# **Supporting Information**

# Electrochemically driven $\alpha$ -thiocarbamylation via a dehydrocoupling strategy of $\beta$ -ketoesters with amines and

## CS2

Qian Wang,<sup>a</sup> Xiu-Jin Meng,<sup>b</sup> Hai-Tao Tang,<sup>b</sup> Ying-Ming Pan,<sup>\*b</sup> Wen-Gui Duan<sup>\*a</sup> and Mu-Xue He<sup>\*c</sup>

<sup>a</sup>School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China.
\*E-mail: wgduan@gxu.edu.cn
<sup>b</sup>State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People's Republic of China.
\*E-mail: panym@mailbox.gxnu.edu.cn
<sup>c</sup>Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health of Guilin Medical University, Guilin 541199, People's Republic of China.
\*E-mail: hemuxue@126.com

# **Table of Contents**

| 1. General Information                                                   | S2  |
|--------------------------------------------------------------------------|-----|
| 2. Additional Optimization of Reaction Conditions                        | S3  |
| 3. Procedures for the Electrolysis                                       | S4  |
| 4. Cyclic Voltammetry Studies                                            | S5  |
| 5. The X-ray Crystal Structure of 3a                                     | S6  |
| 6. Characterization Data for the Electrolysis Products                   |     |
| 7. Copies of <sup>1</sup> H NMR and <sup>13</sup> C NMR for the Products | S20 |

#### **1. General Information**

Without special instructions, all reagents and solvents were commercially available and were not further purified. Column chromatography was carried out using silica gel (300-400 mesh). NMR spectroscopy was performed on Bruker AV-400 or Bruker AV-600 instruments. Chemical shifts for <sup>1</sup>H NMR spectra are reported as  $\delta$  in units of parts per million (ppm) downfield from TMS ( $\delta$  0.00) and relative to the signal of chloroform-*d* ( $\delta$  7.26, singlet). The abbreviations used to explain the multiplicities were as follows: s, singlet; d, doublet; t, triplet; m, multiplet; brs, broad singlet and J, coupling constant in Hz. <sup>13</sup>C NMR spectra are reported as  $\delta$  in units of parts per million (ppm) downfield from TMS ( $\delta$  0.00) and relative to the signal of chloroform-d ( $\delta$  77.00, triplet). The HRMS spectrum was measured by micromass QTOF2 Quadrupole/Time of Flight Tandem mass spectrometer with electron spray ionization. Cyclic voltammograms were recorded on a CHI 660E potentiostat.

# 2. Additional Optimization of Reaction Conditions

Table S1. Optimization of reaction conditions.<sup>a</sup>

|       | $c_{1}$ + $c_{S_{2}}$ + $c_{S_{2}}$ + $c_{S_{2}}$ + $c_{S_{2}}$ + $c_{S_{2}}$ | Electrolyte, Base<br>CH <sub>3</sub> CN, I = 15 mA, r.t. | $S = S + H_2$<br>$S = S + H_2$<br>3a |
|-------|-------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------|
| Entry | Base                                                                          | Electrolyte                                              | Yield $(\%)^b$                       |
| 1     | _                                                                             | <sup>n</sup> Bu <sub>4</sub> NBF <sub>4</sub>            | 0                                    |
| 2     | EtONa (2 eq.)                                                                 | <sup>n</sup> Bu <sub>4</sub> NBF <sub>4</sub>            | 59                                   |
| 3     | $Cs_2CO_3$ (2 eq.)                                                            | <sup>n</sup> Bu <sub>4</sub> NBF <sub>4</sub>            | 52                                   |
| 4     | CsF (2 eq.)                                                                   | <sup>n</sup> Bu <sub>4</sub> NBF <sub>4</sub>            | 56                                   |
| 5     | $K_2CO_3$ (2 eq.)                                                             | <sup>n</sup> Bu <sub>4</sub> NBF <sub>4</sub>            | 50                                   |
| 6     | DBU (2 eq.)                                                                   | <sup>n</sup> Bu <sub>4</sub> NBF <sub>4</sub>            | 57                                   |
| 7     | <sup>t</sup> BuOK (2 eq.)                                                     | <sup>n</sup> Bu <sub>4</sub> NBF <sub>4</sub>            | 48                                   |
| 8     | DABCO (2 eq.)                                                                 | <sup>n</sup> Bu <sub>4</sub> NBF <sub>4</sub>            | 0                                    |
| 9     | NaO'Bu (1 eq.)                                                                | <sup>n</sup> Bu <sub>4</sub> NBF <sub>4</sub>            | 63                                   |
| 10    | NaO'Bu (3 eq.)                                                                | <sup>n</sup> Bu <sub>4</sub> NBF <sub>4</sub>            | 61                                   |
| 11    | NaO'Bu                                                                        | <sup>n</sup> Bu <sub>4</sub> NI                          | 54                                   |
| 12    | NaO'Bu                                                                        | <sup>n</sup> Bu <sub>4</sub> NPF <sub>6</sub>            | 60                                   |
| 13    | NaO'Bu                                                                        | $Et_4NBF_4$                                              | 61                                   |
| 14    | NaO'Bu                                                                        | Et <sub>4</sub> NPF <sub>6</sub>                         | 60                                   |

<sup>*a*</sup>Reaction conditions: graphite rod anode ( $\Phi$  6 mm), Pt cathode (1 cm × 1 cm), undivided cell, constant current = 15 mA, **1a** (0.3 mmol, 1.0 equiv), CS<sub>2</sub> (0.36 mmol, 1.2 equiv), **2a** (0.3 mmol, 1.0 equiv), electrolyte (0.3 mmol, 1.0 equiv), base (0.3 mmol, 1.0 equiv), and CH<sub>3</sub>CN (8 mL) under air at room temperature for 1 h. <sup>*b*</sup>Isolated yield.

#### 3. Procedures for the Electrolysis



A 10 mL three-necked round-bottomed flask was charged with CS<sub>2</sub> (0.36 mmol, 1.2 equiv), amines (0.3 mmol, 1.0 equiv), <sup>*n*</sup>Bu<sub>4</sub>NBF<sub>4</sub> (0.3 mmol, 1.0 equiv), NaO'Bu (0.3 mmol, 1.0 equiv) and CH<sub>3</sub>CN (8 mL). The flask was equipped with a reticulated vitreous carbon (RVC) anode (100 PPI, 1 cm × 1 cm × 1.2 cm) and a platinum plate (1 cm x 1 cm) cathode,  $\beta$ -ketoesters (0.3 mmol, 1.0 equiv) were added, the distance between the two electrodes was 2.8 cm. Electrolysis was carried out at room temperature under air atmosphere, which using a constant current of 15 mA until the substrate was completely consumed (monitored by TLC, about 1 hour). After the reaction was completed, the solvent was concentrated under reduced pressure. Purification with silica gel column chromatography using petroleum ether/ethyl acetate to afford the desired products.



A single-chamber electrolytic cell was charged with pyrrolidine 2a (10 mmol, 0.71 g), CS<sub>2</sub> (12 mmol, 0.91 g), "Bu<sub>4</sub>NBF<sub>4</sub> (10 mmol, 3.29 g), NaO'Bu (10 mmol, 0.96 g) and CH<sub>3</sub>CN (0.04 M). The flask was equipped with a reticulated vitreous carbon (RVC) anode (100 PPI, 3 cm x 3 cm x 1.5 cm) and a platinum plate (3 cm x 3 cm x 0.1 cm) cathode, ethyl 3-oxo-3-phenylpropanoate 1a (10 mmol, 1.92 g) were added. Electrolysis was carried out at room temperature under air atmosphere, which using a constant current of 150 mA until the substrate was completely consumed (monitored by TLC, about 4 hour). After the reaction was completed, the solvent was concentrated under reduced pressure. Purification with silica gel column chromatography using petroleum ether/ethyl acetate to afford the desired product 3a. The yield of 3a was 88% (2.97 g).

