Visible-light-induced direct perfluoroalkylation/heteroarylation of [1.1.1]propellane to diverse bicyclo[1.1.1]pentanes (BCPs) under metal and photocatalyst-free conditions

Jiashun Zhu, Yirui Guo, Yuru Zhang, Wanmei Li, Pengfei Zhang, and Jun Xu*

College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou 311121, China.

Email: xujunhznu@163.com

Supporting Information

Table of contents

General Information		2
1.	Experimental Section	2
2.	Characterization of Products	6
3.	Copies of ¹ H, ¹³ C and ¹⁹ F NMR Spectra	30

General Information

All reagents and deuterated solvents were commercially available and used without further purification. All products were separated by silica gel (200-300 mesh) column chromatography with petroleum ether (PE) (60-90°C) and ethyl acetate (EA). ¹H, ¹³C and ¹⁹F NMR spectra were recorded on a Bruker Advance 500 spectrometer at ambient temperature with CDCl₃ as solvent and tetramethylsilane (TMS) as the internal standard. Analytical thin layer chromatography (TLC) was performed on Merk precoated TLC (silica gel 60 F254) plates. Compounds for HRMS were analyzed by positive mode electrospray ionization (ESI) using Agilent 6530 QTOF mass spectrometer.

1. Experimental Section

1.1 Preparation of the solution of [1.1.1]propellane in hexane

Ph-Br
$$\xrightarrow{n_{Bu_2O}}$$
 Ph-Li + \xrightarrow{CI}_{Br} $\xrightarrow{n_{Bu_2O}}_{decompress}$ $\xrightarrow{distillation}$

A 150 ml three-neck round bottom flask equipped with a magnetic stirring bar was charged with bromobenzene (100 mmol, 1.0 equiv.) and anhydrous ^{*n*}Bu₂O (20 mL). Then the reaction mixture was cooled down to -30 °C and ^{*n*}BuLi (100 mmol, 1.0 equiv., 2.5 M in hexane) was added dropwise. After the addition was completed, the reaction mixture was allowed to warm to room temperature, and stirred at room temperature for 1 h. The reaction mixture was used in the next step directly.

A solution of the above prepared PhLi in ${}^{n}Bu_{2}O$ /hexane (65 mL) was added dropwise to a suspension of 1,1-dibromo-2,2-bis(chloromethyl)cyclopropane (45.0 mmol) in anhydrous ${}^{n}Bu_{2}O$ (20 mL) at -20 °C. After the addition was completed, the reaction mixture was allowed to warm to 0 °C and stirred for 2 h, then the addition funnel was swapped out for a distillation head with attached 100 mL round bottom flask in a bath (liquid nitrogen). A vacuum was slowly applied to the system and the distillate collected, while maintaining the reaction/distillation flask below 0 °C. Approximately 30 mL of distillate was collected. The concentration of [1.1.1]propellane (0.4-0.6 M) was measured by ¹H NMR using dichloromethane as the standard.

1.2 General procedure for multi-component reaction of pyrazinones with [1.1.1]propellane and perfluoroalkyl iodine

A mixture of pyrazinones (1) (0.2 mmol), [1.1.1]propellane (2) (0.5 mmol), perfluoroalkyl iodine (3) (0.4 mmol), DBU (0.4 mmol) and NMP (0.5 mL) in a 10-mL test tube was stirred under the irradiation of blue LED (10 W) for 16 h. After completing the reaction as indicated by TLC, a saturated NH₄Cl solution was added to the mixture. The mixture was then extracted with DCM, and the collected organic layer was washed with brine, and dried with MgSO₄. The solvent was removed *in vacuo*, and the obtained residue was further purified by silica gel column chromatography (200-300 mesh silica gel).

1.3 General procedure for multi-component reaction of quinoxalinones with [1.1.1]propellane and perfluoroalkyl iodine

A mixture of quinoxalinones (19) (0.2 mmol), [1.1.1]propellane (2) (0.5 mmol), perfluoroalkyl iodine (3) (0.4 mmol), DBU (0.4 mmol) and NMP (0.5 mL) in a 10-mL test tube was stirred under the irradiation of blue LED (10 W) for 16 h. After completing the reaction as indicated by TLC, a saturated NH₄Cl solution was added to the mixture. The mixture was then extracted with DCM, and the collected organic layer was washed with brine, and dried with MgSO₄. The solvent was removed *in vacuo*, and the obtained residue was further purified by silica gel column chromatography (200-300 mesh silica gel).

1.4 General procedure for multi-component reaction of azauracils with [1.1.1]propellane and perfluoroalkyl iodine

A mixture of azauracils (61) (0.2 mmol), [1.1.1]propellane (2) (0.5 mmol), perfluoroalkyl iodine (3) (0.4 mmol), DBU (0.4 mmol) and NMP (0.5 mL) in a 10-mL test tube was stirred under the irradiation of blue LED (10 W) for 16 h. After completing the reaction as indicated by TLC, a saturated NH₄Cl solution was added to the mixture. The mixture was then extracted with DCM, and the collected organic layer was washed with brine, and dried with MgSO₄. The solvent was removed *in vacuo*, and the obtained residue was further purified by silica gel column chromatography (200-300 mesh silica gel).

1.5 General procedure for large-scale multi-component reaction of quinoxalinone (19m) with [1.1.1]propellane and perfluorobutyl iodine

A mixture of quinoxalinones (19m) (2 mmol), [1.1.1]propellane (2) (5 mmol), perfluoroalkyl iodine (3) (4 mmol), DBU (4 mmol) and NMP (5 mL) in a 50-mL test tube was stirred under the irradiation of blue LED (10 W) for 32 h. After completing the reaction as indicated by TLC, a saturated NH₄Cl solution was added to the mixture. The mixture was then extracted with DCM, and the collected organic layer was washed with brine, and dried with MgSO₄. The solvent was removed *in vacuo*, and the obtained residue was further purified by silica gel column chromatography (200-300 mesh silica gel).

1.6 General procedure for the hydrolysis of compound 70

A mixture of compound (70) (2 mmol) and conc. H_2SO_4 (5 mL) in a 25-mL flask was stirred at room temperature for 1 h. After reaction completion confirmed by TLC, the reaction mixture was dropwise added to ice water (25 mL). The mixture was then extracted with DCM, and the collected organic layer was washed with a saturated NaHCO₃ solution, brine, and dried with MgSO₄. The solvent was removed *in vacuo*, and the obtained residue was further purified by silica gel column chromatography (200-300 mesh silica gel).

1.7 General procedure for the chlorination of compound 71

A mixture of compound (71) (2 mmol), $POCl_3$ (2.5 mmol) and pyridine (2 mmol) in a 15-mL pressure tube was stirred at 160 °C in an oil bath for 2 h. After reaction completion confirmed by TLC, a saturated NaHCO₃ solution was added to the residue. The mixture was then extracted with DCM, and the collected organic layer was washed with brine, and dried with MgSO₄. The solvent was removed *in vacuo*, and the obtained residue was further purified by silica gel column chromatography (200-300 mesh silica gel).

1.8 General procedure for amination of compound 72

A mixture of compound (72) (0.2 mmol), morpholine (1.5 equiv), K_2CO_3 (1.5 equiv) and MeCN (1.5 mL) in a 15-mL pressure tube was stirred at 85 °C in an oil bath for 12 h. After completion of the reaction as indicated by TLC, a saturated NaHCO₃ solution was added to the residue. The mixture was then extracted with DCM, and the collected organic layer was washed with brine and dried with MgSO₄. The solvent was removed *in vacuo*, and the obtained residue was further purified by silica gel column chromatography (200-300 mesh silica gel).

1.9 General procedure for methoxylation of compound 72

A mixture of compound (72) (0.2 mmol), MeONa (3.0 equiv) and MeOH (2.0 mL) in a 15-mL pressure tube was stirred at 80 °C in an oil bath for 4 h. After completion of the reaction as indicated by TLC, a saturated NaHCO₃ solution was added to the residue. The mixture was then extracted with DCM, and the collected organic layer was washed with brine, and dried with MgSO₄. The solvent was removed *in vacuo*, and the obtained residue was further purified by silica gel column chromatography (200-300 mesh silica gel).

1.10 General procedure for sunlight-induced multi-component reaction of pyrazinone with [1.1.1]propellane and perfluorobutyl iodine

A mixture of pyrazinones (1a) (0.2 mmol), [1.1.1]propellane (2) (0.5 mmol), perfluorobutyl iodine (3a) (0.4 mmol), DBU (0.4 mmol) and NMP (0.5 mL) in a 10-mL test tube was stirred under the irradiation of sunlight for 8 h. It was found that no corresponding product (4) was generated.

1.11 Visible light irradiation On/Off experiment

Figure S1. Visible light irradiation On/Off experiment

The results of LEDs irradiation On/Off experiments demonstrate that the continuous irradiation of LEDs is indispensable for the multi-component reaction.

To expand the substrate scope, we tested some other heteroarenes, such as quinoline (1ba), isoquinoline (1bb), quinoxaline (1bc), 1-phenylpyrazole (1bd), and 1-methylbenzimidazole (1be). Unfortunately, the substrates above were not compatible with this method.

Scheme S1. Ineffective heteroarenes for the multi-component reaction

2 Characterization of Products

1-Methyl-3-(3-(perfluorobutyl)bicyclo[1.1.1]pentan-1-yl)-5,6-diphenylpyrazin-2(1*H*)-one (4)

Obtained as a light yellow solid (74 mg, 68% yield); M. P. = 146-147 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.40 (dd, J = 4.8, 2.3 Hz, 3H), 7.20 (dd, J = 7.3, 2.1 Hz, 2H), 7.13 (s, 5H), 3.30 (s, 3H), 2.55 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 155.3, 151.6, 138.0, 137.6, 132.7, 132.5, 130.0, 129.6, 129.3, 129.2, 127.8, 127.1, 51.0, 41.8, 37.9 (t, J = 37.8 Hz), 33.7, ¹³C NMR for C₄F₉ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -81.03 – -81.09 (m), -115.64 – -117.48 (m), -121.42 – -122.98 (m), -125.32 – -126.91 (m); HRMS (ESI+): Calculated for C₂₆H₁₉F₉N₂O: [M+H]⁺ 547.1426, Found 547.1427.

1-Ethyl-3-(3-(perfluorobutyl)bicyclo[1.1.1]pentan-1-yl)-5,6-diphenylpyrazin-2(1H)-one (5)

Obtained as a yellow liquid (73 mg, 65% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.33 (dd, J = 9.2, 6.3 Hz, 3H), 7.19 – 7.15 (m, 2H), 7.04 (s, 5H), 3.79 (d, J = 7.1 Hz, 2H), 2.48 (s, 6H), 1.09 (dd, J = 9.3, 4.8 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 154.6, 152.0, 137.8, 137.7, 132.8, 132.3, 130.1, 129.5, 129.3, 128.9, 127.7, 127.0, 51.1, 41.2, 37.9 (t, J = 31.5 Hz), 29.7, 13.6, ¹³C NMR for C₄F₉ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -80.99 – -81.08 (m), -116.51 – -116.58 (m), -122.29 – 122.34 (m), -125.83 – -126.05 (m); HRMS (ESI+): Calculated for C₂₇H₂₁F₉N₂O: [M+H]⁺ 561.1583, Found 561.1591.

1-Butyl-3-(3-(perfluorobutyl)bicyclo[1.1.1]pentan-1-yl)-5,6-diphenylpyrazin-2(1*H*)-one (6)

Obtained as a yellow liquid (78 mg, 66% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.43 – 7.36 (m, 3H), 7.22 (dd, J = 7.9, 1.5 Hz, 2H), 7.12 (s, 5H), 3.81 – 3.72 (m, 2H), 2.55 (s, 6H), 1.59 (s, 2H), 1.14 (dd, J = 14.8, 7.4 Hz, 2H), 0.73 (t, J = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 154.8, 151.9, 137.9, 137.7, 132.8, 132.2, 130.2, 129.5, 129.3, 128.8, 127.7, 127.0, 51.0, 45.9, 37.9 (t, J = 31.5 Hz), 30.2, 29.7, 20.0, 13.3, ¹³C NMR for C₄F₉ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -81.03 – 81.08 (m), -116.53 – -116.59 (m), -122.29 – -122.33 (m), -125.97 – -126.04 (m); HRMS (ESI+): Calculated for C₂₉H₂₅F₉N₂O: [M+H]⁺ 589.1896, Found 589.1895.

