(SO₃)₂] (**3b**) (202.4 MHz, CDCl₃)

2.14 ¹H NMR spectrum of **7**

Figure S14. ¹H NMRspectra of [Ph(CH₂)₂MIM]₂[(S)-BINAP-(SO₃)₂] (7) (500.0 MHz, CD₃OD)

2.15 ¹³C NMR spectrum of 7

Figure S15. ¹³C NMR spectrum of [Ph(CH₂)₂MIM]₂[(S)-BINAP-(SO₃)₂] (7) (150.9 MHz, CD₃OD)

2.16 ³¹P NMR spectrum of 7

Figure S16. ³¹P NMR spectrum of [Ph(CH₂)₂MIM]₂[(S)-BINAP-(SO₃)₂] (7) (202.4 MHz, CD₃OD)

2.17 ¹H NMR spectrum of methyl (S)-3-hydroxybutyrate (5a)

Figure S17. ¹H NMR spectrum of methyl (S)-3-hydroxybutyrate (5a) (500.0 MHz, CDCl₃)

2.18 ¹H NMR spectrum of ethyl (*S*)-3-hydroxybutyrate (**5b**)

Figure S18. ¹H NMR spectrum of ethyl (S)-3-hydroxybutyrate (5b) (500.0 MHz, CDCl₃)

2.19 ¹H NMR spectrum of methyl (S)-3-hydroxyvalerate (5c)

Figure S19. ¹H NMR spectrum of methyl (S)-3-hydroxyvalerate (5c) (500.0 MHz, CDCl₃)

2.20 ¹H NMR spectrum of isopropyl (S)-3-hydroxybutyrate (5d)

Figure S20. ¹H NMR spectrum of isopropyl (S)-3-hydroxybutyrate (5d) (500.0 MHz, CDCl₃)

2.21 ¹H NMR spectrum of tert-butyl (S)-3-hydroxybutyrate (5e)

Figure S21. ¹H NMR spectrum of tert-butyl (S)-3-hydroxybutyrate (5e) (500.0 MHz, CDCl₃)

2.22 ¹H NMR spectrum of methyl (S)-2,2-dimethyl-3-hydroxybutyrate (5f)

Figure S22. ¹H NMR spectrum of methyl (S)-2,2-dimethyl-3-hydroxybutyrate (5f) (500 MHz, CDCl₃)

2.23 ¹H NMR spectrum of methyl (*R*)-4-chloro-3-hydroxybutyrate (5g)

Figure S23. ¹H NMR spectrum of methyl (R)-4-chloro-3-hydroxybutyrate (5g) (500 MHz, CDCl₃)

2.24 ¹H NMR spectrum of ethyl (*R*)-4,4,4-trifluoro-3-hydroxybutyrate (**5h**)

Figure S24. ¹H NMR spectrum of ethyl (R)-4,4,4-trifluoro-3-hydroxybutyrate (5h) (400 MHz, CDCl₃)

2.25 ¹H NMR spectrum of ethyl (*R*)-3-hydroxy-3-phenylpropanoate (5i)

Figure S25. ¹H NMR spectrum of ethyl (R)-3-hydroxy-3-phenylpropanoate (5i) (500 MHz, CDCl₃)

2.26 ¹H NMR spectrum of ethyl (R)-3-methoxy-3-(4'-methoxyphenyl) propanoate (5j)

Figure S26. ¹H NMR spectrum of ethyl (R)-3-methoxy-3-(4'-methoxyphenyl) propanoate (5j) (500 MHz, CDCl₃)

2.27 ¹³C NMR spectrum of ethyl (R)-3-methoxy-3-(4'-methoxyphenyl) propanoate (5j)

Figure S27. ¹³C NMR spectrum of ethyl (*R*)-3-methoxy-3-(4'-methoxyphenyl) propanoate (5j) (500 MHz, CDCl₃)

Figure S28. 2D ¹H-¹H COSY NMR spectrum of **3a**. The 2D ¹H-¹H COSY spectrum of **3a** clearly showed the chemical shifts of protons on [Me(EO)₁₆MIM]⁺ cations (marked in blue) and [(*S*)-BINAP-(SO₃)₂]²⁻ anion (marked in red). In particular, the resonance peaks at δ 9.06 (d, 2H, *J* = 9.0 Hz), 8.09 (t, 2H, *J* = 4.0 Hz), 7.48 (d, 2H, *J* = 9.0 Hz) and 6.84 (d, 4H, *J* = 4.0 Hz) can be assigned to protons of 4 (4')-, 7 (7')-, 3 (3')-, 6 (6') and 8 (8')-positions of the binaphthyl group by means of identification of the correlation peaks. According to the integral analysis of the proton signals on the polyether imidazolium cations and sulfonated BINAP anions, the molar ratio of [Me(EO)₁₆MIM]⁺ cations to [(*S*)-BINAP-(SO₃)₂]²⁻ anions was 2:1, confirming that the ion exchange was completed.