### 4. Cyclic Voltammetry Studies

The cyclic voltammograms were recorded in an electrolyte solution of 0.1 M <sup>*n*</sup>Bu<sub>4</sub>NBF<sub>4</sub>, 10 mM NaO'Bu in CH<sub>3</sub>CN (10 mL) using a glassy carbon disk working electrode (diameter, 3 mm), a Pt wire auxiliary electrode and a Ag/AgCl reference electrode. The scan rate was 100 mV/s.



Figure S1. Cyclic voltammogram of reactants, A: background; B:  $CS_2$  (10 mM),  $E_{p/2} = 0.81$  V; C: **2a** (10 mM),  $E_{p/2} = 0.86$  V; D:  $CS_2$  (10 mM) and **2a** (10 mM),  $E_{p/2} = 0.93$  V, which showed that a reaction occurred when the  $CS_2$  and **2a** were mixed.



Figure S2. Cyclic voltammogram of sodium pyrrolidine-1-carbodithioate (10 mM).  $E_{p/2} = 0.60$  V.

# 5. The X-ray Crystal Structure of 3a

| 3:                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       | 2219892                                                                                                                                                                                                                                                              |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Bond precision: C-C =                                                                                                                                                   | 0.0042 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Wavelength =                          | = 1.54184                                                                                                                                                                                                                                                            |  |
| Cell: a =<br>Alp<br>Temperature: 295                                                                                                                                    | 11.6432 (2)<br>ha = 90<br>K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | b = 16.4149 (2)<br>beta = 113.866 (2) | c = 9.6857 (2)<br>gamma = 90                                                                                                                                                                                                                                         |  |
| Volume<br>Space group<br>Hall group<br>Moiety formula<br>Sum formula<br>Mr<br>Dx,g cm-3<br>Z<br>Mu (mm-1)<br>F000<br>F000'<br>h, k, lmax<br>Nref<br>Tmin, Tmax<br>Tmin' | Calculated<br>1692.87 (6)<br>P 21/c<br>-P 2ybc<br>C <sub>16</sub> H <sub>19</sub> NO <sub>3</sub> S<br>C <sub>17</sub> S<br>C | 2 2                                   | Reported<br>1692.87 (6)<br>P 1 21/c 1<br>-P 2ybc<br>C <sub>16</sub> H <sub>19</sub> NO <sub>3</sub> S <sub>2</sub><br>C <sub>16</sub> H <sub>19</sub> NO <sub>3</sub> S <sub>2</sub><br>337.44<br>1.324<br>4<br>2.948<br>712.0<br>14, 20, 11<br>3473<br>0.342, 1.000 |  |
| Correction method = # Reported T Limits: Tmin = 0.342 Tmax = 1.000<br>AbsCorr = MULTI-SCAN                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |                                                                                                                                                                                                                                                                      |  |
| Data completeness = $0.990$ Theta(max) = $75.424$ R(reflections) = $0.0618(3274)$ wR2(reflections) = $0.1736(3473)$                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 424<br>= 0.1736 (3473)                |                                                                                                                                                                                                                                                                      |  |
| S = 0.911                                                                                                                                                               | Npar = 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (                                     |                                                                                                                                                                                                                                                                      |  |

| Empirical formula                        | C <sub>16</sub> H <sub>19</sub> NO <sub>3</sub> S <sub>2</sub> |
|------------------------------------------|----------------------------------------------------------------|
| Formula weight                           | 337.44                                                         |
| Temperature/K                            | 294.5(3)                                                       |
| Crystal system                           | monoclinic                                                     |
| Space group                              | P2 <sub>1</sub> /c                                             |
| a/Å                                      | 11.6432(2)                                                     |
| b/Å                                      | 16.4149(2)                                                     |
| c/Å                                      | 9.6857(2)                                                      |
| $\alpha/^{\circ}$                        | 90                                                             |
| β/°                                      | 113.866(2)                                                     |
| γ/°                                      | 90                                                             |
| Volume/Å <sup>3</sup>                    | 1692.87(6)                                                     |
| Ζ                                        | 4                                                              |
| $\rho_{calcg}/cm^3$                      | 1.324                                                          |
| µ/mm <sup>-1</sup>                       | 2.948                                                          |
| F(000)                                   | 712                                                            |
| Crystal size/mm <sup>3</sup>             | 0.1	imes 0.1	imes 0.05                                         |
| Radiation                                | Cu Ka ( $\lambda = 1.54184$ )                                  |
| $2^{\Theta}$ range for data collection/° | 8.304 to 150.848                                               |
| Index ranges                             | $-14 \le h \le 14,  -20 \le k \le 20,  -9 \le l \le 11$        |
| Reflections collected                    | 21971                                                          |
| Independent reflections                  | 3473 [ $R_{int} = 0.0979, R_{sigma} = 0.0382$ ]                |
| Data/restraints/parameters               | 3473/0/200                                                     |
| Goodness-of-fit on F <sup>2</sup>        | 0.911                                                          |
| Final R indexes [I>=2 <sup>o</sup> (I)]  | $R_1 = 0.0618, wR_2 = 0.1713$                                  |
| Final R indexes [all data]               | $R_1 = 0.0636, wR_2 = 0.1736$                                  |
| Largest diff. peak/hole / e Å-3          | 0.58/-0.46                                                     |

Table S2 Crystal data and structure refinement for 3a.

**Crystal Data** for C<sub>16</sub>H<sub>19</sub>NO<sub>3</sub>S<sub>2</sub> (*M*=337.44 g/mol): monoclinic, space group P2<sub>1</sub>/c (no.14), *a* = 11.6432(2) Å, *b* = 16.4149(2) Å, *c* = 9.6857(2) Å, *β* = 113.866(2)°, *V* = 1692.87(6) Å<sup>3</sup>, *Z* = 4, *T* = 294.5(3) K,  $\mu$ (MoK $\alpha$ ) = 2.948 mm<sup>-1</sup>, *Dcalc* = 1.324 g/cm<sup>3</sup>, 21971 reflections measured (8.304° ≤ 2 $\Theta$  ≤ 150.848°), 3473 unique ( $R_{int}$  = 0.0979,  $R_{sigma}$  = 0.0382) which were used in all calculations. The final  $R_1$  was 0.0618 (I > 2 $\sigma$ (I)) and  $wR_2$  was 0.1736 (all data).

#### 6. Characterization Data for the Electrolysis Products



**Ethyl 3-oxo-3-phenyl-2-((pyrrolidine-1-carbonothioyl)thio)propanoate (3a).** Brown solid (90%, 91.1 mg). mp: 97-99 °C. Petroleum ether/ethyl acetate = 20/1-5/1 (v/v) as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz, Chloroform-*d*) δ 8.09 - 8.06 (m, 2H), 7.60 - 7.56 (m, 1H), 7.48 - 7.44 (m, 2H), 6.88 (s, 1H), 4.21 (q, *J* = 7.1 Hz, 2H), 3.91 - 3.87 (m, 2H), 3.75 - 3.61 (m, 2H), 2.08 - 1.94 (m, 4H), 1.20 (t, *J* = 7.2 Hz, 3H). <sup>13</sup>C NMR (100 MHz, Chloroform-*d*) δ 191.2, 188.7, 166.8, 134.9, 134.0, 129.3, 128.8, 62.7, 60.7, 56.0, 50.8, 26.1, 24.3, 14.0. HRMS (*m/z*) (ESI): calcd for C<sub>16</sub>H<sub>19</sub>NO<sub>3</sub>S<sub>2</sub>Na<sup>+</sup> [M+Na]<sup>+</sup>: 360.0699, found 360.0693.