1-Benzyl-3-(3-(perfluorobutyl)bicyclo[1.1.1]pentan-1-yl)-5,6-diphenylpyrazin-2(1*H*)-one (7)

Obtained as a light yellow solid (75 mg, 60% yield); M. P. = 89-90 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.34 (t, J = 7.5 Hz, 1H), 7.24 (d, J = 8.7 Hz, 5H), 7.11 (d, J = 1.9 Hz, 5H), 6.99 (d, J = 7.3 Hz, 2H), 6.85 (dd, J = 6.3, 2.7 Hz, 2H), 5.11 (s, 2H), 2.58 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 155.0, 152.5, 137.9, 137.5, 136.0, 132.9, 131.9, 130.5, 129.5, 129.3, 128.6, 128.5, 127.7, 127.5, 127.2, 127.1, 51.1, 48.7, 41.9, 37.9 (t, J = 31.5 Hz), ¹³C NMR for C₄F₉ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -81.03 – -81.07 (m), -116.50 – -116.59 (m), -122.29 – -122.31 (m), -126.00 – -126.04 (m); HRMS (ESI+): Calculated for C₃₂H₂₃F₉N₂O: [M+H]⁺ 623.1739, Found 623.174.

1-(4-Methylbenzyl)-3-(3-(perfluorobutyl)bicyclo[1.1.1]pentan-1-yl)-5,6-diphenylpyrazin-2(1*H*)-one (8)

Obtained as a yellow liquid (79 mg, 62% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.35 (t, J = 7.5 Hz, 1H), 7.25 (t, J = 7.7 Hz, 2H), 7.10 (d, J = 1.4 Hz, 5H), 7.01 (dd, J = 7.3, 4.0 Hz, 4H), 6.75 (d, J = 8.0 Hz, 2H), 5.06 (s, 2H), 2.57 (s, 6H), 2.28 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 155.0, 152.4, 138.0, 137.6, 137.3, 133.0, 132.9, 132.0, 130.5, 129.5, 129.3, 129.2, 128.6, 127.7, 127.2, 127.0, 51.1, 48.5, 41.9, 37.9 (t, J = 31.5 Hz), 21.1, ¹³C NMR for C₄F₉ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -81.03 – -81.07 (m), -116.52 – -116.56 (m), -122.28 – -122.31 (m), -125.97 – -126.03 (m); HRMS (ESI+): Calculated for C₃₃H₂₅F₉N₂O: [M+H]⁺637.1896, Found 637.1888.

1-(4-Chlorobenzyl)-3-(3-(perfluorobutyl)bicyclo[1.1.1]pentan-1-yl)-5,6-diphenylpyrazin-2(1*H*)-one (9)

Obtained as a light yellow solid (72 mg, 55% yield); M. P. = 145-146 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.36 (t, J = 7.5 Hz, 1H), 7.28 – 7.24 (m, 2H), 7.19 – 7.14 (m, 2H), 7.14 – 7.06 (m, 5H), 6.99 (d, J = 7.2 Hz, 2H), 6.79 (d, J = 8.4 Hz, 2H), 5.06 (s, 2H), 2.57 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 155.0,

152.6, 137.6, 137.4, 134.5, 133.5, 133.1, 131.8, 130.5, 129.7, 129.3, 128.8, 128.8, 128.7, 127.7,

127.1, 51.1, 48.1, 41.9, 37.9 (t, J = 31.5 Hz), ¹³C NMR for C₄F₉ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -81.03 – 81.07(m), -116.51 – -116.57 (m), -122.27 – -122.31 (m), -125.96 – -126.03 (m); HRMS (ESI+): Calculated for C₃₂H₂₂ClF₉N₂O: [M+H]⁺ 657.135, Found 657.1346.

1-Methyl-3-(3-(perfluorobutyl)bicyclo[1.1.1]pentan-1-yl)-5,6-di-p-tolylpyrazin-2(1H)-one (10)

Obtained as a light yellow solid (76 mg, 66% yield); M. P. = 168-169 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.20 (d, J = 7.8 Hz, 2H), 7.05 (dd, J = 17.1, 8.0 Hz, 4H), 6.94 (d, J = 8.0 Hz, 2H), 3.28 (s, 3H), 2.54 (s, 6H), 2.38 (s, 3H), 2.25 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 155.4, 151.2, 139.6, 137.8, 136.7, 134.9, 132.7, 129.8, 129.7, 129.1, 128.5, 51.0, 41.8, 37.9 (t, J = 31.5 Hz), 33.6, 21.4, 21.1, ¹³C NMR for C₄F₉ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -80.03 – -81.08 (m), -116.49 – -116.56 (m), -122.29 – -122.31 (m), -125.99 – -126.05 (m); HRMS (ESI+): Calculated for C₂₈H₂₃F₉N₂O: [M+H]⁺ 575.1739, Found 575.1734.

5,6-Bis(4-fluorophenyl)-1-methyl-3-(3-(perfluorobutyl)bicyclo[1.1.1]pentan-1-yl)pyrazin-2(1*H*)-one (11)

Obtained as a light yellow solid (58 mg, 50% yield); M. P. = 116-117°C; ¹H NMR (500 MHz, CDCl₃) δ 7.20 – 7.15 (m, 2H), 7.12 (d, *J* = 8.4 Hz, 2H), 7.09 – 7.04 (m, 2H), 6.84 (t, *J* = 8.6 Hz, 2H), 3.29 (s, 3H), 2.54 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 163.2 (d, *J* = 252.0 Hz), 161.9 (d, *J* = 247.0 Hz), 158.0, 155.2, 152.1, 136.9, 133.5 (d, *J* = 2.5 Hz), 132.0 (d, *J* = 7.6 Hz), 131.0 (d, *J* = 7.6 Hz), 128.4 (d, *J* = 2.5 Hz), 116.6 (d, *J* = 21.4 Hz), 114.9 (d, *J* = 21.4 Hz), 51.0, 41.8, 37.9 (t, *J* = 31.5 Hz), 33.6, ¹³C NMR for C₄F₉ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -81.06 – 81.92 (m), -109.63 (s), -114.65 (s), -115.57 – -117.62 (m), -122.27 – -122.94 (m), -125.57 – -126.96 (m); HRMS (ESI+): Calculated for C₂₆H₁₇F₁₁N₂O: [M+H]⁺ 583.1238, Found 583.1238.

5,6-Bis(4-bromophenyl)-1-methyl-3-(3-(perfluorobutyl)bicyclo[1.1.1]pentan-1-yl)pyrazin-2(1*H*)-one (12)

Obtained as a light yellow solid (69 mg, 49% yield); M. P. = 134-135 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.57 (d, J = 8.4 Hz, 2H), 7.31 – 7.28 (m, 2H), 7.07 (d, J = 8.4 Hz, 2H), 7.00 – 6.97 (m, 2H), 3.28 (s, 3H), 2.53 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 155.1, 152.3, 136.9, 136.3, 132.7, 131.5, 131.1, 131.0, 130.9, 124.4, 121.6, 51.0, 41.7, 37.9 (t, J = 31.5 Hz), 33.7, ¹³C NMR for C₄F₉ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -81.03 – -81.09 (m), -116.55 – -116.61 (m), -122.27 – -

122.33 (m), -125.99 – -126.06 (m); HRMS (ESI+): Calculated for $C_{26}H_{17}Br_2F_9N_2O$: $[M+H]^+$ 702.9637, Found 702.9597.

1-Methyl-3-(3-(perfluorobutyl)bicyclo[1.1.1]pentan-1-yl)-5-phenylpyrazin-2(1*H*)-one (13)

Obtained as a yellow liquid (37 mg, 39% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.81 – 7.71 (m, 2H), 7.50 (s, 1H), 7.43 (dd, J = 10.5, 4.8 Hz, 2H), 7.34 (t, J = 7.4 Hz, 1H), 3.59 (s, 3H), 2.53 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 155.2, 153.2, 135.5, 132.6, 128.9, 128.1, 125.2, 124.9, 51.0, 41.8, 37.9 (t, J = 31.5 Hz), 37.4, ¹³C NMR for C₄F₉ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -81.06 (t, J = 10.0 Hz), -116.52 – -116.62 (m), -122.27 – -122.35 (m), -125.49 – -126.08 (m); HRMS (ESI+): Calculated for C₂₀H₁₅F₉N₂O: [M+H]⁺ 471.1113, Found 471.1114.

1-Benzyl-3-(3-(perfluorobutyl)bicyclo[1.1.1]pentan-1-yl)-5-phenylpyrazin-2(1*H*)-one (14)

Obtained as a yellow liquid (35 mg, 32% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.70 – 7.67 (m, 2H), 7.45 (s, 1H), 7.39 (s, 2H), 7.38 (s, 2H), 7.36 (dd, J = 6.5, 3.0 Hz, 3H), 7.32 (d, J = 7.4 Hz, 1H), 5.13 (s, 2H), 2.54 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 154.7, 153.8, 135.5, 134.8, 132.7, 129.2, 128.8, 128.7, 128.5, 128.1, 124.9, 123.7, 52.1, 51.1, 41.9, 37.9 (t, *J* = 30.2 Hz), ¹³C NMR for C₄F₉ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -81.02 – -81.07 (m), -116.54 – -116.60 (m), -122.30 – 122.33 (m), -125.97 – -126.04 (m); HRMS (ESI+): Calculated for C₂₆H₁₉F₉N₂O: [M+H]⁺ 547.1426, Found 547.1424.

1-Methyl-3-(3-(perfluoroethyl)bicyclo[1.1.1]pentan-1-yl)quinoxalin-2(1H)-one (15)

Obtained as a yellow liquid (55 mg, 62% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.40 (t, J = 5.8 Hz, 3H), 7.19 (dd, J = 7.5, 1.8 Hz, 2H), 7.13 (s, 5H), 3.30 (s, 3H), 2.51 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 155.3, 151.6, 138.0, 137.6, 132.7, 132.5, 130.0, 129.6, 129.3, 129.2, 127.7, 127.1, 50.6, 41.5, 37.0 (t, J = 30.2 Hz), 33.7, ¹³C NMR for C₂F₅ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -82.65, -120.86; HRMS (ESI+): Calculated for C₂₄H₁₉F₅N₂O: [M+H]⁺ 447.149, Found 447.1493.

1-Methyl-3-(3-(perfluoroisopropyl)bicyclo[1.1.1]pentan-1-yl)-5,6-diphenylpyrazin-2(1*H*)-one (16)

Obtained as a light yellow solid (66 mg, 67% yield); M. P. = 175-176 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.40 (d, J = 6.8 Hz, 3H), 7.19 (dd, J = 7.5, 1.8 Hz, 2H), 7.12 (s, 5H), 3.30 (s, 3H), 2.57 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 155.3, 151.4, 138.0, 137.6, 132.7, 132.5, 130.0, 130.0, 129.3, 129.2, 127.7, 127.1, 52.0, 41.7, 36.5 (d, J = 26.5 Hz), 33.7, ¹³C NMR for ^{*i*}C₃F₇ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -74.62 (d, J = 8.8 Hz), -183.26 – -183.29 (m); HRMS (ESI+): Calculated for C₂₅H₁₉F₇N₂O: [M+H]⁺ 497.1458, Found 497.1456.

1-Methyl-3-(3-(perfluorohexyl)bicyclo[1.1.1]pentan-1-yl)-5,6-diphenylpyrazin-2(1*H*)-one (17)

Obtained as a light yellow solid (93 mg, 72% yield); M. P. = 125-126 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.41 (dt, J = 5.6, 2.9 Hz, 3H), 7.20 (dd, J = 7.3, 2.1 Hz, 2H), 7.13 (s, 5H), 3.30 (s, 3H), 2.55 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 155.3, 151.6, 138.0, 137.6, 132.7, 132.5, 130.0, 129.6, 129.3, 129.2, 127.8, 127.1, 51.0, 41.8, 38.0 (t, J = 31.5 Hz), 33.7, ¹³C NMR for C₆F₁₃ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -80.78 – -80.83 (m), -116.30 – -116.37 (m), -121.30 – -121.36 (m), -121.87 – -121.93 (m), -122.92 (s), -126.08 – -126.16 (m); HRMS (ESI+): Calculated for C₂₈H₁₉F₁₃N₂O: [M+H]⁺ 647.1363, Found 647.1363.