3 MS Spectra

3.1 Mass spectrum (ESI positive) of 2a

Figure S29. Mass spectrum (ESI positive) of [Me(EO)₁₆MIM][OMs] (2a)

3.2 Mass spectrum (ESI negative) of 2a

Figure S30. Mass spectrum (ESI negative) of [Me(EO)₁₆MIM][OMs] (2a)

3.3 Mass spectrum (ESI positive) of 2b

Figure S31. Mass spectrum (ESI positive) of [Ph(EO)₁₆MIM][OMs] (2b)

3.4 Mass spectrum (ESI negative) of 2b

Figure S32. Mass spectrum (ESI negative) of [Ph(EO)₁₆MIM][OMs] (2b)

3.5 Mass spectrum (ESI positive) of 6

Figure S33. Mass spectrum (ESI positive) of [Ph(CH₂)₂MIM][OMs] (6)

3.6 Mass spectrum (ESI negative) of 6

Figure S34. Mass spectrum (ESI negative) of [Ph(CH₂)₂MIM][OMs] (6)

3.7 Mass spectrum (ESI positive) of 3a

Figure S35. Mass spectrum (ESI positive) of [Me(EO)₁₆MIM]₂[(S)-BINAP-(SO₃)₂] (3a)

Figure S36. Mass spectrum (ESI negative) of [Me(EO)₁₆MIM]₂[(S)-BINAP-(SO₃)₂] (3a)

3.9 Mass spectrum (ESI positive) of 3b

Figure S37. Mass spectrum (ESI positive) of [Ph(EO)₁₆MIM]₂[(S)-BINAP-(SO₃)₂] (3b)

3.10 Mass spectrum (ESI negative) of 3b

Figure S38. Mass spectrum (ESI negative) of [Ph(EO)₁₆MIM]₂[(S)-BINAP-(SO₃)₂] (3b)

3.11 Mass spectrum (ESI positive) of 7

Figure S39. Mass spectrum (ESI positive) of [Ph(CH₂)₂MIM]₂[(S)-BINAP-(SO₃)₂] (7)

3.12 Mass spectrum (ESI negative) of 7

Figure S40. Mass spectrum (ESI negative) of [Ph(CH₂)₂MIM]₂[(S)-BINAP-(SO₃)₂] (7)

3.13 Mass spectrum (ESI positive) of ethyl (*R*)-3-methoxy-3-(4'-methoxyphenyl) propanoate (5j) (Figure S40)

Figure S41. Mass spectrum (ESI positive) of ethyl (R)-3-methoxy-3-(4'-methoxyphenyl) propanoate (5j)

4 DSC and TG profiles of 3a and 3b

Figure S42. DSC and TG profiles of (A and B) 3a and (C and D) 3b

5 ³¹P NMR spectra of Ru-1 and Ru-3b catalysts

Figure S43. ³¹P NMR spectra of (A) Ru-**3b** (161.9 MHz, DMSO-d₆, 22.7 mM, 298 K) and (B) Ru-**1** catalysts (202.4 MHz, DMSO-d₆, 22.7 mM, 298 K). (a) fresh catalysts; (b) catalysts in DMSO-d₆ for 24 h.

6 ³¹P 2D-DOSY NMR spectrum of Ru-3b catalysts

Figure S44. ³¹P 2D-DOSY NMR spectrum of fresh Ru-**3b** catalyst (161.9 MHz, DMSO-d₆, 22.7 mM, 298 K, 2 h).

7 ³¹P DOSY NMR spectra of Ru-1 and Ru-3b catalysts

Figure S45. ³¹P DOSY NMR spectra of (A) Ru-**3b** (161.9 MHz, DMSO-d₆, 22.7 mM, 298 K) and (B) Ru-**1** catalysts (161.9 MHz, DMSO-d₆, 22.7 mM, 298 K). (a) catalysts at the beginning of DOSY experiment; (b) catalysts at the end of DOSY experiment (2h).

8 Solvent Polarity Parameters as Linear Free-Energy Relationships

Figure S46. Correlation between aprotic solvent polarity parameters, (A) π^* and (B) E_T^N , and log(*ee*) in Ru-(*S*)-BINAP catalyzed asymmetric hydrogenation of MAA.