**Ethyl 3-oxo-2-((pyrrolidine-1-carbonothioyl)thio)-3-(***p***-tolyl)propanoate (3b). Yellow oil (78%, 82.2 mg). Petroleum ether/ethyl acetate = 20/1-5/1 (v/v) as eluent for column chromatography. <sup>1</sup>H <b>NMR** (400 MHz, Chloroform-*d*) δ 7.97 - 7.93 (m, 2H), 7.23 (d, *J* = 8.1 Hz, 2H), 6.82 (s, 1H), 4.19 (q, *J* = 7.1 Hz, 2H), 3.88 - 3.84 (m, 2H), 3.72 - 3.56 (m, 2H), 2.36 (s, 3H), 2.06 - 1.91 (m, 4H), 1.18 (t, *J* = 7.1 Hz, 3H). <sup>13</sup>C **NMR** (100 MHz, Chloroform-*d*) δ 190.7, 188.7, 166.9, 145.2, 132.4, 129.5, 129.4, 62.6, 60.6, 56.0, 50.8, 26.1, 24.3, 21.8, 14.0. **HRMS** (*m*/*z*) (ESI): calcd for C<sub>17</sub>H<sub>21</sub>NO<sub>3</sub>S<sub>2</sub>Na<sup>+</sup> [M+Na]<sup>+</sup>: 374.0855, found 374.0854.



Ethyl 3-(4-methoxyphenyl)-3-oxo-2-((pyrrolidine-1-carbonothioyl)thio)propanoate (3c). Yellow oil (85%, 93.7 mg). Petroleum ether/ethyl acetate = 20/1-5/1 (v/v) as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz, Chloroform-*d*) δ 8.49- 8.46 (m, 2H), 7.36 - 7.33 (m, 2H), 7.22 (s, 1H), 4.62 (q, J = 7.1 Hz, 2H), 4.30 (t, J = 7.1 Hz, 2H), 4.25 (s, 3H), 4.17 - 4.12 (m, 1H), 4.06 - 4.00 (m, 1H), 2.49 - 2.43 (m, 2H), 2.40 - 2.35 (m, 2H), 1.62 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (100 MHz, Chloroform-*d*) δ 189.6, 188.9, 167.0, 164.3, 131.8, 127.7, 114.0, 62.6, 60.5, 55.9, 55.6,

50.8, 26.1, 24.3, 14.0. **HRMS** (m/z) (ESI): calcd for C<sub>17</sub>H<sub>21</sub>NO<sub>4</sub>S<sub>2</sub>Na<sup>+</sup> [M+Na]<sup>+</sup>: 390.0804, found 390.0804.



**Ethyl 3-(4-bromophenyl)-3-oxo-2-((pyrrolidine-1-carbonothioyl)thio)propanoate (3d).** Yellow oil (70%, 87.4 mg). Petroleum ether/ethyl acetate = 20/1-5/1 (v/v) as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz, Chloroform-*d*) δ 7.98 - 7.95 (m, 2H), 7.64 - 7.60 (m, 2H), 6.86 (s, 1H), 4.23 (q, J = 7.1 Hz, 2H), 3.93 - 3.89 (m, 2H), 3.79 - 3.73 (m, 1H), 3.70 - 3.64 (m, 1H), 2.11 - 2.06 (m, 2H), 2.02 - 1.97 (m, 2H), 1.23 (t, J = 7.1 Hz, 3H). <sup>13</sup>C NMR (100 MHz, Chloroform-*d*) δ 190.5, 188.5, 166.5, 133.8, 132.1, 130.8, 129.4, 62.8, 60.7, 56.1, 50.8, 26.2, 24.3, 14.0. HRMS (m/z) (ESI): calcd for C<sub>16</sub>H<sub>18</sub>BrNO<sub>3</sub>S<sub>2</sub>Na<sup>+</sup>[M+Na]<sup>+</sup>: 437.9804, found 437.9805.



Ethyl 3-oxo-2-((pyrrolidine-1-carbonothioyl)thio)-3-(4-(trifluoromethyl)phenyl)propanoate (3e). Yellow oil (52%, 63.2 mg). mp: 123-125 °C. Petroleum ether/ethyl acetate = 20/1-5/1 (v/v) as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  8.22 - 8.18 (m, 2H), 7.76 - 7.72 (m, 2H), 6.93 (s, 1H), 4.25 (q, J = 7.1 Hz, 2H), 3.95 - 3.87 (m, 2H), 3.78 - 3.65 (m, 2H), 2.13 - 2.07 (m, 2H), 2.03 - 1.97 (m, 2H), 1.25 - 1.22 (m, 3H). <sup>13</sup>C NMR (100 MHz, Chloroform-*d*)  $\delta$  190.6, 188.3, 166.3, 137.9, 135.1, 134.8, 129.6, 125.8 (q, J = 3.7 Hz), 122.2, 62.9, 60.8, 56.1, 50.8, 26.2, 24.3, 14.0. HRMS (*m/z*) (ESI): calcd for C<sub>17</sub>H<sub>18</sub>F<sub>3</sub>NO<sub>3</sub>S<sub>2</sub>Na<sup>+</sup> [M+Na]<sup>+</sup>: 428.0572, found 428.0570.



Ethyl 3-oxo-2-((pyrrolidine-1-carbonothioyl)thio)-3-(thiophen-2-yl)propanoate (3f). Colorless oil (60%, 61.8 mg). Petroleum ether/ethyl acetate = 20/1-5/1 (v/v) as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  8.03 (dd, J = 3.9, 1.2 Hz, 1H), 7.70 (dd, J

= 4.9, 1.2 Hz, 1H), 7.12 (dd, J = 5.0, 3.9 Hz, 1H), 6.75 (s, 1H), 4.20 (q, J = 7.1 Hz, 2H), 3.86 (t, J = 7.0 Hz, 2H), 3.75 - 3.59 (m, 2H), 2.06 - 1.92 (m, 4H), 1.20 (t, J = 7.1 Hz, 3H). <sup>13</sup>**C NMR** (100 MHz, Chloroform-*d*)  $\delta$  188.6, 183.7, 166.4, 142.0, 135.9, 134.6, 128.6, 62.8, 61.4, 56.1, 50.8, 26.1, 24.3, 14.0. **HRMS** (*m*/*z*) (ESI): calcd for C<sub>14</sub>H<sub>17</sub>NO<sub>3</sub>S<sub>3</sub>Na<sup>+</sup> [M+Na]<sup>+</sup>: 366.0263, found 366.0259.



**Methyl 3-oxo-3-phenyl-2-((pyrrolidine-1-carbonothioyl)thio)propanoate (3g).** Yellow oil (78%, 75.7 mg). Petroleum ether/ethyl acetate = 20/1-5/1 (v/v) as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  8.08 - 8.05 (m, 2H), 7.60 - 7.56 (m, 1H), 7.48 - 7.44 (m, 2H), 6.91 (s, 1H), 3.93 - 3.88 (m, 2H), 3.76 - 3.70 (m, 4H), 3.65 - 3.58 (m, 1H), 2.06 - 1.93 (m, 4H). <sup>13</sup>C NMR (100 MHz, Chloroform-*d*)  $\delta$  191.2, 188.5, 167.4, 134.8, 134.2, 129.3, 128.8, 60.4, 56.1, 53.5, 50.8, 26.1, 24.3. HRMS (*m*/*z*) (ESI): calcd for C<sub>15</sub>H<sub>18</sub>NO<sub>3</sub>S<sub>2</sub><sup>+</sup> [M+H]<sup>+</sup>: 324.0723, found 324.0724.