1-Methyl-3-(3-(perfluorooctyl)bicyclo[1.1.1]pentan-1-yl)-5,6-diphenylpyrazin-2(1*H*)-one (18)

Obtained as a light yellow solid (104 mg, 70% yield); M. P. = 159-160 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.40 (d, J = 6.7 Hz, 3H), 7.20 (dd, J = 7.5, 1.7 Hz, 2H), 7.13 (s, 5H), 3.30 (s, 3H), 2.55 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 155.3, 151.6, 138.0, 137.6, 132.7, 132.5, 130.0, 129.6, 129.3, 129.2, 127.7, 127.1, 51.0, 41.8, 38.0 (t, J = 31.5 Hz), 33.7, ¹³C NMR for C₈F₁₇ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -80.74 – -80.78 (m), -116.29 – -116.36 (m), -121.24 – -121.28 (m), -121.64 – -121.68 (m), -121.89 – -121.92 (m), -122.68 – -122,73 (m), -126.07 – -126.11 (m); HRMS (ESI+): Calculated for C₃₀H₁₉F₁₇N₂O: [M+H]⁺ 747.1299, Found 747.1299.

1-Methyl-3-(3-(perfluorobutyl)bicyclo[1.1.1]pentan-1-yl)quinoxalin-2(1*H*)-one (20)

Obtained as a light yellow solid (71 mg, 80% yield); M. P. = 70-71 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.85 (dd, J = 8.0, 1.3 Hz, 1H), 7.59 – 7.52 (m, 1H), 7.38 – 7.33 (m, 1H), 7.30 (d, J = 8.4 Hz, 1H), 3.67 (s, 3H), 2.56 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 154.8, 154.5, 133.5, 132.7, 130.5, 130.2, 123.7, 113.6, 51.2, 42.1, 38.0 (t, J = 31.5 Hz), 28.6, ¹³C NMR for C₄F₉ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -81.07 – -81.12 (m), -116.60 – -116.67 (m), -122.29 – -122.35 (m), -126.01 – -126.08 (m); HRMS (ESI+): Calculated for C₁₈H₁₃F₉N₂O: [M+H]⁺ 445.0957, Found 445.0957.

1-Ethyl-3-(3-(perfluorobutyl)bicyclo[1.1.1]pentan-1-yl)quinoxalin-2(1*H*)-one (21)

Obtained as a yellow liquid (75 mg, 82% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.89 – 7.84 (m, 1H), 7.57 – 7.52 (m, 1H), 7.33 (td, J = 8.7, 1.6 Hz, 2H), 4.29 (q, J = 7.2 Hz, 2H), 2.56 (s, 6H), 1.38 (t, J = 7.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 154.8, 154.0, 133.0, 132.4, 130.5, 130.4, 123.5, 113.5, 51.2, 42.0, 37.9 (t, J = 31.5 Hz), 37.0, 12.4, ¹³C NMR for C₄F₉ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -81.05 – -81.11 (m), -116.60 – -116.66 (m), -122.30 – -122.36 (m), -125.99 – -126.06 (m); HRMS (ESI+): Calculated for C₁₉H₁₅F₉N₂O: [M+H]⁺ 459.1113, Found 459.1105.

Ethyl-2-(3-(3-(perfluorobutyl)-2-oxoquinoxalin-1(2*H*)-yl)acetate (22)

Obtained as a light yellow solid (77 mg, 75% yield); M. P. = 88-89 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.87 (dd, J = 8.0, 1.4 Hz, 1H), 7.55 – 7.48 (m, 1H), 7.39 – 7.31 (m, 1H), 7.05 (d, J = 8.4 Hz, 1H), 4.99 (s, 2H), 4.26 (d, J = 7.1 Hz, 2H), 2.55 (s, 6H), 1.28 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 167.0, 154.7, 154.0, 132.8, 132.6, 130.6, 130.5, 124.0, 113.1, 62.2, 51.3, 43.1, 41.9, 37.9 (t, J = 31.5 Hz), 14.1, ¹³C NMR for C₄F₉ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -81.04 – -81.10 (m), -116.60 – -116.67 (m), -122.29 – -122.35 (m), -125.99 – -126.06 (m); HRMS (ESI+): Calculated for C₂₁H₁₇F₉N₂O₃: [M+H]⁺ 517.1168, Found 517.117.

1-Benzyl-3-(3-(perfluorobutyl)bicyclo[1.1.1]pentan-1-yl)quinoxalin-2(1*H*)-one (23)

Obtained as a light yellow solid (75 mg, 72% yield); M. P. = 93-94 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.86 (dd, J = 8.0, 1.3 Hz, 1H), 7.47 – 7.39 (m, 1H), 7.30 (ddd, J = 7.4, 6.4, 5.3 Hz, 4H), 7.23 (t, J =

8.1 Hz, 3H), 5.46 (s, 2H), 2.59 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 155.0, 154.5, 135.1, 133.0, 132.9, 130.5, 130.3, 129.0, 127.8, 126.9, 123.8, 114.5, 51.3, 45.6, 42.1, 37.9 (t, *J* = 31.5 Hz), ¹³C NMR for C₄F₉ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -81.05 (ddd, *J* = 13.6, 8.4, 3.4 Hz), -115.59 - -117.55 (m), -122.30 (dd, *J* = 18.2, 8.3 Hz), -124.69 - -126.96 (m); HRMS (ESI+): Calculated for C₂₄H₁₇F₉N₂O: [M+H]⁺ 521.127, Found 521.1266.

3-(3-(Perfluorobutyl)bicyclo[1.1.1]pentan-1-yl)-1-phenylquinoxalin-2(1*H*)-one (24)

Obtained as a yellow liquid (68 mg, 67% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.90 (dd, J = 7.6, 1.7 Hz, 1H), 7.63 (t, J = 7.5 Hz, 2H), 7.56 (t, J = 7.4 Hz, 1H), 7.36 – 7.29 (m, 4H), 6.70 (dd, J = 7.9, 1.5 Hz, 1H), 2.58 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 155.6, 154.2, 135.4, 134.3, 132.6, 130.4, 130.1, 129.8, 129.6, 128.2, 123.9, 115.5, 51.4, 42.0, 37.9 (t, J = 31.5 Hz), ¹³C NMR for C₄F₉ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -80.54 – -81.57 (m), -115.71 – -117.36 (m), -121.72 – 122.99 (m), -125.52 – -126.07 (m); HRMS (ESI+): Calculated for C₂₃H₁₅F₉N₂O: [M+H]⁺ 507.1113, Found 507.1121.

1-Allyl-3-(3-(perfluorobutyl)bicyclo[1.1.1]pentan-1-yl)quinoxalin-2(1*H*)-one (25)

Obtained as a yellow liquid (59 mg, 63% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.86 (dd, J = 8.0, 1.2 Hz, 1H), 7.54 – 7.50 (m, 1H), 7.33 (dd, J = 11.2, 4.0 Hz, 1H), 7.28 (d, J = 8.4 Hz, 1H), 5.93 (ddd, J = 22.3, 10.4, 5.2 Hz, 1H), 5.28 (d, J = 10.5 Hz, 1H), 5.18 (d, J = 17.3 Hz, 1H), 4.87 (d, J = 5.1 Hz, 2H), 2.56 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 154.9, 154.0, 132.9, 132.7, 130.5, 130.4, 130.3, 123.7, 118.3, 114.2, 51.3, 44.2, 42.0, 37.9 (t, J = 31.5 Hz), ¹³C NMR for C₄F₉ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -81.07 – -81.12 (m), -116.61 – -116.68 (m), -122.30 – -122.35 (m), - 126.00 – -126.07 (m); HRMS (ESI+): Calculated for C₂₀H₁₅F₉N₂O: [M+H]⁺ 471.1113, Found 471.1107.

5-Chloro-1-methyl-3-(3-(perfluorobutyl)bicyclo[1.1.1]pentan-1-yl)quinoxalin-2(1H)-one (26)

Obtained as a light yellow solid (71 mg, 74% yield); M. P. = 81-82 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.50 – 7.41 (m, 2H), 7.22 (dd, J = 7.7, 1.8 Hz, 1H), 3.68 (s, 3H), 2.58 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 155.2, 154.1, 135.2, 135.0, 130.4, 129.4, 124.7, 112.5, 51.3, 42.2, 38.0 (t, J = 31.5 Hz), 29.1, ¹³C NMR for C₄F₉ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -81.04 – -81.08 (m), -116.60 – -116.66 (m), -122.29 – -122.31 (m), -125.99 – -126.06 (m); HRMS (ESI+): Calculated for C₁₈H₁₂ClF₉N₂O: [M+H]⁺ 479.0567, Found 479.0563.

1,5-Dimethyl-3-(3-(perfluorobutyl)bicyclo[1.1.1]pentan-1-yl)quinoxalin-2(1*H*)-one (27)

Obtained as a light yellow solid (72 mg, 79% yield); M. P. = 133-134 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.46 – 7.40 (m, 1H), 7.20 (d, *J* = 7.4 Hz, 1H), 7.13 (d, *J* = 8.4 Hz, 1H), 3.66 (s, 3H), 2.67 (s, 3H), 2.54 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 154.4, 152.8, 139.1, 133.6, 131.3, 130.2, 125.0, 111.5, 51.1, 42.3, 37.8 (t, *J* = 31.5 Hz), 28.7, 17.2, ¹³C NMR for C₄F₉ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -81.07 (t, *J* = 9.9 Hz), -115.92 – -116.63 (m), -121.72 – -122.32 (m), -125.77 – 126.52 (m); HRMS (ESI+): Calculated for C₁₉H₁₅F₉N₂O: [M+H]⁺ 459.1113, Found 459.111.

1,6,7-Trimethyl-3-(3-(perfluorobutyl)bicyclo[1.1.1]pentan-1-yl)quinoxalin-2(1*H*)-one (28)

Obtained as a yellow liquid (77 mg, 82% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.61 (s, 1H), 7.06 (s, 1H), 3.65 (s, 3H), 2.54 (s, 6H), 2.42 (s, 3H), 2.34 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 154.6, 153.5, 140.4, 132.7, 131.5, 131.2, 130.2, 114.2, 51.1, 42.1, 37.8 (t, *J* = 31.5 Hz), 28.5, 20.6, 19.1, ¹³C NMR for C₄F₉ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -81.04 – -81.10 (m), -116.57 – -116.63 (m), -122.28 – -122.32 (m), -125.99 – -126.06 (m); HRMS (ESI+): Calculated for C₂₀H₁₇F₉N₂O: [M+H]⁺ 473.1270, Found 473.1271.

6,7-Difluoro-1-methyl-3-(3-(perfluorobutyl)bicyclo[1.1.1]pentan-1-yl)quinoxalin-2(1*H*)-one (29)

Obtained as a light yellow solid (61 mg, 64% yield); M. P. = 89-90 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.65 (dd, J = 10.0, 8.3 Hz, 1H), 7.09 (dd, J = 11.2, 7.0 Hz, 1H), 3.62 (s, 3H), 2.52 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 155.3 (d, J = 3.5 Hz), 154.0, 151.5 (dd, J = 254.1, 14.4 Hz), 146.7 (dd, J = 247.5, 14.0 Hz), 130.8 (d, J = 8.9 Hz), 129.0 (dd, J = 9.3, 2.9 Hz), 117.8 (dd, J = 18.0, 2.0 Hz), 102.3 (d, J = 23.1 Hz), 51.2, 41.9, 37.8 (t, J = 31.5 Hz), 29.1, ¹³C NMR for C₄F₉ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -81.15 – 81.19 (m), -116.71 – -116.77 (m), -122.34 – -122.39 (m), - 126.08 – -126.15 (m), -130.17 (d, J = 22.4 Hz), -141.91 (d, J = 22.4 Hz); HRMS (ESI+): Calculated for C₁₈H₁₁F₁₁N₂O: [M+H]⁺ 481.0768, Found 481.0768.

6,7-Dichloro-1-methyl-3-(3-(perfluorobutyl)bicyclo[1.1.1]pentan-1-yl)quinoxalin-2(1*H*)-one (30)

Obtained as a light yellow solid (71 mg, 69% yield); M. P. = 94-95 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.93 (s, 1H), 7.38 (s, 1H), 3.62 (s, 3H), 2.53 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 156.3, 153.8, 134.6, 132.9, 131.8, 131.0, 127.6, 115.2, 51.3, 42.0, 37.9 (t, J = 31.5 Hz), 28.9, ¹³C NMR for C₄F₉ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -81.05 – -81.09 (m), -116.65 – -116.71 (m), - 122.29 – -122.33 (m), -126.01 – -126.07 (m); HRMS (ESI+): Calculated for C₁₈H₁₁Cl₂F₉N₂O: [M+H]⁺ 513.0177, Found 513.0172.

