Support Information

Electrochemical oxidation of intramolecular annulation of aryl phosphine compounds: an efficient approach towards π conjugated phosphonium salts

Tianmei Zhang^a, Min Cai^a, Wenfeng Zhao^a, Mao Liu^{a,b}, Nan Jiang ^{a,b},

Qingmei Ge^{a,b,*}, and Hang Cong^{a,b}

^aEnterprise Technology Center of Guizhou Province Guizhou University, Guiyang, 550025, P. R. China
^bCollaborative Innovation Center of Guizhou Province for Efficient Utilization of Phosphorus and Fluorine Resources Guizhou University, Guiyang 550025, P. R. China
^cKey Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University, Guiyang, 550025, P. R. China
^{*}Email: qmge@gzu.edu.cn

Content

I. General information	S2
II. General procedure for the preparation of phosphines substrates	S2
III. References	S4
IV. General procedure for the synthesis of Phosphonium salts 2a-x	S4
V. Procedure for Gram-scale synthesis of 2a	S4
VI. Procedure for control experiments	
VII. Data and spectra of ¹ H NMR, ¹³ C NMR, ³¹ P NMR and ¹⁹ F NMR	

I. General Information

All reagents used for experiments are commercially available and used directly without any further purification. The solvents need to be dehydrated and partly deoxidized before using, CH₃OH was treated with Mg and I₂, CH₂Cl₂ was treated with CaH₂, toluene and 1,4-dioxane were treated with sodium and benzophenone respectively. All experiments involving electrochemistry were carried out on the LK2010Z electrochemical workstation (made in China). Thin layer chromatography (TLC) was performed on pre-coated, glass-backed silica gel plates. Column chromatography was performed on silica gel 200 ~ 300 mesh. ¹H NMR (400 MHz), ¹³C NMR (100 MHz), ³¹P NMR (162 M Hz) and ¹⁹F (376 M Hz), and were recorded on JEOL JNM-ECZ400S NMR spectrometer with CDCl₃ or CD₃OD as solvent. Chemical shifts of all ¹H, ¹³C, ³¹P and ¹⁹F NMR data spectra were reported in delta (δ) units, parts per million (ppm). The residual solvent signals were used as references and the chemical shifts converted to the TMS scale (CDCl₃: 7.26 ppm for ¹H NMR, 77.2 ppm for ¹³C NMR, CD₃OD: 3.35 ppm for ¹H NMR, 49.8 ppm for ¹³C NMR, Trimethyl phosphate: 2.8-3.2 ppm for ³¹P NMR). Multiplicities are indicated as follows: s, singlet; d, doublet; t, triplet; q, quartet; dd, doubled doublet; dt, doubled triplet; m, multiplet. All coupling constants (J values) were reported in Hertz (Hz). High-resolution mass spectra (HRMS) were obtained with a mass spectrometer.

II. General procedure for the preparation of phosphines substrates

Compounds **1b-i** and **1n-t** were prepared based on previous literature¹. Compounds **1j-m** and **1w** were prepared based on previous literature². **Method 1**¹: Suzuki cross coupling reaction for the synthesis of **1b-i**, **1n-t**.

The representative procedure is as follows: In an over- dried two- necked flask equipped with a stir bar, (2-bromophenyl) diphenylphosphane (1 mmol), aryl boronic acid (1.2 mmol), potassium carbon ate (2 mmol), $Pd(PPh_3)_4$ (5 mmol%) and 1,4-dioxane

(20 mL) was added. The reaction mixture was stirred and heated at 100 °C under N₂ atmosphere for 72 hours. After completion of the reaction, remove volatile components from crude products, and then water was added and extracted with CH_2Cl_2 (3 × 30 mL). The organic phase was dried over anhydrous magnesium sulfate, filtered and concentrated in *vacuo*. The desired phosphines substrates **1b-i** and **1n-t** were purified by silica gel column chromatography, using *n*-hexane: DCM = 25 : 1 - 5 : 1 as eluent. **Method 2²:** Suzuki cross coupling reaction for the synthesis of **1j-m** and **1w**