Ethyl (*E*)-3-hydroxy-2-((pyrrolidine-1-carbonothioyl)thio)but-2-enoate (3h). Yellow oil (60%, 49.6 mg). Petroleum ether/ethyl acetate = 20/1-5/1 (v/v) as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  14.07 (s, 0.6H), 4.27 - 4.20 (m, 2H), 3.91 - 3.87 (m, 2H), 3.76 - 3.70 (m, 2H), 2.42 (s, 1H), 2.19 (s, 2H), 2.14 - 2.07 (m, 2H), 2.02 - 1.94 (m, 2H), 1.30 - 1.24 (m, 3H). <sup>13</sup>C NMR (100 MHz, Chloroform-*d*)  $\delta$  198.8, 186.0, 172.5, 93.8, 64.6, 61.6, 55.4, 50.5, 26.3, 24.3, 14.2. HRMS (*m/z*) (ESI): calcd for C<sub>11</sub>H<sub>18</sub>NO<sub>3</sub>S<sub>2</sub><sup>+</sup> [M+H]<sup>+</sup>: 276.0723, found 276.0724.



Ethyl 3-oxo-2-((pyrrolidine-1-carbonothioyl)thio)hexanoate (3i). Yellow oil (55%, 50.1 mg). Petroleum ether/ethyl acetate = 20/1-5/1 (v/v) as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  5.99 (s, 0.5H), 4.23 - 4.17 (m, 2H), 3.86 (t, *J* = 7.0 Hz, 2H), 3.74 - 3.68

(m, 2H), 2.77 - 2.63 (m, 1H), 2.54 - 2.42 (m, 1H), 2.12 - 2.04 (m, 2H), 1.99 - 1.92 (m, 2H), 1.67 - 1.56 (m, 2H), 1.27 - 1.21 (m, 3H), 0.92 - 0.87 (m, 3H). <sup>13</sup>**C NMR** (100 MHz, Chloroform-*d*)  $\delta$  192.9, 188.3, 166.3, 64.0, 61.6, 55.9, 50.8, 35.7, 26.2, 24.3, 17.2, 14.0, 13.5. **HRMS** (*m/z*) (ESI): calcd for C<sub>13</sub>H<sub>22</sub>NO<sub>3</sub>S<sub>2</sub><sup>+</sup> [M+H]<sup>+</sup>: 304.1036, found 304.1035.



**Diethyl 2-((pyrrolidine-1-carbonothioyl)thio)malonate (3j).** Yellow oil (57%, 52.2 mg). Petroleum ether/ethyl acetate = 20/1-5/1 (v/v) as eluent for column chromatography. <sup>1</sup>H NMR (600 MHz, Chloroform-*d*)  $\delta$  5.87 (d, J = 4.3 Hz, 1H), 4.25 - 4.21 (m, 4H), 3.88 - 3.86 (m, 2H), 3.70 - 3.67 (m, 2H), 2.09 - 2.05 (m, 2H), 1.98 - 1.93 (m, 2H), 1.28 - 1.25 (m, 6H). <sup>13</sup>C NMR (150 MHz, Chloroform-*d*)  $\delta$  188.7, 166.1, 62.7, 58.0, 55.8, 50.7, 26.2, 24.3, 14.0. HRMS (*m/z*) (ESI): calcd for C<sub>12</sub>H<sub>19</sub>NO<sub>4</sub>S<sub>2</sub>Na<sup>+</sup> [M+Na]<sup>+</sup>: 328.0648, found 328.0647.



(*E*)-2-hydroxy-4-oxopent-2-en-3-yl pyrrolidine-1-carbodithioate (3k). Brown solid (47%, 34.6 mg). mp: 116-118 °C. Petroleum ether/ethyl acetate = 20/1-5/1 (v/v) as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  3.90 (t, *J* = 7.0 Hz, 2H), 3.76 (t, *J* = 6.9 Hz, 2H), 2.22 (s, 6H), 2.16 - 2.09 (m, 2H), 2.03 - 1.96 (m, 2H). <sup>13</sup>C NMR (100 MHz, Chloroform-*d*)  $\delta$  198.4, 192.1, 103.6, 55.7, 50.7, 26.3, 24.3. HRMS (*m*/*z*) (ESI): calcd for C<sub>10</sub>H<sub>16</sub>NO<sub>2</sub>S<sub>2</sub><sup>+</sup> [M+H]<sup>+</sup>: 246.0617, found 246.0616.



(*E*)-1-hydroxy-3-oxo-1-phenylbut-1-en-2-yl pyrrolidine-1-carbodithioate (3l). Yellow oil (50%, 46.1 mg). Petroleum ether/ethyl acetate = 20/1-5/1 (v/v) as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  8.04 - 8.01 (m, 0.7H), 7.60 - 7.54 (m, 2H), 7.50 - 7.39 (m, 2H), 3.80 - 3.57 (m, 4H), 2.33 (d, J = 16.9 Hz, 3H), 2.05 - 1.86 (m, 4H). <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ )  $\delta$  200.3, 192.9, 187.6, 135.5, 134.7, 129.6, 128.2, 67.0, 56.0, 51.1, 29.6, 26.2, 24.2. HRMS (m/z) (ESI): calcd for C<sub>15</sub>H<sub>18</sub>NO<sub>2</sub>S<sub>2</sub><sup>+</sup> [M+H]<sup>+</sup>: 308.0774, found 308.0767.



**1-(Dimethylamino)-1,3-dioxobutan-2-yl pyrrolidine-1-carbodithioate (3m).** Colorless oil (53%, 43.6 mg). Petroleum ether/ethyl acetate = 20/1-5/1 (v/v) as eluent for column chromatography. <sup>1</sup>H **NMR** (400 MHz, Chloroform-*d*) δ 6.19 (s, 1H), 3.87 - 3.84 (m, 2H), 3.75 - 3.65 (m, 2H), 3.12 (s, 3H), 2.95 (s, 3H), 2.30 (s, 3H), 2.09 - 2.04 (m, 2H), 1.99 - 1.92 (m, 2H). <sup>13</sup>C **NMR** (100 MHz, Chloroform-*d*) δ 199.9, 189.5, 166.2, 63.4, 56.0, 50.9, 38.3, 36.1, 28.2, 26.1, 24.3. **HRMS** (*m/z*) (ESI): calcd for C<sub>11</sub>H<sub>18</sub>N<sub>2</sub>O<sub>2</sub>S<sub>2</sub>Na<sup>+</sup> [M+Na]<sup>+</sup>: 297.0702, found 297.0700.