1-Methyl-3-(3-(perfluorobutyl)bicyclo[1.1.1]pentan-1-yl)benzo[g]quinoxalin-2(1*H*)-one (31)

Obtained as a light yellow solid (56 mg, 57% yield); M. P. = 126-127 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.36 (s, 1H), 7.96 (d, J = 8.2 Hz, 1H), 7.90 (d, J = 8.3 Hz, 1H), 7.61 – 7.55 (m, 2H), 7.52 – 7.46 (m, 1H), 3.73 (s, 3H), 2.59 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 155.4, 154.3, 133.8, 132.0, 131.8, 129.8, 129.5, 128.5, 128.1, 127.2, 125.4, 110.0, 51.4, 42.2, 37.9 (t, J = 31.5 Hz), 28.6, ¹³C NMR for C₄F₉ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -81.02 – -81.07 (m), -116.57 – -116.63 (m), -122.26 – -122.29 (m), -125.97 – -126.04 (m); HRMS (ESI+): Calculated for C₂₂H₁₅F₉N₂O: [M+Na]⁺ 517.0933, Found 517.094.

1-Benzyl-3-(3-(perfluoroisopropyl)bicyclo[1.1.1]pentan-1-yl)quinoxalin-2(1*H*)-one (32)

Obtained as a light yellow solid (66 mg, 70% yield); M. P. = 129-130 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.85 (dd, J = 8.0, 1.4 Hz, 1H), 7.43 (ddd, J = 8.6, 7.4, 1.5 Hz, 1H), 7.34 – 7.29 (m, 3H), 7.26 – 7.17 (m, 4H), 5.46 (s, 2H), 2.61 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 154.9, 154.5, 135.1, 133.0, 132.9, 130.5, 130.3, 129.0, 127.8, 126.9, 123.8, 114.5, 52.3, 45.6, 42.0, 36.5 (d, J = 25.2 Hz), ¹³C NMR for ^{*i*}C₃F₇ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -74.62 (d, J = 8.7 Hz), -183.34 – -183.54 (m); HRMS (ESI+): Calculated for C₂₃H₁₇F₇N₂O: [M+H]⁺ 471.1302, Found 471.1306.

3-(3-(Perfluoroisopropyl)bicyclo[1.1.1]pentan-1-yl)-1-(3-methylbenzyl)quinoxalin-2(1*H***)-one (33)**

Obtained as a light yellow solid (69 mg, 71% yield); M. P. = 131-132 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.85 (dd, J = 8.0, 1.3 Hz, 1H), 7.43 (ddd, J = 8.6, 7.4, 1.5 Hz, 1H), 7.33 – 7.27 (m, 1H), 7.27 – 7.23 (m, 1H), 7.19 (t, J = 7.6 Hz, 1H), 7.07 (d, J = 7.6 Hz, 1H), 7.05 – 6.97 (m, 2H), 5.41 (s, 2H), 2.61 (s, 6H), 2.30 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 154.9, 154.6, 138.8, 135.0, 133.0, 130.5, 130.3, 128.9, 128.8, 128.6, 127.5, 123.9, 123.8, 114.5, 52.3, 45.6, 42.0, 36.5 (d, J = 25.2 Hz), 21.4, ¹³C NMR for ^{*i*}C₃F₇ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -74.62 (d, J = 8.7 Hz), -183.34 – 183.54 (m); HRMS (ESI+): Calculated for C₂₄H₁₉F₇N₂O: [M+H]⁺ 485.1458, Found 485.1459.

1-(3-Chlorobenzyl)-3-(3-(perfluoroisopropyl)bicyclo[1.1.1]pentan-1-yl)quinoxalin-2(1*H*)-one (34)

Obtained as a light yellow solid (61 mg, 61 % yield); M. P. = 154-155 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.87 (dd, J = 8.0, 1.4 Hz, 1H), 7.49 – 7.43 (m, 1H), 7.35 – 7.30 (m, 1H), 7.25 (dt, J = 8.0, 2.6 Hz, 2H), 7.20 (dd, J = 19.6, 11.9 Hz, 2H), 7.11 (dd, J = 5.7, 2.8 Hz, 1H), 5.42 (s, 2H), 2.61 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 154.8, 154.4, 137.2, 135.0, 133.0, 132.7, 130.6, 130.5, 130.3, 128.1, 126.9, 125.0, 124.0, 114.2, 52.4, 45.1, 42.0, 36.5 (d, J = 25.2 Hz), ¹³C NMR for ^{*i*}C₃F₇ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -74.62 (d, J = 8.7 Hz), -183.33 – -183.54 (m); HRMS (ESI+): Calculated for C₂₃H₁₆ClF₇N₂O: [M+Na]⁺ 527.0732, Found 527.0733.

1-(4-Fluorobenzyl)-3-(3-(perfluoroisopropyl)bicyclo[1.1.1]pentan-1-yl)quinoxalin-2(1*H*)-one (35)

Obtained as a light yellow solid (63 mg, 65% yield); M. P. = 112-113 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.86 (dd, J = 8.0, 1.4 Hz, 1H), 7.50 – 7.41 (m, 1H), 7.32 (dd, J = 11.2, 4.1 Hz, 1H), 7.26 – 7.12 (m, 3H), 7.00 (dd, J = 9.6, 7.7 Hz, 2H), 5.41 (s, 2H), 2.61 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 162.3 (d, J = 247.0 Hz), 154.9, 154.5, 133.0, 132.7, 130.9 (d, J = 3.2 Hz), 130.9, 130.8, 128.7 (d, J = 8.2 Hz), 123.9, 116.0 (d, J = 21.7 Hz), 114.2, 52.3, 45.0, 42.0, 36.5 (d, J = 25.4 Hz), ¹³C NMR for ^{*i*}C₃F₇ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -74.62 (d, J = 8.9 Hz), -114.18 – -114.24 (m), -183.36 – -183.44 (m); HRMS (ESI+): Calculated for C₂₃H₁₆F₈N₂O: [M+H]⁺ 489.1208, Found 489.1203.

1-(4-Bromobenzyl)-3-(3-(perfluoroisopropyl)bicyclo[1.1.1]pentan-1-yl)quinoxalin-2(1*H*)-one (36)

Obtained as a light yellow solid (64 mg, 58% yield); M. P. = 173-174 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.86 (dd, J = 8.0, 1.2 Hz, 1H), 7.48 – 7.41 (m, 3H), 7.32 (t, J = 7.3 Hz, 1H), 7.19 (d, J = 8.3 Hz, 1H), 7.11 (d, J = 8.4 Hz, 2H), 5.39 (s, 2H), 2.60 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 154.8, 154.4, 134.2, 133.0, 132.7, 132.1, 130.6, 130.5, 128.7, 124.0, 121.8, 114.2, 52.3 (d, J = 3.4 Hz), 45.1, 42.0, 36.5 (d, J = 25.4 Hz), ¹³C NMR for ^{*i*}C₃F₇ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ - 74.62 (d, J = 8.8 Hz), -183.35 – -183.43 (m); HRMS (ESI+): Calculated for C₂₃H₁₆BrF₇N₂O: [M+H]⁺ 571.0226, Found 571.0226.

3-(3-(Perfluoroisopropyl)bicyclo[1.1.1]pentan-1-yl)-1,6,7-trimethylquinoxalin-2(1*H*)-one (37)

Obtained as a light yellow solid (66 mg, 78% yield); M. P. = 146-147 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.60 (s, 1H), 7.06 (s, 1H), 3.64 (s, 3H), 2.56 (s, 6H), 2.42 (s, 3H), 2.34 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 154.6, 153.4, 140.4, 132.7, 131.5, 131.2, 130.2, 114.2, 52.1, 42.0, 36.4 (d, *J* = 25.2 Hz), 28.5, 20.6, 19.1, ¹³C NMR for ^{*i*}C₃F₇ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -74.63 (d, *J* = 8.8 Hz), -183.42 – -183.45 (m); HRMS (ESI+): Calculated for C₁₉H₁₇F₇N₂O: [M+H]⁺ 423.1302, Found 423.1301.

6,7-Dichloro-3-(3-(perfluoroisopropyl)bicyclo[1.1.1]pentan-1-yl)-1-methylquinoxalin-2(1*H*)one (38)

Obtained as a light yellow solid (58 mg, 63% yield); M. P. = 131-132 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.92 (s, 1H), 7.38 (s, 1H), 3.62 (s, 3H), 2.55 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 156.2, 153.8, 134.6, 132.8, 131.8, 130.9, 127.6, 115.2, 52.3, 41.9, 36.6 (d, J = 25.4 Hz), 28.9, ¹³C NMR for ^{*i*}C₃F₇ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -74.63 (d, J = 8.8 Hz), -183.42 – -183.45 (m); HRMS (ESI+): Calculated for C₁₇H₁₁Cl₂F₇N₂O: [M+H]⁺ 463.0209, Found 463.021.

1-Benzyl-3-(3-(perfluorohexyl)bicyclo[1.1.1]pentan-1-yl)quinoxalin-2(1*H*)-one (39)

Obtained as a light yellow solid (93 mg, 75% yield); M. P. = 97-98 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.86 (dd, J = 8.0, 1.4 Hz, 1H), 7.43 (ddd, J = 8.6, 7.4, 1.5 Hz, 1H), 7.34 – 7.27 (m, 4H), 7.25 – 7.21 (m, 3H), 5.46 (s, 2H), 2.59 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 155.0, 154.5, 135.1, 133.0, 132.9, 130.5, 130.3, 129.0, 127.8, 126.9, 123.8, 114.5, 51.3, 45.6, 42.1, 38.0 (t, J = 31.5 Hz), ¹³C NMR for C₆F₁₃ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -80.76 – -80.81 (m), -116.37 – -116.43 (m), -121.32 – -121.36 (m), -121.84 – -121.92 (m), -122.87 – -122.92 (m), -126.09 – -126.13 (m); HRMS (ESI+): Calculated for C₂₆H₁₇F₁₃N₂O: [M+H]⁺ 621.1206, Found 621.1207.

1-(3-Methylbenzyl)-3-(3-(perfluorohexyl)bicyclo[1.1.1]pentan-1-yl)quinoxalin-2(1*H*)-one (40)

Obtained as a light yellow solid (87 mg, 69% yield); M. P. = 95-96 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.77 (d, J = 7.9 Hz, 1H), 7.34 (t, J = 7.8 Hz, 1H), 7.21 (t, J = 7.6 Hz, 1H), 7.18 – 7.15 (m, 1H), 7.11 (t, J = 7.6 Hz, 1H), 6.99 (d, J = 7.6 Hz, 1H), 6.97 – 6.90 (m, 2H), 5.34 (s, 2H), 2.52 (s, 6H), 2.22 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 155.0, 154.5, 138.8, 135.0, 133.0, 130.4, 130.3, 128.9, 128.6, 127.4, 123.8, 123.3, 114.5, 51.3, 45.6, 42.1, 38.0 (t, J = 31.5 Hz), 21.4, ¹³C NMR for C₆F₁₃ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -80.82 (t, J = 10.5 Hz), -116.35 – -117.14 (m), -121.28 – -121.75 (m), -121.84 – -121.94 (m), -122.88 – -122.95 (m), -125.52 – -126.16 (m); HRMS (ESI+): Calculated for C₂₇H₁₉F₁₃N₂O: [M+H]⁺ 635.1363, Found 635.1363.

1-(3-Chlorobenzyl)-3-(3-(perfluorohexyl)bicyclo[1.1.1]pentan-1-yl)quinoxalin-2(1*H*)-one (41)

Obtained as a light yellow solid (77 mg, 59% yield); M. P. = 93-94 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.88 (dd, J = 8.0, 1.4 Hz, 1H), 7.45 (ddd, J = 8.6, 7.4, 1.5 Hz, 1H), 7.35 – 7.30 (m, 1H), 7.25 (td, J = 4.5, 1.9 Hz, 2H), 7.19 (dd, J = 9.4, 8.7 Hz, 2H), 7.14 – 7.08 (m, 1H), 5.42 (s, 2H), 2.59 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 155.0, 154.4, 137.2, 135.0, 133.0, 132.7, 130.6, 130.5, 130.3, 128.1, 126.9, 125.0, 124.0, 114.2, 51.4, 45.1, 42.0, 38.0 (t, J = 31.5 Hz), ¹³C NMR for C₆F₁₃ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -80.78 – -80.82 (m), -116.37 – -116.45 (m), -121.31 – -121.37 (m), -121.86 – -121.92 (m), -122.91 – -122.92 (m), -126.08 – -126.16 (m); HRMS (ESI+): Calculated for C₂₆H₁₆ClF₁₃N₂O: [M+H]⁺ 655.0816, Found 655.0815.