9 GC Spectra of Asymmetric Hydrogenation of β-Keto Esters

Figure S47. GC spectra of asymmetric hydrogenation of β-keto esters

10 Proposed catalytic cycle for enantioselective hydrogenation of ethyl benzoylacetate (4i) catalyzed by the Ru-**3b** or Ru-(*S*)-BINAP catalyst

Figure S48. Proposed catalytic cycle for enantioselective hydrogenation of ethyl benzoylacetate (**4i**) catalyzed by Ru-**3b** or Ru-(*S*)-BINAP catalyst

11 Effect of excessive hydrobromic acid on activity of the neutral Ru-(*S*)-BINAP catalyst in enantioselective hydrogenation of MAA

Table S	1. Effect c	of excessive	hydrobromic acid or	activity of the	neutral Ru-(S)	-BINAP cataly	st in enantioselective	hydrogenation of	MAA
						Dirth in Ourcary		ng al obernation of	

Entry	Ligand	Carrier IL	Yield (%)	Ee (%)	TOF ₃₀ (h ⁻¹)			
1	(S)-BINAP	None	>99	93	2334			
^a Reaction conditions: [Ru(COD)(2-methylallyl) ₂] 1.0 mg, 60 °C, H ₂ 4.6 MPa (at 60 °C), 1 h, catalyst loading 0.1 mol%, ligand/Ru = 1.2/1 (mol), Ru/HBr = 1/6.1 (mol), MeOH 2 mL.								

12 Recycling experiment of Ru-BINAP/MeOH system for enantioselective hydrogenation of MAA

Entry	Reaction Medium	Ligand	Carrier IL/S (mol%)	Separation Mode ^b	Run	Yield (%)	Ee (%)	TOF ^c (h ⁻¹)	Ru Loss (%)
1	MeOH	BINAP	0	extraction	1	>99	99	500	15.3
2	MeOH	BINAP	0	extraction	2	50	85	250	_

Table S2. A controlled experiment: recycling experiment of Ru-BINAP/MeOH system for enantioselective hydrogenation of MAA^a

^o Reaction conditions: [Ru(COD)(2-methylallyl)₂] 1.0 mg, 60 °C, H₂ 4.6 MPa (at 60°C), 2 h, catalyst loading 0.1 mol%, ligand/Ru = 1.2/1 (mol), Ru/HBr = 1/3.4 (mol), MeOH 2 mL. ^b A *n*-hexane extraction process was used to separate the product from the chiral catalyst. ^c Calculated based on the total reaction time.

13 Comparison of our HCBS system with state-of-the-art systems for enantioselective hydrogenation of β -keto esters

Table S3. Comparison of our HCBS system with state-of-the-art systems for enantioselective hydrogenation of θ -keto esters

Entry	System	Reaction Medium	Ligand	Carrier IL/S ^a (mol%)	Separation Mode	TOF ^b (h ⁻¹)	Ee (%)	TTON	Ru Loss (%)	Ref.*
1 ^c	IL-monophasic	[BMIM]BF ₄ /MeOH	L- 1	580	extraction	4.5	98.3	440	0.02	7a
2 ^c	IL-monophasic	[BMIM]PF ₆ /MeOH	L- 2	371	extraction	4.5	99.0	521	0.01	7a
3 ^{<i>d</i>}	IL-monophasic	[BMIM]BF ₄ /MeOH	L- 3	116	extraction	5.0	>99	577	_	6a
4 ^e	IL-monophasic	[NMe ₂ (EtOH) ₂]/MeOH	L- 4	511	distillation	5.5	93.0	365	_	7e
5 ^f	IL-monophasic	[BMIM]NTf ₂ /MeOH	L- 5	769	extraction	5.0-50	98	400	0.2-4.6	18a
6 ^f	IL-monophasic	[BMIM]NTf ₂ /MeOH	BINAP	769	extraction	5.0-50	98	228	4.63	18a
7 ^g	IL-monophasic	N ₆₂₂₂ NTf ₂ /MeOH	BINAP	_	extraction	1235 ^{<i>h</i>}	98.3	_	_	7d
8 ⁱ	IL-monophasic	[BMIM]BF4/scCO2	BINAP	209	extraction	100	97	_	_	39
9 ^j	IL-biphasic	[BMIM]BF ₄	L- 6	31	extraction	66.7	86	2000	-	7b
10 ^{<i>j</i>}	IL-biphasic	[BPy]NTf ₂	L- 7	20	extraction	66.7	83	_	_	7b
11 ^k	IL-biphasic	[BMIM]PF ₆ / <i>i</i> -PrOH	BINAP	3469	extraction	21	97	14	0	4g
12′	SILP-catalysis	SiO ₂ -[EMIM]NTf ₂ /MeOH	L- 8	_	solid/liquid	_	75-80	2500	-	40
13 ^m	aqueous biphasic	H ₂ O	L- 6	none	extraction	66.7	99	8000	-	26e
14 ⁿ	aqueous biphasic	H ₂ O	L- 9	none	extraction	50/981°	94	5000	-	27
15 ^{<i>p</i>}	thermoregulated	EtOH/1,4-dioxane	L- 10	none	cooling	10	97.8	383	1.78	41
16 ^{<i>q</i>}	MeO-PEG-supported	EtOH	L- 11	none	precipitation	25	98	97	-	30k
17 ^r	mesoporous polymer	MeOH	L- 12	none	solid/liquid	100	94.6	14000	_	42
18 ^s	dendrimer-supported	CH ₂ Cl ₂ /MeOH	L- 14	none	precipitation	7.9	92	1462	_	43
19 ^t	SiO ₂ -supported	MeOH	L- 13	none	solid/liquid	21	>99	5000	0.18	44
20 ^{<i>u</i>}	C-FDU-12-encapsulated	MeOH	BINAP	none	solid/liquid	42/299 ^v	97	4000	_	45
						500				
21 ^w	HCBS system	MeOH	3b	0	extraction	3913 ^x	99	17000 ^z	0.08-0.09	this work
						1442 ^y				