**2-Oxo-1,2-diphenylethyl pyrrolidine-1-carbodithioate (3n)**. Yellow solid (58%, 59.4 mg). mp: 151-153 °C.Petroleum ether/ethyl acetate = 20/1-5/1 (v/v) as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  8.09 (d, *J* = 7.7 Hz, 2H), 7.51 - 7.48 (m, 3H), 7.42 - 7.39 (m, 2H), 7.33 - 7.24 (m, 3H), 7.05 (s, 1H), 3.91 - 3.81 (m, 2H), 3.76 - 3.70 (m, 1H), 3.63 - 3.57 (m, 1H), 2.06 - 2.00 (m, 2H), 1.96 - 1.90 (m, 2H). <sup>13</sup>C NMR (100 MHz, Chloroform-*d*)  $\delta$  194.7, 190.7, 136.2, 134.3, 133.2, 129.4, 129.2, 129.2, 128.7, 128.5, 61.5, 55.2, 50.8, 26.3, 24.4. HRMS (m/z) (ESI): calcd for C<sub>19</sub>H<sub>20</sub>NOS<sub>2</sub><sup>+</sup> [M+H]<sup>+</sup>: 342.0980, found 342.0985.



**2-Oxo-2-phenyl-1-(phenylsulfonyl)ethyl pyrrolidine-1-carbodithioate (30).** Yellow oil (52%, 63.3 mg). Petroleum ether/ethyl acetate = 20/1-5/1 (v/v) as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  8.08 - 8.06 (m, 2H), 7.96 (s, 1H), 7.93 - 7.91 (m, 2H), 7.63 - 7.56 (m, 2H), 7.50 - 7.42 (m, 4H), 3.89 - 3.82 (m, 2H), 3.78 - 3.64 (m, 2H), 2.12 - 1.94 (m, 4H). <sup>13</sup>C NMR (100 MHz, Chloroform-*d*)  $\delta$  189.5, 187.0, 137.2, 135.5, 134.4, 130.0, 129.7, 128.8, 76.3, 56.5, 50.9, 26.1, 24.2. HRMS (*m/z*) (ESI): calcd for C<sub>19</sub>H<sub>19</sub>NO<sub>3</sub>S<sub>3</sub>Na<sup>+</sup> [M+Na]<sup>+</sup>: 428.0419, found 428.0417.



**2-Oxoindolin-3-yl pyrrolidine-1-carbodithioate (3p)**. Yellow oil (48%, 40.1 mg). Petroleum ether/ethyl acetate = 20/1-5/1 (v/v) as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  8.89 (s, 1H), 7.36 (d, *J* = 7.5 Hz, 1H), 7.25 - 7.21 (m, 1H), 7.04 - 7.00 (m, 1H), 6.92 (d, *J* = 7.8 Hz, 1H), 6.55 (s, 1H), 4.03 - 4.00 (m, 2H), 3.81 - 3.69 (m, 2H), 2.14 - 2.10 (m, 2H), 2.06 - 2.01 (m, 2H). <sup>13</sup>C NMR (100 MHz, Chloroform-*d*)  $\delta$  190.2, 176.3, 141.0, 128.9, 127.2, 125.0, 122.9, 110.2, 56.5, 52.0, 50.8, 26.2, 24.4. HRMS (m/z) (ESI): calcd for C<sub>13</sub>H<sub>14</sub>N<sub>2</sub>OS<sub>2</sub>Na<sup>+</sup> [M+Na]<sup>+</sup>: 301.0440, found 301.0443.



**Cyano(phenylsulfonyl)methyl pyrrolidine-1-carbodithioate (3q)**. Yellow solid (49%, 48.0 mg). mp: 124-126 °C. Petroleum ether/ethyl acetate = 20/1-5/1 (v/v) as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  8.08 - 8.06 (m, 2H), 7.80 - 7.76 (m, 1H), 7.67 - 7.63 (m, 2H), 7.43 (s, 1H), 3.95 - 3.92 (m, 2H), 3.80 - 3.69 (m, 2H), 2.17 - 2.12 (m, 2H), 2.07 - 2.02 (m, 2H). <sup>13</sup>C NMR (100 MHz, Chloroform-*d*)  $\delta$  184.2, 135.6, 135.5, 129.9, 129.7, 112.4, 61.8, 57.4, 51.0, 26.1, 24.2. HRMS (m/z) (ESI): calcd for C<sub>13</sub>H<sub>15</sub>N<sub>2</sub>O<sub>2</sub>S<sub>3</sub><sup>+</sup> [M+H]<sup>+</sup>: 327.0290, found 327.0293.



*Tert*-butyl 2-((((*E*)-3-hydroxy-1-(((1*R*,2*S*,5*R*)-2-isopropyl-5-methylcyclohexyl)oxy)-1-oxobut-2-en-2-yl)thio)carbonothioyl)-2,7-diazaspiro[3.5]nonane-7-carboxylate (3r). Yellow oil (35%, 56.8 mg). Petroleum ether/ethyl acetate = 20/1-5/1 (v/v) as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  14.16 (s, 0.5H), 4.78 - 4.67 (m, 1H), 4.01 - 3.94 (m, 3H), 3.47 -

3.32 (m, 4H), 2.42 (s, 1H), 2.20 (s, 2H), 2.07 - 1.99 (m, 1H), 1.92 - 1.85 (m, 1H), 1.80 - 1.74 (m, 4H), 1.70 - 1.60 (m, 3H), 1.45 (d, J = 2.1 Hz, 9H), 1.25 (s, 2H), 1.07 - 0.95 (m, 2H), 0.91 - 0.84 (m, 7H), 0.75 - 0.71 (m, 3H). <sup>13</sup>**C NMR** (100 MHz, Chloroform-*d*)  $\delta$  200.6, 166.7, 90.0, 75.4, 50.5, 46.8, 40.7, 34.1, 31.4, 30.0, 26.1, 23.2, 21.9, 20.7, 20.7, 16.1. **HRMS** (*m*/*z*) (ESI): calcd for C<sub>27</sub>H<sub>45</sub>N<sub>2</sub>O<sub>5</sub>S<sub>2</sub><sup>+</sup> [M+H]<sup>+</sup>: 541.2764, found 541.2763.



*Tert*-butyl (*E*)-2-(((1-(adamantan-1-yloxy)-3-hydroxy-1-oxobut-2-en-2-yl)thio)carbonothioyl) -2,7-diazaspiro[3.5]nonane-7-carboxylate (3s). Yellow oil (41%, 66.0 mg). Petroleum ether/ethyl acetate = 20/1-5/1 (v/v) as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  14.15 (s, 0.5H), 3.99 - 3.95 (m, 4H), 3.46 - 3.30 (m, 4H), 2.42 (s, 1H), 2.17 - 2.10 (m, 11H), 1.77 - 1.72 (m, 4H), 1.64 (s, 6H), 1.44 (d, *J* = 2.1 Hz, 9H). <sup>13</sup>C NMR (100 MHz, Chloroform-*d*)  $\delta$  198.8, 191.9, 171.5, 154.7, 93.2, 84.2, 82.8, 79.9, 65.7, 64.4, 62.8, 41.1, 36.1, 34.5, 30.9, 28.4, 21.1. HRMS (*m/z*) (ESI): calcd for C<sub>27</sub>H<sub>41</sub>N<sub>2</sub>O<sub>5</sub>S<sub>2</sub><sup>+</sup> [M+H]<sup>+</sup>: 537.2451, found 537.2460.