1-(4-Fluorobenzyl)-3-(3-(perfluorohexyl)bicyclo[1.1.1]pentan-1-yl)quinoxalin-2(1*H*)-one (42)

Obtained as a light yellow solid (89 mg, 70% yield); M. P. = 79 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.87 (dd, J = 8.0, 1.4 Hz, 1H), 7.45 (ddd, J = 8.6, 7.4, 1.5 Hz, 1H), 7.35 – 7.29 (m, 1H), 7.23 (dd, J = 8.5, 4.8 Hz, 3H), 7.04 – 6.98 (m, 2H), 5.42 (s, 2H), 2.59 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 162.3 (d, J = 247.0 Hz), 155.0, 154.5, 133.0, 132.7, 130.9 (d, J = 3.3 Hz), 130.5, 130.4, 128.7 (d, J = 8.2 Hz), 123.9, 115.9 (d, J = 21.7 Hz), 114.2, 51.3, 45.0, 42.1, 38.0 (t, J = 30.4 Hz), ¹³C NMR for C₆F₁₃ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -80.78 – 80.82 (m), -114.22 – -114.26 (m), -116.38 – -116.45 (m), -121.31 – -121.38 (m), -121.87 – -121.92 (m), -122.91 (s), -126.10 – -126.15 (m); HRMS (ESI+): Calculated for C₂₆H₁₆F₁₄N₂O: [M+H]⁺ 639.1112, Found 639.1117.

1-(4-Bromobenzyl)-3-(3-(perfluorohexyl)bicyclo[1.1.1]pentan-1-yl)quinoxalin-2(1H)-one (43)

Obtained as a light yellow solid (93 mg, 67% yield); M. P. = 155-156 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.87 (dd, J = 8.0, 1.4 Hz, 1H), 7.48 – 7.39 (m, 3H), 7.36 – 7.29 (m, 1H), 7.18 (d, J = 8.4 Hz, 1H), 7.11 (d, J = 8.5 Hz, 2H), 5.40 (s, 2H), 2.59 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 155.0, 154.4, 134.2, 133.0, 132.7, 132.1, 130.5, 130.5, 128.7, 124.0, 121.8, 114.2, 51.3, 45.1, 42.0, 38.0 (t, J = 30.4 Hz), ¹³C NMR for C₆F₁₃ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -80.79 – -80.84 (m), -116.39 – -116.45 (m), -121.32 – -121.38 (m), -121.88 – -121.94 (m), -122.89 – -122.95 (m), -126.10 – -126.17 (m); HRMS (ESI+): Calculated for C₂₆H₁₆BrF₁₃N₂O: [M+H]⁺ 699.0311, Found 699.0308.

1,6,7-Trimethyl-3-(3-(perfluorohexyl)bicyclo[1.1.1]pentan-1-yl)quinoxalin-2(1*H*)-one (44)

Obtained as a light yellow solid (91 mg, 80% yield); M. P. = 114-115 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.61 (s, 1H), 7.06 (s, 1H), 3.65 (s, 3H), 2.54 (s, 6H), 2.42 (s, 3H), 2.34 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 154.6, 153.5, 140.4, 132.7, 131.5, 131.2, 130.2, 114.2, 51.2, 42.1, 37.9 (t, *J* = 30.4 Hz), 28.5, 20.6, 19.1, ¹³C NMR for C₆F₁₃ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -80.77 – -80.81 (m), -116.37 – -116.41 (m), -121.31 – -121.35 (m), -121.89 – -121.92 (m), -122.91 – -122.94 (m), -126.09 – -126.12 (m); HRMS (ESI+): Calculated for C₂₂H₁₇F₁₃N₂O: [M+H]⁺ 573.1206, Found 573.1205.

6,7-Dichloro-1-methyl-3-(3-(perfluorohexyl)bicyclo[1.1.1]pentan-1-yl)quinoxalin-2(1*H*)-one (45)

Obtained as a light yellow solid (84 mg, 69% yield); M. P. = 130-131 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.94 (s, 1H), 7.39 (s, 1H), 3.63 (s, 3H), 2.54 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 156.3, 153.9, 134.6, 132.9, 131.8, 131.0, 127.6, 115.2, 51.3, 42.0, 38.0 (t, *J* = 30.4 Hz), 28.9, ¹³C NMR for C₆F₁₃ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -80.77 – -80.82 (m), -116.44 – -116.51 (m), -121.30 – -121.34 (m), -121.88 – -121.95 (m), -122.91 – -122.94 (m), -126.11 – -126.14 (m); HRMS (ESI+): Calculated for C₂₀H₁₁Cl₂F₁₃N₂O: [M+H]⁺ 613.0114, Found 613.0121.

1-Benzyl-3-(3-(perfluorooctyl)bicyclo[1.1.1]pentan-1-yl)quinoxalin-2(1H)-one (46)

Obtained as a light yellow solid (112 mg, 78% yield); M. P. = 89-90 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.86 (dd, J = 8.0, 1.3 Hz, 1H), 7.45 – 7.39 (m, 1H), 7.34 – 7.27 (m, 4H), 7.23 (d, J = 7.2 Hz, 3H), 5.46 (s, 2H), 2.59 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 155.0, 154.5, 135.1, 133.0, 132.9, 130.4, 130.3, 129.0, 127.8, 126.9, 123.8, 114.5, 51.3, 45.6, 42.1, 38.0 (t, J = 30.2 Hz), ¹³C NMR for C₈F₁₇ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -80.78 – 80.83 (m), -116.36 – -116.44 (m), - 121.25 – -121.31 (m), -121.63 – -121.68 (m), -121.92 – -121.97 (m), -122.72 – -122.75 (m), -123.52 – -123.56 (m), -126.12 – -126.116 (m); HRMS (ESI+): Calculated for C₂₈H₁₇F₁₇N₂O: [M+H]⁺ 721.1142, Found 721.1134.

3-(3-(Perfluorooctyl)bicyclo[1.1.1]pentan-1-yl)-1-(3-methylbenzyl)quinoxalin-2(1H)-one (47)

Obtained as a light yellow solid (110 mg, 75% yield); M. P. = 99-100 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.86 (dd, J = 8.0, 1.4 Hz, 1H), 7.42 (ddd, J = 8.6, 7.5, 1.5 Hz, 1H), 7.31 – 7.27 (m, 1H), 7.25 (dd, J = 5.5, 2.9 Hz, 1H), 7.19 (t, J = 7.6 Hz, 1H), 7.07 (d, J = 7.6 Hz, 1H), 7.05 – 6.96 (m, 2H), 5.42 (s, 2H), 2.60 (s, 6H), 2.30 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 155.0, 154.5, 138.8, 135.1, 133.0, 130.4, 130.3, 128.8, 128.6, 127.4, 123.8, 123.7, 114.5, 51.3, 45.6, 42.1, 38.0 (t, J = 30.2 Hz), 21.4, ¹³C NMR for C₈F₁₇ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -80.83 (t, J = 10.8 Hz), -116.35 – -116.46 (m), -121.26 – -121.29 (m), -121.65 – -121.70 (m), -121.93 – -121.96 (m), -122.78 – -122.93 (m), -125.45 – -126.17 (m); HRMS (ESI+): Calculated for C₂₉H₁₉F₁₇N₂O: [M+H]⁺ 735.1299, Found 735.1298.

1-(3-Chlorobenzyl)-3-(3-(perfluorooctyl)bicyclo[1.1.1]pentan-1-yl)quinoxalin-2(1*H*)-one (48)

Obtained as a light yellow solid (90 mg, 60% yield); M. P. = 81-82 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.88 (dd, J = 8.0, 1.1 Hz, 1H), 7.48 – 7.41 (m, 1H), 7.32 (t, J = 7.6 Hz, 1H), 7.25 (dd, J = 4.4, 2.7 Hz, 2H), 7.23 – 7.16 (m, 2H), 7.11 (t, J = 3.5 Hz, 1H), 5.42 (s, 2H), 2.59 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 155.0, 154.4, 137.2, 135.0, 133.0, 132.7, 130.6, 130.5, 130.3, 128.1, 126.9, 125.0, 124.0, 114.2, 51.3, 45.1, 42.0, 38.0 (t, J = 30.2 Hz), ¹³C NMR for C₈F₁₇ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -80.84 (t, J = 10.7 Hz), -116.38 – -117.08 (m), -121.28 – -121.30 (m), -121.68 – -121.70 (m), -121.93 – -121.96 (m), -122.74 – -122.76 (m), -126.14 – -126.17 (m); HRMS (ESI+): Calculated for C₂₈H₁₆ClF₁₇N₂O: [M+H]⁺ 755.0752, Found 755.0748.

1-(4-Fluorobenzyl)-3-(3-(perfluorooctyl)bicyclo[1.1.1]pentan-1-yl)quinoxalin-2(1H)-one (49)

Obtained as a light yellow solid (100 mg, 68% yield); M. P. = 88-89 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.87 (d, J = 7.4 Hz, 1H), 7.44 (t, J = 7.4 Hz, 1H), 7.30 (t, J = 7.5 Hz, 1H), 7.26 – 7.20 (m, 3H), 6.99 (t, J = 8.6 Hz, 2H), 5.41 (s, 2H), 2.60 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 163.2, 161.3, 155.0, 154.4, 133.0, 132.7, 130.9 (d, J = 3.2 Hz), 130.4, 128.7 (d, J = 8.2 Hz), 123.8, 115.9 (d, J = 21.7 Hz), 114.2, 51.3, 44.9, 42.0, 38.0 (t, J = 30.3 Hz), ¹³C NMR for C₈F₁₇ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -81.02 – -81.06 (m), -116.51 – -116.58 (m), -121.35 – -121.38 (m), -121.77 – 121.80 (m), -122.05 – -122.08 (m), -122.86 – -122.89 (m), -126.29 – -126.31 (m); HRMS (ESI+): Calculated for C₂₈H₁₆F₁₈N₂O: [M+H]⁺ 739.1048, Found 739.1041.

1-(4-Bromobenzyl)-3-(3-(perfluorooctyl)bicyclo[1.1.1]pentan-1-yl)quinoxalin-2(1*H*)-one (50)

Obtained as a light yellow solid (102 mg, 64% yield); M. P. = 126-127 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.87 (d, J = 7.9 Hz, 1H), 7.44 (t, J = 5.9 Hz, 3H), 7.32 (t, J = 7.6 Hz, 1H), 7.18 (d, J = 8.4 Hz, 1H), 7.11 (d, J = 8.3 Hz, 2H), 5.40 (s, 2H), 2.58 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 155.0, 154.4, 134.2, 133.0, 132.7, 132.1, 130.5, 130.5, 128.7, 123.9, 121.8, 114.2, 51.33, 45.05, 42.03, 38.0 (t, J = 30.3 Hz), ¹³C NMR for C₈F₁₇ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -80.78 (t, J = 10.8 Hz), -116.35 – -116.45 (m), -121.24 – -121.31 (m), -121.62 – -121.68 (m), -121.88 – -121.96 (m), -122.67 – -122.74 (m), -125.57 – -126.80 (m); HRMS (ESI+): Calculated for C₂₈H₁₆BrF₁₇N₂O: [M+H]⁺ 799.0247, Found 799.0245.

3-(3-(Perfluorooctyl)bicyclo[1.1.1]pentan-1-yl)-1,6,7-trimethylquinoxalin-2(1*H*)-one (51)

Obtained as a light yellow solid (105 mg, 78% yield); M. P. = 83-84 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.61 (s, 1H), 7.05 (s, 1H), 3.64 (s, 3H), 2.54 (s, 6H), 2.41 (s, 3H), 2.34 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 154.6, 153.5, 140.4, 132.7, 131.5, 131.2, 130.2, 114.2, 51.2, 42.1, 37.9 (t, *J* = 30.2 Hz), 28.5, 20.6, 19.1, ¹³C NMR for C₈F₁₇ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -80.73 – -80.78 (m), -116.34 – -116.41 (m), 121.26 (d, *J* = 6.8 Hz), -121.66 (d, *J* = 5.5 Hz), -121.93 (d, *J* = 9.3 Hz), -122.71 (s), -126.06 – -126.12 (m); HRMS (ESI+): Calculated for C₂₄H₁₇F₁₇N₂O: [M+H]⁺ 673.1142, Found 673.1149.