Step a : The representative procedure is as follows: A mixture of (2bromophenyl) diphenyl phosphine oxide (2.4 g, 6.8 mmol), 4-cyanophenylboronic acid (1.0 g, 6.8 mmol), Pd(dba)₂ (120 mg, 0.2 mmol), PPh₃ (220 mg, 0.82 mmol), K₃PO₄ (2 equiv., 2.9 g) and dried 1,4-dioxane (30 mL) were mixed and heated at 105 °C under N₂ atmosphere for 12 h. The reaction system was cooled to room temperature, volatile components were evaporated in a rotary evaporator, the remaining components were extracted with H₂O and DCM. The organic phase was washed with saturated salt water, dried with anhydrous magnesium sulfate, filtered, and concentrated in *vacuo*. The desired phosphine oxides were purified by column chromatography, using *n*-hexane: EtOAc = 4 : 1 - 2 : 1 as eluent.

Step b: The representative procedure is as follows: A solution of phosphine oxide in dried toluene was frozen using an EtOH/liquid nitrogen bath, to which trichlorosilane (2.1 mL, 21 mmol) and triethylamine (3.2 mL, 23 mmol) were added. The mixture was heated at 110 °C under N₂ atmosphere overnight. After cooling to room temperature, add 5 mL saturated NaHCO₃ solution to the mixture and stirred for 5 min. The mixture was filtered through a pad of alumina and concentrated in *vacuo*. The desired **1j-m** and **1w** were purified by column chromatography, using *n*-hexane: DCM = $10 : 1 \sim 5 : 1$ as eluent.

III. Reference

 Li, G.; An, J.; Jia, C.; Yan, B.; Zhong, L.; Wang, J.; Yang, S. Org. Lett. 2020, 22, 9450-9455.

2. Baba, K.; Tobisu, M.; Chatani, N. Angew. Chem. Int. Ed. 2013, 52, 11892-11895.

IV. General procedure for the synthesis of phosphonium salts 2a-x

2-(2'-diphenylphosphine) diphenyl **2a** (0.2 mmol, 0.0677 g), NaOTf (0.4 mmol, 0.0688 g), HFIP/DCM/MeOH (0.75 mL/2.25 mL/8.00 mL) were mixed and added into an oven-dried undivided electrolytic cell (25 mL) equipped with a stir bar. The cell was equipped with platinum plate (10 mm \times 10 mm \times 1 mm) as the anode and platinum wire as the cathode, and the distance between them is 1.5 cm. The reaction mixture was stirred and electrolyzed at a constant current of 4 mA at room temperature for 4 h. When the reaction was finished, the solvent was evaporated under reduced pressure and the residue was absorbed onto small amounts of silica gel. The pure product was obtained by column chromatography on silica gel, using DCM : MeOH = 200 : 1 \sim 50 : 1 as eluent.

V. Procedure for Gram-scale synthesis of 2a

2-(2'-diphenylphosphine) diphenyl **2a** (5 mmol, 1.6919 g), NaOTf (10 mmol, 1.7205 g), HFIP/DCM/MeOH (18.75 mL/56.25 mL/200 mL) were mixed and added into an oven-dried undivided beaker (500 mL) equipped with a stir bar. The beaker was equipped with platinum plate (15 mm \times 15 mm \times 1 mm) as the anode and platinum wire as the cathode. The reaction mixture was stirred and electrolyzed at a constant current of 10 mA under room temperature for 20 h. When the reaction was finished, the solvent was evaporated under reduced pressure and the residue was absorbed onto small amounts of silica gel. The pure product was obtained by column chromatography on

silica gel, using DCM : MeOH = $200 : 1 \sim 50 : 1$ as eluent. Pure product **2a** was obtained in 77% isolated yield (1.8872 g).

VI. Procedure for control experiment.

In an over-dried undivided electrolytic cell (25 mL) equipped with a stir bar, 2-(2'-diphenylphosphine) diphenyl **2a** (0.2 mmol, 0.0677 g), NaOTf (0.4 mmol, 0.0688 g), 2,2,6,6-Tetramethylpiperidine-1-oxy (TEMPO) (0.4 mmol, 0.0625 g) or 2,6-di-*tert*butyl-4-methylphenol (BHT) (0.4 mmol, 0.0881 g), HFIP/DCM/MeOH (0.75 mL/2.25 mL/8.00 mL) was added. The cell was equipped platinum plate (10 mm × 10 mm×1 mm) as the anode and platinum wire as the cathode, the reaction mixture was stirred and electrolyzed at a constant current of 4 mA under room temperature for 4 h and stopped until complete consumption of **1a** (monitored by TCL, *n*-hexane: ethyl acetate = 10 : 1). The pure product was obtained by flash column chromatography on silica gel (DCM : MeOH = 200 : $1 \sim 50 : 1$ as eluent).