(3*S*,8*R*,9*S*,10*R*,13*S*,14*S*)-10,13-Dimethyl-17-oxo-2,3,4,7,8,9,10,11,12,13,14,15,16,17tetradecahydro-1*H*-cyclopenta[*a*]phenanthren-3-yl (*E*)-3-hydroxy-2-((pyrrolidine-1carbonothioyl)thio)

**but-2-enoate (3t).** Yellow oil (40%, 62.1 mg). Petroleum ether/ethyl acetate = 20/1-5/1 (v/v) as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  14.09 (s, 1H), 5.38 (d, *J* = 5.0 Hz, 1H), 4.71 - 4.60 (m, 1H), 3.94 - 3.85 (m, 2H), 3.75 - 3.69 (m, 2H), 2.46 - 2.16 (m, 6H), 2.12 - 1.78 (m, 10H), 1.67 - 1.40 (m, 6H), 1.30 - 1.22 (m, 2H), 1.15 - 1.07 (m, 1H), 1.03 - 0.96 (m, 4H), 0.85 (d, *J* = 1.9 Hz, 3H). <sup>13</sup>C NMR (100 MHz, Chloroform-*d*)  $\delta$  221.1, 198.8, 192.6, 185.8, 172.0, 139.5, 122.0, 94.0, 76.2, 75.1, 64.9, 55.3, 51.7, 50.9, 50.1, 47.5, 36.8, 35.9, 31.4, 30.8, 29.2, 27.5, 26.3, 24.3, 21.9, 21.0, 20.3, 19.5, 13.5. HRMS (*m*/*z*) (ESI): calcd for C<sub>28</sub>H<sub>39</sub>NO<sub>4</sub>S<sub>2</sub>Na<sup>+</sup> [M+Na]<sup>+</sup>: 540.2213, found 540.2211.



**Ethyl 2-((diethylcarbamothioyl)thio)-3-(4-methoxyphenyl)-3-oxopropanoate (4a).** Yellow oil (68%, 75.4 mg). Petroleum ether/ethyl acetate = 20/1-5/1 (v/v) as eluent for column chromatography. <sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 8.08 (d, J = 8.7 Hz, 2H), 6.95 (d, J = 8.7 Hz, 2H), 6.80 (s, 1H), 4.25 - 4.20 (m, 2H), 4.04 - 3.93 (m, 2H), 3.87 (s, 3H), 3.83 - 3.71 (m, 2H), 1.31 - 1.21 (m, 9H) <sup>13</sup>**C NMR** (100 MHz, Chloroform-*d*) δ 192.0, 189.7, 167.0, 164.3, 131.8, 127.9, 114.0, 62.5, 61.2, 55.6, 50.6, 47.2, 14.0, 12.7, 11.5. **HRMS** (*m/z*) (ESI): calcd for C<sub>17</sub>H<sub>24</sub>NO<sub>4</sub>S<sub>2</sub><sup>+</sup> [M+H]<sup>+</sup>: 370.1141, found 370.1140.



Ethyl 3-(4-methoxyphenyl)-3-oxo-2-((piperidine-1-carbonothioyl)thio)propanoate (4b). Yellow oil (80%, 91.6 mg). Petroleum ether/ethyl acetate = 20/1-5/1 (v/v) as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz, Chloroform-*d*) δ 8.06 (d, J = 8.9 Hz, 2H), 6.93 (d, J = 8.9 Hz, 2H), 6.81 (s, 1H), 4.25 - 4.18 (m, 4H), 3.88 - 3.85 (m, 5H), 1.67 (s, 6H), 1.20 (d, J = 7.1 Hz, 3H). <sup>13</sup>C NMR (100 MHz, Chloroform-*d*) δ 191.8, 189.6, 166.9, 164.3, 131.8, 127.9, 114.0, 62.5, 61.2, 55.6, 24.1, 14.0. HRMS (m/z) (ESI): calcd for C<sub>18</sub>H<sub>23</sub>NO<sub>4</sub>S<sub>2</sub>Na<sup>+</sup> [M+Na]<sup>+</sup>: 404.0961, found 404.0955.



**Ethyl 2-((azepane-1-carbonothioyl)thio)-3-(4-methoxyphenyl)-3-oxopropanoate (4c).** Yellow oil (82%, 97.3 mg). Petroleum ether/ethyl acetate = 20/1-5/1 (v/v) as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz, Chloroform-*d*) δ 8.05 (d, J = 8.9 Hz, 2H), 6.92 (d, J = 8.9 Hz, 2H), 6.79 (s, 1H), 4.20 (q, J = 7.1 Hz, 2H), 4.12 (t, J = 6.1 Hz, 2H), 3.88 (t, J = 6.1 Hz, 2H), 3.83 (s, 3H), 1.87 - 1.78 (m, 4H), 1.56 - 1.52 (m, 4H), 1.21 (d, J = 7.4 Hz, 3H). <sup>13</sup>C NMR (100 MHz, Chloroform-*d*) δ 192.6, 189.7, 167.0, 164.3, 131.8, 127.9, 114.0, 62.5, 61.1, 56.7, 55.6, 53.2, 27.4, 26.6, 26.4, 26.0, 14.0. HRMS (*m/z*) (ESI): calcd for C<sub>19</sub>H<sub>25</sub>NO<sub>4</sub>S<sub>2</sub>Na<sup>+</sup> [M+Na]<sup>+</sup>: 418.1117, found 418.1113.



Ethyl 3-(4-methoxyphenyl)-2-((morpholine-4-carbonothioyl)thio)-3-oxopropanoate (4d). Yellow oil (76%, 87.4 mg). Petroleum ether/ethyl acetate = 20/1-5/1 (v/v) as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz, Chloroform-*d*) δ 8.08 - 8.04 (m, 2H), 6.97 - 6.93 (m, 2H), 6.79 (s, 1H), 4.33 - 3.98 (m, 6H), 3.87 (s, 3H), 3.77 - 3.74 (m, 4H), 1.24 - 1.20 (m, 3H). <sup>13</sup>C NMR (100 MHz, Chloroform-*d*) δ 193.9, 189.2, 166.6, 164.4, 131.8, 127.8, 114.0, 62.7, 60.9, 55.6, 29.7, 14.0. HRMS (*m/z*) (ESI): calcd for C<sub>17</sub>H<sub>21</sub>NO<sub>5</sub>S<sub>2</sub>Na<sup>+</sup> [M+Na]<sup>+</sup>: 406.0753, found 406.0759.



Ethyl 3-(4-methoxyphenyl)-3-oxo-2-((thiomorpholine-4-carbonothioyl)thio)propanoate (4e). Yellow oil (77%, 92.3 mg). Petroleum ether/ethyl acetate = 20/1-5/1 (v/v) as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  8.07 - 8.03 (m, 2H), 6.96 - 6.92 (m, 2H), 6.75 (s, 1H), 4.54 - 4.18 (m, 6H), 3.86 (s, 3H), 2.75 - 2.72 (m, 4H), 1.21 (t, *J* = 7.1 Hz, 3H). <sup>13</sup>C NMR (100 MHz, Chloroform-*d*)  $\delta$  193.2, 189.2, 166.6, 164.4, 131.8, 127.8, 114.0, 62.7, 61.2, 55.6, 14.0. HRMS (*m/z*) (ESI): calcd for C<sub>17</sub>H<sub>21</sub>NO<sub>4</sub>S<sub>3</sub>Na<sup>+</sup> [M+Na]<sup>+</sup>: 422.0525, found 422.0523.