6,7-Dichloro-3-(3-(perfluorooctyl)bicyclo[1.1.1]pentan-1-yl)-1-methylquinoxalin-2(1*H*)-one (52)

Obtained as a light yellow solid (104 mg, 73% yield); M. P. = 128-129 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.94 (s, 1H), 7.39 (s, 1H), 3.63 (s, 3H), 2.54 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 156.3, 153.8, 134.6, 132.9, 131.8, 131.0, 127.6, 115.1, 51.3, 42.0, 38.1 (t, *J* = 30.2 Hz), 28.9, ¹³C NMR for C₈F₁₇ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -80.77 – -80.82 (m), -116.47 – -116.51 (m), -121.25 – -121.27 (m), -121.68 – -121.70 (m), -121.94 – -121.96 (m), -123.66 – -123.76 (m), -126.12 – -126.14 (m); HRMS (ESI+): Calculated for C₂₂H₁₁Cl₂F₁₇N₂O: [M+H]⁺ 713.005, Found 713.0047.

3-Methoxy-2-(3-(3-(3-(a-(perfluorobutyl)bicyclo[1.1.1]pentan-1-yl)-2-oxoquinoxalin-1(2*H*)-yl)propoxy)benzaldehyde (53)

Obtained as a light yellow solid (86 mg, 69% yield); M. P. = 99-100 °C; ¹H NMR (500 MHz, CDCl₃) δ 10.46 (s, 1H), 7.87 (d, J = 7.8 Hz, 1H), 7.56 (t, J = 7.5 Hz, 1H), 7.48 (d, J = 8.3 Hz, 1H), 7.45 – 7.42 (m, 1H), 7.35 (t, J = 7.5 Hz, 1H), 7.17 (d, J = 4.4 Hz, 2H), 4.57 – 4.50 (m, 2H), 4.28 (t, J = 5.7 Hz, 2H), 3.88 (s, 3H), 2.56 (s, 6H), 2.26 (td, J = 11.6, 5.8 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 189.9, 154.7, 154.3, 152.9, 151.2, 133.0, 132.6, 130.7, 130.4, 129.9, 124.4, 123.7, 119.7, 118.0, 113.7, 72.2, 56.0, 51.3, 42.0, 39.6, 37.9 (t, J = 30.2 Hz), 28.0, ¹³C NMR for C₄F₉ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -81.06 (t, J = 9.9 Hz), -116.57 – -116.66 (m), -122.11 – -122.35 (m), -125.48 – -126.07 (m); HRMS (ESI+): Calculated for C₂₈H₂₃F₉N₂O₄: [M+H]⁺ 623.1587, Found 623.1586.

2-(3-(3-(Perfluorobutyl)bicyclo[1.1.1]pentan-1-yl)-2-oxoquinoxalin-1(2*H*)-yl)ethyl 2-(4-isobutylphenyl)propanoate (54)

Obtained as a light yellow solid (103 mg, 78% yield); M. P. = 80-81 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.85 (dd, J = 7.9, 0.9 Hz, 1H), 7.51 – 7.45 (m, 1H), 7.38 – 7.31 (m, 2H), 7.09 (d, J = 8.1 Hz, 2H), 7.05 (d, J = 8.1 Hz, 2H), 4.53 – 4.47 (m, 1H), 4.46 – 4.36 (m, 3H), 3.59 (q, J = 7.1 Hz, 1H), 2.55 (s, 6H), 2.44 (d, J = 7.2 Hz, 2H), 1.84 (dt, J = 13.5, 6.8 Hz, 1H), 1.42 (d, J = 7.2 Hz, 3H), 0.90 (d, J = 6.6 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 174.7, 154.6, 154.3, 140.7, 137.2, 133.0, 132.9, 130.5, 130.4, 129.4, 127.1, 123.8, 113.8, 61.0, 51.2, 45.1, 45.0, 41.9, 40.6, 37.9 (t, J = 30.2 Hz), 30.2, 22.4, 18.3, ¹³C NMR for C₄F₉ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -81.08 (t, J = 9.9 Hz), -115.53 – 116.68 (m), -121.39 – -122.89 (m), -125.25 – -126.08 (m); HRMS (ESI+): Calculated for C₃₂H₃₁F₉N₂O₃: [M+H]⁺ 663.2264, Found 663.2265.

2-(3-(3-(Perfluorobutyl)bicyclo[1.1.1]pentan-1-yl)-2-oxoquinoxalin-1(2H)-yl)ethyl 2-(4-((2-oxocyclopentyl)methyl)phenyl)propanoate (55)

Obtained as a yellow liquid (102 mg, 73% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.85 (dd, J = 7.9, 1.1 Hz, 1H), 7.51 – 7.44 (m, 1H), 7.34 (dd, J = 15.6, 7.8 Hz, 2H), 7.08 (q, J = 8.3 Hz, 4H), 4.52 – 4.34 (m, 4H), 3.59 (q, J = 7.1 Hz, 1H), 3.11 (dd, J = 13.9, 2.6 Hz, 1H), 2.54 (s, 6H), 2.48 (dd, J = 11.8, 4.8 Hz, 1H), 2.38 – 2.29 (m, 2H), 2.13 – 2.05 (m, 2H), 1.96 (d, J = 6.5 Hz, 1H), 1.78 – 1.70 (m, 1H), 1.58 – 1.50 (m, 1H), 1.41 (d, J = 7.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 220.09, 174.5, 154.6, 154.3, 139.1, 137.8, 132.9, 132.9, 130.5, 130.4, 129.2, 127.4, 123.8, 113.7, 61.0, 51.2, 50.9, 45.0, 41.9, 40.5, 38.1, 37. 9 (t, J = 30.2 Hz), 35.2, 29.3, 20.5, 18.3, ¹³C NMR for C₄F₉ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -80.51 – -81.75 (m), -115.67 – -117.56 (m), -121.36 – 123.00 (m), -125.38 – -126.96 (m); HRMS (ESI+): Calculated for C₃₄H₃₁F₉N₂O₄: [M+H]⁺ 703.2213, Found 703.2214.

2-(3-(3-(Perfluorobutyl)bicyclo[1.1.1]pentan-1-yl)-2-oxoquinoxalin-1(2*H*)-yl)ethyl 2-(2-fluoro-[1,1'-biphenyl]-4-yl)propanoate (56)

Obtained as a yellow liquid (98 mg, 70% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.84 (dd, J = 8.0, 1.3 Hz, 1H), 7.56 – 7.52 (m, 2H), 7.47 (ddd, J = 17.2, 11.8, 4.6 Hz, 3H), 7.41 – 7.29 (m, 4H), 7.07 – 6.92 (m, 2H), 4.59 – 4.39 (m, 4H), 3.65 (q, J = 7.1 Hz, 1H), 2.56 (s, 6H), 1.47 (d, J = 7.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 173.9, 159.6 (d, J = 249.5 Hz), 154.6, 154.3, 141.2 (d, J = 7.6 Hz), 135.3, 132.9 (d, J = 10.1 Hz), 130.8 (d, J = 3.8 Hz), 130.5, 130.4, 128.9 (d, J = 2.5 Hz), 128.5, 128.0, 127.9, 127.8, 123.8, 123.4 (d, J = 3.8 Hz), 115.2 (d, J = 23.9 Hz), 113.7, 61.3, 51.2, 44.9, 41.9, 40.6, 37.9 (t,

J = 30.2 Hz), 18.2, ¹³C NMR for C₄F₉ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -80.70 – -81.49 (m), -116.25 – -116.93 (m), -117.24 (s), -121.90 – -122.80 (m), -125.56 – -126.42 (m); HRMS (ESI+): Calculated for C₃₄H₂₆F₁₀N₂O₃: [M+H]⁺ 701.1857, Found 701.1855.

2-(3-(3-(Perfluorobutyl)bicyclo[1.1.1]pentan-1-yl)-2-oxoquinoxalin-1(2H)-yl)ethyl 2-(5methoxy-2-methyl-1*H*-indol-3-yl)acetate (57)

Obtained as a yellow liquid (86 mg, 64% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.83 (dd, J = 7.9, 1.3 Hz, 1H), 7.78 (s, 1H), 7.39 (ddd, J = 8.4, 7.1, 1.4 Hz, 1H), 7.34 – 7.27 (m, 2H), 7.12 (d, J = 8.7 Hz, 1H), 6.90 (d, J = 2.3 Hz, 1H), 6.77 (dd, J = 8.7, 2.4 Hz, 1H), 4.44 (t, J = 4.0 Hz, 4H), 3.82 (s, 3H), 3.59 (s, 2H), 2.56 (s, 6H), 2.26 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 171.9, 154.6, 154.3, 154.2, 133.6, 132.9, 132.8, 130.5, 130.4, 130.1, 128.8, 123.8, 113.6, 111.0, 110.9, 103.7, 100.4, 60.9, 55.9, 51.3, 41.9, 40.7, 37.9 (t, J = 30.2 Hz), 30.3, 11.7, ¹³C NMR for C₄F₉ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -80.38 – -81.77 (m), -115.60 – -117.58 (m), -121.32 – -123.02 (m), -125.32 – 127.25 (m); HRMS (ESI+): Calculated for C₃₁H₂₆F₉N₃O₄: [M+H]⁺ 676.1852, Found 676.1857.

2-(3-(3-(Perfluorobutyl)bicyclo[1.1.1]pentan-1-yl)-2-oxoquinoxalin-1(2*H*)-yl)ethyl 2-(4chlorophenoxy)-2-methylpropanoate (58)

Obtained as a yellow liquid (100 mg, 75% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.82 (d, J = 7.3 Hz, 1H), 7.49 (t, J = 7.3 Hz, 1H), 7.33 (dd, J = 12.5, 5.3 Hz, 2H), 7.06 (d, J = 8.9 Hz, 2H), 6.59 (d, J = 8.8 Hz, 2H), 4.49 (s, 4H), 2.54 (s, 6H), 1.48 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 173.9, 154.5, 154.2, 153.7, 132.8, 132.7, 130.5, 130.4, 129.0, 127.3, 123.9, 120.1, 113.7, 79.3, 61.9, 51.2, 41.9, 40.4, 37.9 (t, J = 30.2 Hz), 25.2, ¹³C NMR for C₄F₉ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -81.08 – -81.22 (m), -116.65 – -116.79 (m), -122.32 – -122.36 (m), -126.05 – -126.11 (m); HRMS (ESI+): Calculated for C₂₉H₂₄ClF₉N₂O₄: [M+H]⁺ 671.1354, Found 671.1355.

2-(3-(3-(Perfluorobutyl)bicyclo[1.1.1]pentan-1-yl)-2-oxoquinoxalin-1(2*H*)-yl)ethyl 2-(11-oxo-6,11-dihydrodibenzo[*b,e*]oxepin-2-yl)acetate (59)

Obtained as a yellow liquid (107 mg, 74% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.03 (d, J = 2.1 Hz, 1H), 7.89 (d, J = 7.6 Hz, 1H), 7.83 (dd, J = 8.0, 1.0 Hz, 1H), 7.56 (dd, J = 10.7, 4.2 Hz, 1H), 7.53 – 7.46 (m, 2H), 7.38 (t, J = 8.0 Hz, 2H), 7.31 (dd, J = 11.2, 4.6 Hz, 2H), 6.98 (d, J = 8.4 Hz, 1H), 5.18 (s, 2H), 4.48 (dd, J = 8.8, 4.3 Hz, 4H), 3.56 (s, 2H), 2.55 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ

190.7, 171.4, 160.6, 154.6, 154.3, 140.4, 136.2, 135.5, 133.0, 132.9, 132.8, 132.5, 130.6, 130.5, 129.5, 129.3, 127.9, 127.1, 125.2, 123.9, 121.2, 113.6, 73.6, 61.2, 51.3, 41.9, 40.6, 40.0, 37.9 (t, J = 30.2 Hz), ¹³C NMR for C₄F₉ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -80.41 – -81.73 (m), -116.55 – -116.65 (m), -122.26 – -122.32 (m), -125.95 – -126.07 (m); HRMS (ESI+): Calculated for C₃₅H₂₅F₉N₂O₅: [M+H]⁺ 725.1693, Found 725.1692.