^{*a*} Molar ratio of carrier IL to substrate. ^{*b*} Calculated based on the total reaction time. ^{*c*} r.t., 10.2 MPa, 22 h, S/Ru = 100/1, *L*/Ru = 1.1/1, [RuCl₂(C₆H₆)]₂, MAA. ^{*d*} r.t., 6.8 MPa, 20 h, S/Ru = 100/1, MAA. ^{*e*} 80 °C, 1 MPa, 18 h, S/Ru = 100/1, *L*/Ru = 2/1, [Ru(COD)(2-methylallyl)₂], MAA. ^{*f*} 60 °C, 4 MPa, 20 h, S/Ru = 1000/1, *L*/Ru = 1/1, [Ru(COD)(2-methylallyl)₂], MAA. ^{*g*} 60 °C, 5 MPa, S/Ru = 1580/1, 1 wt.% N₆₂₂₂Br, [RuCl₂(*p*-cymen)]₂, MAA. ^{*h*} TOF value at 90% conversion. ^{*i*} 75 °C, 2.7 MPa (H₂), 8 MPa (CO₂), 2 h, S/Ru = 200/1, *L*/Ru = 1.5/1, [RuCl₂(C₆H₆)]₂, ethyl 4-chloro-3-oxobutyrate. ^{*i*} 50 °C, 4 MPa, 15 h, S/Ru = 1000/1, ethyl acetoacetate (EAA). ^{*k*} 60 °C, 4 MPa, 20 min, S/Ru = 140/1, MAA. ^{*i*} A continuous gas-phase reaction: 105 °C, 1 MPa, 70 h, [Ru(COD)(2-methylallyl)₂], MAA. ^{*m*} 50 °C, 4 MPa, 15 h, S/Ru = 1000/1, *L*/Ru = 1.1/1, [RuCl₂(C₆H₆)]₂, MAA. ^{*n*} 60 °C, 4 MPa, 30% conversion. ^{*p*} 60 °C, 0.1 MPa, 2 h, S/Ru = 100/1, *L*/Ru = 1/1, [RuCl₂(Co₁H₆)]₂, MAA. ^{*o*} TOF value at 30% conversion. ^{*p*} 60 °C, 2 MPa, 20 h, S/Ru = 100/1, *L*/Ru = 1.1/1, [RuCl₂(C₆H₆)]₂, MAA. ^{*n*} 60 °C, 4 MPa, 20 h, S/Ru = 1000/1, Nal/Ru = 100/1, [Rul₂(*p*-cymen)]₂, MAA. ^{*o*} TOF value at 30% conversion. ^{*p*} 60 °C, 4 MPa, 10 h, S/Ru = 100/1, *L*/Ru = 1.1/1, [RuCl₂(C₆H₆)]₂, MAA. ^{*s*} 60 °C, 5 MPa, 24 h, S/Ru = 200/1, *L*/Ru = 50/1, *L*/Ru = 1/1, [Ru(COD)(2-methylallyl)₂], EAA. ^{*r*} 50 °C, 2 MPa, 20 h, S/Ru = 200/1, *L*/Ru = 1/1, [RuCl₂(C₆H₆)]₂, MAA. ^{*s*} 60 °C, 5 MPa, 24 h, S/Ru = 200/1, 5 mol% TsOH, methyl benzoylacetate. ^{*t*} 50 °C, 4 MPa, 48 h, S/Ru = 1000/1, [RuCl₂(C₆H₆)]₂, MAA. ^{*s*} 50 °C, 4 MPa, 24 h, S/Ru = 1000/1, MAA. ^{*s*} TOF value at complete conversion. ^{*z*} After two times of **3b** supplementation, the total molar ratio of **3b** to Ru is 2/1. * The references are consistent with the main text.