**Ethyl 2-((cyclohexyl(methyl)carbamothioyl)thio)-3-(4-methoxyphenyl)-3-oxopropanoate (4f).** Yellow oil (61%, 74.9 mg). Petroleum ether/ethyl acetate = 20/1–5/1 (v/v) as eluent for column chromatography. <sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 8.06 (d, J = 8.6 Hz, 2H), 6.93 (d, J = 9.1 Hz, 2H), 6.87 (d, J = 7.7 Hz, 1H), 5.38 - 5.31 (m, 0.5H), 4.42 - 4.35 (m, 0.5H), 4.21 (q, J = 7.1 Hz, 2H), 3.85 (s, 3H), 3.37 (s, 1.5H), 3.19 (s, 1.5H), 1.85 - 1.76 (m, 4H), 1.66 (d, J = 13.3 Hz, 1H), 1.54 - 1.47 (m, 1H), 1.42 - 1.34 (m, 3H), 1.21 (t, J = 7.1 Hz, 3H), 1.12 - 1.06 (m, 1H). <sup>13</sup>C **NMR** (100 MHz, Chloroform-*d*) δ 193.3, 192.5, 189.7, 167.0, 164.3, 131.8, 127.9, 114.0, 64.0, 60.8, 55.6, 38.4, 34.2, 30.3, 29.3, 25.4, 25.1, 14.0. **HRMS** (*m/z*) (ESI): calcd for C<sub>20</sub>H<sub>28</sub>NO<sub>4</sub>S<sub>2</sub><sup>+</sup> [M+H]<sup>+</sup>: 410.1454, found 410.1451.



Ethyl 2-((benzyl(methyl)carbamothioyl)thio)-3-(4-methoxyphenyl)-3-oxopropanoate (4g). Yellow oil (60%, 75.2 mg). Petroleum ether/ethyl acetate = 20/1-5/1 (v/v) as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  8.12 - 8.06 (m, 2H), 7.34 - 7.19 (m, 5H), 6.97 - 6.94 (m, 2H), 6.82 (d, J = 14.1 Hz, 1H), 5.36 - 5.27 (m, 1H), 4.99 (s, 1H), 4.27 - 4.20 (m, 2H), 3.85 (s, 3H), 3.42 (s, 1H), 3.28 (s, 2H), 1.23 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (100 MHz, Chloroform-*d*)  $\delta$  195.2, 193.9, 189.4, 166.8, 164.4, 135.1, 134.2, 131.8, 130.7, 129.0, 128.9, 128.3, 128.0, 127.8, 127.3, 114.1, 62.7, 62.0, 60.5, 58.0, 55.7, 44.0, 39.1, 14.1. HRMS (*m/z*) (ESI): calcd for C<sub>21</sub>H<sub>24</sub>NO<sub>4</sub>S<sub>2</sub><sup>+</sup> [M+H]<sup>+</sup>: 418.1141, found 418.1142.



**Ethyl 2-((dibenzylcarbamothioyl)thio)-3-(4-methoxyphenyl)-3-oxopropanoate (4h).** Yellow oil (57%, 84.4 mg). Petroleum ether/ethyl acetate = 20/1-5/1 (v/v) as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz, Chloroform-*d*) δ 8.10 - 8.08 (m, 2H), 7.34 - 7.28 (m, 6H), 7.23 - 7.18 (m, 4H), 6.97 - 6.93 (m, 2H), 6.84 (s, 1H), 5.32 - 5.19 (m, 2H), 4.95 - 4.86 (m, 2H), 4.24 (q, *J* = 7.1 Hz, 2H), 3.87 (s, 3H), 1.24 (s, 3H). <sup>13</sup>C NMR (100 MHz, Chloroform-*d*) δ 196.1, 189.4, 166.7, 164.4, 135.0, 134.0, 131.9, 130.7, 129.0, 128.2, 127.9, 127.4, 114.0, 113.0, 62.7, 62.2, 57.0, 55.6, 54.4, 29.7, 14.1. HRMS (*m/z*) (ESI): calcd for C<sub>27</sub>H<sub>27</sub>NO<sub>4</sub>S<sub>2</sub>Na<sup>+</sup> [M+Na]<sup>+</sup>: 516.1274, found 516.1278.



Ethyl 3-(4-methoxyphenyl)-3-oxo-2-((1,2,3,4-tetrahydroisoquinoline-2-carbonothioyl)thio)pr opanoate (4i). Yellow oil (66%, 85.0 mg). Petroleum ether/ethyl acetate = 20/1-5/1 (v/v) as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  8.09 (d, J = 8.6 Hz, 2H), 7.26 - 7.17 (m, 4H), 6.98 - 6.94 (m, 2H), 6.88 (s, 1H), 5.29 (d, J = 6.9 Hz, 1H), 5.04 (q, J = 16.0 Hz, 1H), 4.40 (s, 1H), 4.25 (q, J = 7.1 Hz, 2H), 4.15 - 4.05 (m, 1H), 3.87 (s, 3H), 3.01 - 2.97 (m, 2H), 1.26 -

1.23 (m, 3H). <sup>13</sup>C NMR (100 MHz, Chloroform-*d*) δ 192.8, 189.5, 166.8, 164.4, 134.9, 134.2, 132.5, 131.9, 131.2, 130.7, 128.2, 127.8, 127.6, 127.4, 127.0, 126.6, 126.3, 114.0, 62.7, 60.7, 55.6, 54.8, 51.5, 51.1, 48.3, 29.7, 29.1, 28.5, 14.1. HRMS (*m*/*z*) (ESI): calcd for C<sub>22</sub>H<sub>23</sub>NO<sub>4</sub>S<sub>2</sub>Na<sup>+</sup> [M+Na]<sup>+</sup>: 452.0961, found 452.0962.



*Tert*-butyl 2-(((1-ethoxy-3-(4-methoxyphenyl)-1,3-dioxopropan-2-yl)thio)carbonothioyl)-2,7diazaspiro[3.5]nonane-7-carboxylate (4j). Yellow oil (56%, 87.8 mg). Petroleum ether/ethyl acetate = 20/1-5/1 (v/v) as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  8.09 - 8.05 (m, 2H), 6.97 - 6.93 (m, 2H), 6.63 (s, 1H), 4.22 (q, J = 7.1 Hz, 2H), 4.02 - 3.96 (m, 3H), 3.91 - 3.87 (m, 4H), 3.42 - 3.31 (m, 4H), 1.76 - 1.71 (m, 4H), 1.44 (s, 9H), 1.22 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (100 MHz, Chloroform-*d*)  $\delta$  191.5, 189.4, 166.8, 164.4, 154.6, 131.9, 127.6, 114.0, 79.9, 64.5, 62.7, 62.5, 60.3, 55.6, 34.9, 34.7, 28.4, 14.0. HRMS (*m*/*z*) (ESI): calcd for  $C_{25}H_{34}N_2O_6S_2Na^+$  [M+Na]<sup>+</sup>: 545.1751, found 545.1752.



*Tert*-butyl 6-(((1-ethoxy-3-(4-methoxyphenyl)-1,3-dioxopropan-2-yl)thio)carbonothioyl)-2,6diazaspiro[3.4]octane-2-carboxylate (4k). Yellow oil (54%, 82.4 mg). Petroleum ether/ethyl acetate = 20/1-5/1 (v/v) as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  8.06 - 8.03 (m, 2H), 6.95 - 6.91 (m, 2H), 6.74 (d, J = 4.2 Hz, 1H), 4.21 (q, J = 7.1 Hz, 2H), 4.04 (s, 1H), 3.95 - 3.78 (m, 10H), 2.26 (t, J = 7.4 Hz, 1H), 2.16 (t, J = 7.1 Hz, 1H), 1.41 (s, 9H), 1.21 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (100 MHz, Chloroform-*d*)  $\delta$  190.2, 189.3, 166.8, 164.4, 156.1, 131.8, 127.7, 114.0, 79.9, 64.0, 62.7, 60.6, 59.2, 55.6, 54.1, 49.3, 40.3, 38.3, 36.3, 34.6, 28.3, 14.0. HRMS (*m/z*) (ESI): calcd for C<sub>24</sub>H<sub>33</sub>N<sub>2</sub>O<sub>6</sub>S<sub>2</sub><sup>+</sup> [M+H]<sup>+</sup>: 509.1775, found 509.1785.