Obtained as a light yellow solid (105 mg, 60% yield); M. P. = 189-190 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.84 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.58 – 7.51 (m, 1H), 7.43 (d, *J* = 8.3 Hz, 1H), 7.34 (t, *J* = 7.6 Hz, 1H), 4.48 (t, *J* = 5.4 Hz, 2H), 4.41 (t, *J* = 5.7 Hz, 2H), 2.88 (dd, *J* = 31.5, 18.4 Hz, 3H), 2.54 (s, 6H), 2.30 (dd, *J* = 22.9, 11.7 Hz, 5H), 2.24 (d, *J* = 11.8 Hz, 2H), 2.15 (dd, *J* = 26.3, 14.5 Hz, 4H), 2.02 (d, *J* = 9.9 Hz, 1H), 1.98 – 1.90 (m, 3H), 1.82 (t, *J* = 11.1 Hz, 1H), 1.75 – 1.70 (m, 1H), 1.59 (dd, *J* = 19.1, 9.5 Hz, 1H), 1.39 (s, 3H), 1.33 – 1.23 (m, 5H), 1.03 (s, 3H), 0.78 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 211.9, 209.0, 208.7, 173.9, 154.6, 154.3, 133.0, 132.9, 130.5, 130.5, 123.8, 113.7, 60.5, 56.8, 51.7, 51.2, 51.1, 49.0, 46.8, 45.5, 45.5, 45.0, 42.8, 41.9, 40.7, 38.6, 37.9 (t, *J* = 30.2 Hz), 36.5, 36.0, 35.4, 35.3, 31.2, 30.2, 27.6, 25.1, 21.9, 18.6, 11.8, ¹³C NMR for C₄F₉ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -80.26 – -81.80 (m), -115.52 – -117.63 (m), -121.26 – -123.02 (m), -125.24 – -127.00 (m); HRMS (ESI+): Calculated for C₄₄H₄₉F₉N₂O₆: [M+H]⁺ 873.352, Found 873.352.

2,4-Dimethyl-6-(3-(perfluorobutyl)bicyclo[1.1.1]pentan-1-yl)-1,2,4-triazine 3,5(2*H*,4*H*)-dione (62)

Obtained as a light yellow solid (70 mg, 82% yield); M. P. = 98-99 °C; ¹H NMR (500 MHz, CDCl₃) δ 3.61 (d, J = 1.1 Hz, 3H), 3.32 (d, J = 1.1 Hz, 3H), 2.39 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 155.8, 149.2, 139.9, 51.0, 39.6, 38.8, 38.2 (t, J = 30.2 Hz), 26.9, ¹³C NMR for C₄F₉ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -80.47 – -81.55 (m), -116.60 – -116.73 (m), -122.30 – -122.39 (m), -125.42 – -126.13 (m); HRMS (ESI+): Calculated for C₁₄H₁₂F₉N₃O₂: [M+H]⁺ 426.0859, Found 426.0866.

2,4-Dimethyl-6-(3-(perfluoroisopropyl)bicyclo[1.1.1]pentan-1-yl)-1,2,4-triazine 3,5(2H,4H)-

dione (63)

Obtained as a light yellow solid (60 mg, 80% yield); M. P. = 77-78 °C; ¹H NMR (500 MHz, CDCl₃) δ 3.61 (s, 3H), 3.32 (s, 3H), 2.41 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 155.8, 149.2, 139.8, 52.0, 39.6, 38.7, 36.8 (d, J = 25.2 Hz), 26.9, ¹³C NMR for C₃F₇ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -74.69 (d, J = 8.7 Hz), -183.27 – -183.45 (m); HRMS (ESI+): Calculated for C₁₃H₁₂F₇N₃O₂: [M+H]⁺ 376.0891, Found 376.0889.

2,4-Dimethyl-6-(3-(perfluorohexyl)bicyclo[1.1.1]pentan-1-yl)-1,2,4-triazine 3,5(2*H*,4*H*)-dione (64)

Obtained as a light yellow solid (78 mg, 74% yield); M. P. = 59-60 °C; ¹H NMR (500 MHz, CDCl₃) δ 3.62 (s, 3H), 3.32 (s, 3H), 2.40 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 155.8, 149.2, 139.9, 51.0, 39.6, 38.8, 38.3 (t, *J* = 30.2 Hz), 26.9, ¹³C NMR for C₆F₁₃ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -80.17 - -81.51 (m), -116.48 (dd, *J* = 20.6, 10.2 Hz), -121.38 (dd, *J* = 19.2, 11.6 Hz), -121.97 (dd, *J* = 16.6, 10.5 Hz), -122.98 (dd, *J* = 19.4, 12.7 Hz), -126.13 - -126.24 (m); HRMS (ESI+): Calculated for C₁₆H₁₂F₁₃N₃O₂: [M+H]⁺ 526.0795, Found 526.0798.

2,4-Dimethyl-6-(3-(perfluorooctyl)bicyclo[1.1.1]pentan-1-yl)-1,2,4-triazine 3,5(2*H*,4*H*)-dione (65)

Obtained as a light yellow solid (97 mg, 78% yield); M. P. = 99-100 °C; ¹H NMR (500 MHz, CDCl₃) δ 3.61 (s, 3H), 3.32 (s, 3H), 2.40 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 155.8, 149.2, 139.9, 51.0, 39.6, 38.8, 38.3 (t, *J* = 30.2 Hz), 26.9, ¹³C NMR for C₈F₁₇ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -80.84 (t, *J* = 10.8 Hz), -116.43 - -116.51 (m), -122.29 - -122.33 (m), -122.72 - -122.75 (m), -121.96 - -122.00 (m), -122.74 - -122.78 (m), -126.14 - -126.17 (m); HRMS (ESI+): Calculated for C₁₈H₁₂F₁₇N₃O₂: [M+H]⁺ 626.0731, Found 626.0730.

2-(3-Chlorophenyl)-4-methyl-6-(3-(perfluorobutyl)bicyclo[1.1.1]pentan-1-yl)-1,2,4-triazine-3,5(2*H*,4*H*)-dione (66)

Obtained as a light yellow solid (73 mg, 70% yield); M. P. = 164-165 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.45 (d, J = 5.1 Hz, 2H), 7.26 (d, J = 2.5 Hz, 1H), 7.18 – 7.09 (m, 1H), 3.67 (s, 3H), 2.42 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 155.2, 148.5, 140.9, 135.2, 133.6, 130.5, 129.8, 128.4, 126.2, 51.1,

39.7, 38.8, 38.3 (t, J = 30.2 Hz), ¹³C NMR for C₄F₉ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -81.04 - -81.63 (m), -115.79 - -116.69 (m), -122.29 - -122.35 (m), -125.99 - -126.10 (m); HRMS (ESI+): Calculated for C₁₉H₁₃ClF₉N₃O₂: [M+H]⁺ 522.0625, Found 522.0627.

2-(3-Chlorophenyl)-4-methyl-6-(3-(perfluoroisopropyl)bicyclo[1.1.1]pentan-1-yl)-1,2,4-triazine-3,5(2*H*,4*H*)-dione (67)

Obtained as a light yellow solid (68 mg, 72% yield); M. P. = 204-205 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.49 – 7.40 (m, 2H), 7.26 (d, J = 4.5 Hz, 1H), 7.17 – 7.09 (m, 1H), 3.66 (s, 3H), 2.44 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 155.2, 148.5, 140.8, 135.1, 133.6, 130.5, 129.8, 128.3, 126.2, 52.1, 39.7, 38.7, 36.9 (d, J = 25.2 Hz), ¹³C NMR for ^{*i*}C₃F₇ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -74.69 (d, J = 8.8 Hz), -183.32 – -183.40 (m); HRMS (ESI+): Calculated for C₁₈H₁₃ClF₇N₃O₂: [M+H]⁺ 472.0657, Found 472.0655.

2-(4-Chlorophenyl)-2-(2,6-dichloro-4-(4-methyl-6-(3-(perfluorobutyl)bicyclo[1.1.1]pentan-1-yl)-3,5-dioxo-4,5-dihydro-1,2,4-triazin-2(3H)-yl)phenyl)acetonitrile (68)

Obtained as a yellow liquid (92 mg, 65% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.79 (d, J = 8.5 Hz, 2H), 7.68 (s, 2H), 7.48 (d, J = 8.6 Hz, 2H), 3.42 (s, 3H), 2.49 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 190.6, 154.8, 148.1, 142.2, 141.7, 141.2, 136.4, 133.6, 132.1, 131.0, 129.5, 124.1, 51.2, 38.8, 38.4 (t, J = 30.2 Hz), 29.7, 27.4, ¹³C NMR for C₄F₉ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -81.01 – -81.72 (m), -116.61 – -117.08 (m), -122.22 – -122.28 (m), -125.99 – -126.05 (m); HRMS (ESI+): Calculated for C₂₇H₁₆Cl₃F₉N₄O₂: [M+H]⁺ 705.0268, Found 705.026.

2-(3,4-Dimethoxy-5-(methoxymethyl)tetrahydrofuran-2-yl)-4-methyl-6-(3-(perfluorobutyl)bicyclo[1.1.1]pentan-1-yl)-1,2,4-triazine-3,5(2*H*,4*H*)-dione (69)

Obtained as a yellow liquid (81 mg, 69% yield); ¹H NMR (500 MHz, CDCl₃) δ 6.29 (d, J = 3.0 Hz, 1H), 4.21 (d, J = 3.8 Hz, 1H), 4.15 (dd, J = 5.1, 3.1 Hz, 1H), 4.02 (d, J = 5.5 Hz, 1H), 3.58 (d, J = 3.6 Hz, 1H), 3.53 (d, J = 5.5 Hz, 1H), 3.49 (s, 3H), 3.48 (s, 3H), 3.38 (s, 3H), 3.31 (s, 3H), 2.42 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 155.1, 148.8, 140.9, 89.1, 81.0, 80.6, 79.1, 72.6, 59.3, 58.4, 58.3, 51.0, 39.0, 38.4 (t, J = 30.2 Hz), 27.0, ¹³C NMR for C₄F₉ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -80.62 – -81.59 (m), -116.59 – -116.67 (m), -122.19 – -122.25 (m), -125.99 – -126.09 (m); HRMS (ESI+): Calculated for C₂₁H₂₄F₉N₃O₆: [M+H]⁺ 608.1414, Found 608.1413.

3-(3-(Perfluorobutyl)bicyclo[1.1.1]pentan-1-yl)-1-((2(trimethylsilyl)ethoxy)methyl)quinoxalin-2(1*H***)-one (70)**

Obtained as a yellow liquid (806 mg, 72% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.83 (d, J = 8.0 Hz, 1H), 7.54 – 7.51 (m, 2H), 7.34 (dd, J = 4.9, 3.4 Hz, 1H), 5.68 (s, 2H), 3.71 – 3.65 (m, 2H), 2.55 (s, 6H), 0.97 – 0.93 (m, 2H), -0.03 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 156.4, 156.0, 134.2, 133.7, 131.9, 131.5, 125.6, 116.4, 72.6, 68.5, 52.7, 43.5, 39.3 (t, J = 31.5 Hz), 19.4, 0.0, ¹³C NMR for C₄F₉ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -80.44 – -81.74 (m), -116.62 – -116.69 (m), -122.28 – -122.87 (m), -126.00 – -126.07 (m); HRMS (ESI+): Calculated for C₂₃H₂₅F₉N₂O₂Si: [M+Na]⁺ 583.1434, Found 583.1432.

3-(3-(Perfluorobutyl)bicyclo[1.1.1]pentan-1-yl)quinoxalin-2(1*H*)-one (71)

Obtained as a light yellow solid (774 mg, 90% yield); M. P.= 219-220 °C; ¹H NMR (500 MHz, Acetone) δ 11.22 (s, 1H), 7.77 (d, J = 7.9 Hz, 1H), 7.53 (t, J = 7.3 Hz, 1H), 7.39 (d, J = 8.0 Hz, 1H), 7.32 (t, J = 7.6 Hz, 1H), 2.55 (s, 6H); ¹³C NMR (126 MHz, Acetone) δ 155.9, 154.3, 132.5, 132.2, 130.2, 128.9, 123.3, 115.2, 50.8, 41.7, 37.5 (t, J = 31.5 Hz), ¹³C NMR for C₄F₉ could not be assigned; ¹⁹F NMR (471 MHz, Acetone) δ -81.95 (t, J = 10.1 Hz), -116.90 – -116.97 (m), -122.78 – -122.85 (m), -126.65 – -126.71 (m); HRMS (ESI+): Calculated for C₁₇H₁₁F₉N₂O: [M+H]⁺ 431.08, Found 431.0808.