*Tert*-butyl 7-(((1-ethoxy-3-(4-methoxyphenyl)-1,3-dioxopropan-2-yl)thio)carbonothioyl)-2,7diazaspiro[3.5]nonane-2-carboxylate (4l). Yellow oil (50%, 78.4 mg). Petroleum ether/ethyl acetate = 20/1-5/1 (v/v) as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  8.08 - 8.04 (m, 2H), 6.96 - 6.93 (m, 2H), 6.75 (s, 1H), 4.25 - 4.19 (m, 2H), 3.87 (s, 3H), 3.68 (s, 4H), 1.88 - 1.85 (m, 4H), 1.43 (s, 9H), 1.24 - 1.20 (m, 7H). <sup>13</sup>C NMR (100 MHz, Chloroform-*d*)  $\delta$  193.0, 189.4, 166.7, 164.4, 156.3, 131.8, 127.8, 114.0, 79.8, 62.7, 61.4, 55.6, 33.6, 29.7, 28.4, 14.0. HRMS (*m/z*) (ESI): calcd for C<sub>25</sub>H<sub>34</sub>N<sub>2</sub>O<sub>6</sub>S<sub>2</sub>Na<sup>+</sup> [M+Na]<sup>+</sup>: 545.1751, found 545.1752.



**Pyrrolidine-1-carbothioic dithioperoxyanhydride (5).** White solid. mp: 140-142 °C. Petroleum ether/ethyl acetate = 10/1 (v/v) as eluent for column chromatography. <sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 4.01 - 3.93 (m, 8H), 2.20 - 2.12 (m, 4H), 2.05 - 1.99 (m, 4H). <sup>13</sup>**C NMR** (100 MHz, Chloroform-*d*) δ 189.2, 57.0, 51.0, 26.6, 24.3. **HRMS** (*m/z*) (ESI): calcd for  $C_{10}H_{17}N_2S_4^+$  [M+H]<sup>+</sup>: 293.0269, found 293.0269.

Sodium pyrrolidine-1-carbodithioate (6)<sup>1</sup>. White solid. mp: > 300 °C. Ethyl acetate as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz, Methanol- $d_4$ )  $\delta$  3.87 - 3.77 (m, 4H), 1.99 - 1.93 (m, 4H). <sup>13</sup>C NMR (100 MHz, Methanol- $d_4$ )  $\delta$  207.9, 55.2, 27.1.

#### References

[1] M. M. Wang, W. C. Chu, Y. Yang, Q. Q. Yang, S. S. Qin, E. Zhang, *Bioorg. Med. Chem. Lett.*, 2018, **28**, 3436-3440.

# 7. Copies of <sup>1</sup>H NMR and <sup>13</sup>C NMR for the Products

Ethyl 3-oxo-3-phenyl-2-((pyrrolidine-1-carbonothioyl)thio)propanoate (3a)





Ethyl 3-oxo-2-((pyrrolidine-1-carbonothioyl)thio)-3-(p-tolyl)propanoate (3b).





Ethyl 3-(4-methoxyphenyl)-3-oxo-2-((pyrrolidine-1-carbonothioyl)thio)propanoate (3c)



Ethyl 3-(4-bromophenyl)-3-oxo-2-((pyrrolidine-1-carbonothioyl)thio)propanoate (3d)



f1 (ppm)







Ethyl 3-oxo-2-((pyrrolidine-1-carbonothioyl)thio)-3-(thiophen-2-yl)propanoate (3f)







Ethyl (*E*)-3-hydroxy-2-((pyrrolidine-1-carbonothioyl)thio)but-2-enoate (3h).





#### Ethyl 3-oxo-2-((pyrrolidine-1-carbonothioyl)thio)hexanoate (3i)





#### Diethyl 2-((pyrrolidine-1-carbonothioyl)thio)malonate (3j)



(E)-2-hydroxy-4-oxopent-2-en-3-yl pyrrolidine-1-carbodithioate (3k)



#### (*E*)-1-hydroxy-3-oxo-1-phenylbut-1-en-2-yl pyrrolidine-1-carbodithioate (3l)



#### 1-(Dimethylamino)-1,3-dioxobutan-2-yl pyrrolidine-1-carbodithioate (3m)



2-Oxo-1,2-diphenylethyl pyrrolidine-1-carbodithioate (3n)







#### Cyano(phenylsulfonyl)methyl pyrrolidine-1-carbodithioate (3q)



# 









*Tert*-butyl 2-((((*E*)-3-hydroxy-1-(((1*R*,2*S*,5*R*)-2-isopropyl-5-methylcyclohexyl)oxy)-1-oxobut-2-en-2-yl)thio)carbonothioyl)-2,7-diazaspiro[3.5]nonane-7-carboxylate (3r)

*Tert*-butyl (*E*)-2-(((1-(adamantan-1-yloxy)-3-hydroxy-1-oxobut-2-en-2-yl)thio)carbonothioyl) -2,7-diazaspiro[3.5]nonane-7-carboxylate (3s)



f1 (ppm)

(3*S*,8*R*,9*S*,10*R*,13*S*,14*S*)-10,13-Dimethyl-17-oxo-2,3,4,7,8,9,10,11,12,13,14,15,16,17tetradecahydro-1*H*-cyclopenta[*a*]phenanthren-3-yl (*E*)-3-hydroxy-2-((pyrrolidine-1carbonothioyl)thio) but-2-enoate (3t)









Ethyl 2-((diethylcarbamothioyl)thio)-3-(4-methoxyphenyl)-3-oxopropanoate (4a)



Ethyl 3-(4-methoxyphenyl)-3-oxo-2-((piperidine-1-carbonothioyl)thio)propanoate (4b)



Ethyl 2-((azepane-1-carbonothioyl)thio)-3-(4-methoxyphenyl)-3-oxopropanoate (4c)



Ethyl 3-(4-methoxyphenyl)-2-((morpholine-4-carbonothioyl)thio)-3-oxopropanoate (4d)



Ethyl 3-(4-methoxyphenyl)-3-oxo-2-((thiomorpholine-4-carbonothioyl)thio)propanoate (4e)



Ethyl 2-((cyclohexyl(methyl)carbamothioyl)thio)-3-(4-methoxyphenyl)-3-oxopropanoate (4f)



Ethyl 2-((benzyl(methyl)carbamothioyl)thio)-3-(4-methoxyphenyl)-3-oxopropanoate (4g)



Ethyl 2-((dibenzylcarbamothioyl)thio)-3-(4-methoxyphenyl)-3-oxopropanoate (4h)



Ethyl 3-(4-methoxyphenyl)-3-oxo-2-((1,2,3,4-tetrahydroisoquinoline-2-carbonothioyl)thio)pr opanoate (4i)



*Tert*-butyl 2-(((1-ethoxy-3-(4-methoxyphenyl)-1,3-dioxopropan-2-yl)thio)carbonothioyl)-2,7-diazaspiro[3.5]nonane-7-carboxylate (4j)



*Tert*-butyl 6-(((1-ethoxy-3-(4-methoxyphenyl)-1,3-dioxopropan-2-yl)thio)carbonothioyl)-2,6-diazaspiro[3.4]octane-2-carboxylate (4k)



*Tert*-butyl 7-(((1-ethoxy-3-(4-methoxyphenyl)-1,3-dioxopropan-2-yl)thio)carbonothioyl)-2,7-diazaspiro[3.5]nonane-2-carboxylate (4l)







20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)