2-Chloro-3-(3-(perfluorobutyl)bicyclo[1.1.1]pentan-1-yl)quinoxalin-2(1*H*)-one (72)

Obtained as a light yellow solid (798 mg, 89% yield); M. P.= 62-63 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.09 – 8.04 (m, 1H), 8.02 – 7.96 (m, 1H), 7.80 – 7.72 (m, 2H), 2.67 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 149.9, 146.2, 141.3, 140.8, 130.9, 130.3, 129.0, 128.1, 51.5, 42.5, 38.0 (t, *J* = 31.5 Hz), ¹³C NMR for C₄F₉ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -81.08 (t, *J* = 3.5 Hz), -115.69 – -117.43 (m), -121.59 – -122.97 (m), -125.24 – -126.85 (m); HRMS (ESI+): Calculated for C₁₇H₁₀ClF₉N₂: [M+H]⁺ 449.0462, Found 449.0463.

4-(3-(3-(Perfluorobutyl)bicyclo[1.1.1]pentan-1-yl)quinoxalin-2-yl)morpholine (73)

Obtained as a light yellow solid (95 mg, 95% yield); M. P.= 67-68 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, J = 8.2 Hz, 1H), 7.87 (d, J = 8.1 Hz, 1H), 7.64 (dd, J = 11.1, 4.1 Hz, 1H), 7.59 (dd, J = 11.0, 4.0 Hz, 1H), 3.98 – 3.88 (m, 4H), 3.33 – 3.22 (m, 4H), 2.58 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 156.2, 148.5, 140.2, 139.4, 129.8, 128.5, 127.8, 127.6, 66.7, 52.1, 51.4, 37.4 (t, J = 31.5 Hz), 29.7, ¹³C NMR for C₄F₉ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -80.52 – -81.07 (m), -116.32 – -116.38 (m), -122.17 – -122.23 (m), -125.94 – -126.06 (m); HRMS (ESI+): Calculated for C₂₁H₁₈F₉N₃O: [M+H]⁺ 500.1379, Found 500.1377.

2-Methoxy-3-(3-(perfluorobutyl)bicyclo[1.1.1]pentan-1-yl)quinoxaline (74)

Obtained as a colourless liquid (79 mg, 89% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.97 (d, J = 8.1 Hz, 1H), 7.81 (d, J = 7.9 Hz, 1H), 7.66 – 7.58 (m, 1H), 7.57 – 7.47 (m, 1H), 4.11 (s, 3H), 2.54 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 156.8, 145.4, 140.2, 138.5, 129.7, 128.7, 126.8, 126.6, 53.7, 51.2, 41.1, 37.97 (t, J = 31.5 Hz), ¹³C NMR for C₄F₉ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -81.07 (t, J = 10.0 Hz), -115.44 – -117.60 (m), -122.29 (dd, J = 18.2, 8.2 Hz), -125.02 – -127.00 (m); HRMS (ESI+): Calculated for C₁₈H₁₃F₉N₂O: [M+H]⁺ 445.0957, Found 445.0959.

Ethyl 2,2-difluoro-2-(3-(4-methyl-3-oxo-3,4-dihydroquinoxalin-2-yl)bicyclo[1.1.1]pentan-1-yl)acetate (75)

Obtained as a light yellow liquid (46 mg, 66% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.84 (d, J = 8.0 Hz, 1H), 7.54 (t, J = 7.8 Hz, 1H), 7.34 (t, J = 7.6 Hz, 1H), 7.29 (d, J = 8.4 Hz, 1H), 4.36 (q, J = 7.1 Hz, 2H), 3.66 (s, 3H), 2.43 (s, 6H), 1.37 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 163.3 (t, J = 34.0 Hz), 155.3, 154.5, 133.4, 132.8, 130.4, 130.2, 123.7, 113.6, 112.2 (t, J = 250.7 Hz), 62.8, 50.5 (t, J = 3.8 Hz), 41.5, 39.2 (t, J = 31.5 Hz), 28.6, 14.2; ¹⁹F NMR (471 MHz, CDCl₃) δ -111.55; HRMS (ESI+): Calculated for C₁₈H₁₈F₂N₂O₃: [M+H]⁺ 349.1358, Found 349.1359.

(1*R*,2*R*,5*S*)-2-Isopropyl-5-methylcyclohexyl-2,2-difluoro-2-(3-(4-methyl-3-oxo-3,4-dihydroquinoxalin-2-yl)bicyclo[1.1.1]pentan-1-yl)acetate (77)

Obtained as a light yellow liquid (73 mg, 80% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.86 (d, J = 7.8 Hz, 1H), 7.55 (t, J = 7.6 Hz, 1H), 7.35 (t, J = 7.5 Hz, 1H), 7.30 (d, J = 8.3 Hz, 1H), 4.86 (td, J = 10.9, 4.3 Hz, 1H), 3.67 (s, 3H), 2.44 (s, 6H), 2.07 (d, J = 11.4 Hz, 1H), 1.96 – 1.87 (m, 1H), 1.74 – 1.69 (m, 2H), 1.57 – 1.49 (m, 2H), 1.15 – 1.06 (m, 2H), 0.93 (t, J = 6.9 Hz, 6H), 0.88 (d, J = 13.0 Hz, 1H), 0.79 (d, J = 6.9 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 163.0 (t, J = 34.0 Hz), 155.4, 154.5, 133.5, 132.8, 130.4, 130.2, 123.7, 113.6, 112.2 (t, J = 250.7 Hz), 77.5, 50.5, 46.8, 40.6, 39.3 (t, J = 31.5 Hz), 34.0, 31.5, 29.7, 28.6, 26.1, 23.3, 22.0, 20.7, 16.1; ¹⁹F NMR (471 MHz, CDCl₃) δ -111.05 (qd, J = 261.6, 5.2 Hz); HRMS (ESI+): Calculated for C₂₆H₃₂F₂N₂O₃: [M+H]⁺ 459.2454, Found 459.2455.

Diethyl-3-((4-methyl-3-oxo-5,6-diphenyl-3,4-dihydropyrazin-2-yl)methyl)-4-(perfluorobutyl)cyclopentane-1,1-dicarboxylate (81)

Obtained as a light yellow liquid (79 mg, 55% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.43 – 7.37 (m, 3H), 7.21 (dd, J = 8.8, 5.9 Hz, 2H), 7.11 (s, 5H), 4.21 – 4.12 (m, 4H), 3.31 (s, 3H), 2.97 – 2.95 (m, 1H), 2.89 – 2.81 (m, 1H), 2.61 – 2.54 (m, 2H), 2.36 – 2.25 (m, 2H), 1.22 (ddd, J = 15.8, 9.6, 5.1 Hz, 10H); ¹³C NMR (126 MHz, CDCl₃) δ 172.5, 172.5, 155.7, 155.7, 137.8, 136.7, 132.6, 132.4, 130.1, 129.5, 129.3, 129.1, 127.7, 126.9, 61.7, 61.6, 58.7, 39.5, 39.0, 38.7, 34.8, 34.0, 33.0, 29.7, 14.0, 13.9, ¹³C NMR for C₈F₁₇ could not be assigned; ¹⁹F NMR (471 MHz, CDCl₃) δ -80.00 – -80.04 (m), -

114.16 – -114.28 (m), -124.29 – -124.68 (m), -125.85 – -125.95 (m); HRMS (ESI+): Calculated for $C_{34}H_{33}F_9N_2O_5$: [M+Na]⁺ 743.2138, Found 743.2142.

3 Copies of ¹H, ¹³C and ¹⁹F NMR Spectra

4¹H NMR (500 MHz, CDCl₃)

4¹³C NMR (126 MHz, CDCl₃)

5 ¹H NMR (500 MHz, CDCl₃)

5¹⁹F NMR (471 MHz, CDCl₃)

6¹³C NMR (126 MHz, CDCl₃)

 $\begin{array}{c} 51.04\\ 45.86\\ 38.10\\ 37.86\\ 37.62\\ 30.22\\ 29.71\\ -20.03\\ -13.32\end{array}$

77.28 77.02 76.77

154.75 151.92 137.87 137.71 137.71 132.23 132.23 132.22 132.22 129.50 129.50 128.80 128.80 126.97

7 ¹H NMR (500 MHz, CDCl₃)

7 ¹⁹F NMR (471 MHz, CDCl₃)

8¹³C NMR (126 MHz, CDCl₃)

<u>8</u> - 8 -	-116	-12	-12	-125	-126	-126
05 07	5.50 5.53 5.57	2.28	2.31	5.97	9.00	5.03

11¹H NMR (500 MHz, CDCl₃)

11 ¹⁹F NMR (471 MHz, CDCl₃)

13 ¹⁹F NMR (471 MHz, CDCl₃)

14 ¹³C NMR (126 MHz, CDCl₃)

17¹⁹F NMR (471 MHz, CDCl₃)

18 ¹³C NMR (126 MHz, CDCl₃)

20 ¹⁹F NMR (471 MHz, CDCl₃)

22 ¹⁹F NMR (471 MHz, CDCl₃)

23 ¹³C NMR (126 MHz, CDCl₃)

25 ¹³C NMR (126 MHz, CDCl₃)

26 ¹⁹F NMR (471 MHz, CDCl₃)

27 ¹³C NMR (126 MHz, CDCl₃)

28 ¹⁹F NMR (471 MHz, CDCl₃)

-81.04 -81.05 -81.05 -81.05 -81.09 -81.09 -81.09 -81.09 -116.60 -116.60 -112.28 -122.30 -122.32 -122.32 -122.32 -126.03

30 ¹⁹F NMR (471 MHz, CDCl₃)

31 ¹³C NMR (126 MHz, CDCl₃)

20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 f1 (ppm)

32 ¹⁹F NMR (471 MHz, CDCl₃)

33 ¹³C NMR (126 MHz, CDCl₃)

34 ¹H NMR (500 MHz, CDCl₃)

35 ¹³C NMR (126 MHz, CDCl₃)

37 ¹³C NMR (126 MHz, CDCl₃)

38 ¹⁹F NMR (471 MHz, CDCl₃)

39 ¹³C NMR (126 MHz, CDCl₃)

40 ¹⁹F NMR (471 MHz, CDCl₃)

80.78 80.78 80.78 80.78 80.78 80.81 80.81 80.83

44 ¹⁹F NMR (471 MHz, CDCl₃)

20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 f1 (ppm)

163.24 155.00 155.00 155.00 155.00 155.00 155.00 155.00 155.00 155.00 155.00 155.00 155.00 155.00 130.28 130.28 130.28 130.28 130.28 130.28 130.28 130.28 130.28 130.28 112.28 115.97 1115.97 1114.18 76.79 76.74 76.75 76.75 76.74 38.25 38.00 37.76

50 ¹⁹F NMR (471 MHz, CDCl₃)

51 ¹³C NMR (126 MHz, CDCl₃)

54 ¹⁹F NMR (471 MHz, CDCl₃)

57 ¹³C NMR (126 MHz, CDCl₃)

58 ¹⁹F NMR (471 MHz, CDCl₃)

-81.08 -81.08 -81.10 -81.10 -81.11 -81.11 -81.12 -116.65 -116.65 -116.65 -116.65 -122.33 -122.33 -122.33 -122.33 -122.33 -126.03 -126.01

-190.74 -171.39 -171.39 -171.39 -171.32 -154.65 -154.65 -154.62 -154.62 -154.62 -154.65 -154.55 -154.65 -154.55 -154.65 -154.5

66 ¹³C NMR (126 MHz, CDCl₃)

68 ¹³C NMR (126 MHz, CDCl₃)

69 ¹⁹F NMR (471 MHz, CDCl₃)

70 ¹³C NMR (126 MHz, CDCl₃)

0 8 0	63	66	69	30	31	33	8	03	0
	16	16	16	22	22	22	26	26	26
	T	T	E	E	-	5	T	Ξ	7

71 ¹⁹F NMR (471 MHz, CDCl₃)

72 ¹³C NMR (126 MHz, CDCl₃)

74 ¹³C NMR (126 MHz, CDCl₃)

75 ¹⁹F NMR (471 MHz, CDCl₃)