VII. Data and spectra of ¹H NMR, ¹³C NMR, ³¹P NMR and ¹⁹F NMR. (4'-fluoro-[-biphenyl]-2-yl) diphenylphosphine (1b)

White solid. $R_f 0.4$ (hexane/DCM = 5 : 1)

¹H NMR (400 MHz, CDCl₃) δ : 7.42 – 7.36 (m, 1H), 7.35 – 7.26 (m, 8H), 7.24 – 7.18 (m, 4H), 7.15 – 7.09 (m, 2H), 7.05 – 7.00 (m, 1H), 6.93 (t, *J* = 8.7 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ : 162.2 (d, J = 246.1 Hz), 147.2 (d, J = 28.1 Hz), 137.7 (dd, J = 5.8, 3.0 Hz), 137.3 (d, J = 11.3 Hz), 136.2 (d, J = 13.8 Hz), 134.2 (s), 134.0 (d, J = 14.3 Hz), 131.4 (dd, J = 8.0, 3.6 Hz), 130.3 (d, J = 4.6 Hz), 128.8 (s), 128.7 (s), 128.6 (d, J = 7.0 Hz), 127.6 (s), 114.6 (d, J = 21.3 Hz).

³¹P NMR (162 MHz, CDCl₃) δ: -12.80.

(4'-chloro-[-biphenyl]-2-yl) diphenylphosphine (1c)

White solid. $R_f 0.4$ (hexane/DCM = 5 : 1)

¹H NMR (400 MHz, CDCl₃) δ: 7.39 (m, 1H), 7.33 – 7.17 (m, 14H), 7.12 – 7.08 (m, 2H), 7.07 – 7.03 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ : 147.0 (d, J = 28.5 Hz), 140.2 (d, J = 6.2 Hz), 137.3 (d, J = 11.0 Hz), 136.0 (d, J = 13.9 Hz), 134.3, 134.0 (d, J = 19.7 Hz), 133.4, 131.1 (d, J = 3.6 Hz), 130.2 (d, J = 4.6 Hz), 129.0, 128.8, 128.6 (d, J = 6.9 Hz), 127.9, 127.8.

³¹P NMR (162 MHz, CDCl₃) δ: -13.10.

(4'-bromo-[-biphenyl]-2-yl) diphenylphosphine (1d)

White solid. $R_f 0.4$ (hexane/DCM = 5 : 1)

¹H NMR (400 MHz, CDCl₃) *δ*: 7.41–7.36 (m, 3H), 7.31–7.24 (m, 8H), 7.22–7.18 (m, 4H), 7.04–7.02 (m, 3H).

¹³C NMR (100 MHz, CDCl₃) δ : 147.1 (d, J = 28.5 Hz), 140.8 (d, J = 6.3 Hz), 137.4 (d, J = 11.4 Hz), 136.1 (d, J = 14.5 Hz), 134.4, 134.1 (d, J = 20.0 Hz), 131.6 (d, J = 3.7 Hz), 131.0, 130.2 (d, J = 4.6 Hz), 129.1, 128.9, 128.7 (d, J = 6.8 Hz), 128.0, 121.8.

³¹P NMR (162 MHz, CDCl₃) δ : -13.2.

(4'-methoxy-[-biphenyl]-2-yl) diphenylphosphine (1e)

White solid. $R_f 0.2$ (hexane/DCM = 5 : 1)

¹H NMR (400 MHz, CDCl₃) δ : 7.40 (t, J = 7.8 Hz, 1H), 7.37 – 7.31 (m, 7H), 7.30 – 7.23 (m,5H), 7.15 (d, J = 7.9 Hz, 2H), 7.11 – 7.06 (m, 1H), 6.84 (d, J = 8.6 Hz, 2H), 3.82 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ : 158.8, 148.0 (d, J = 28.9 Hz), 137.8 (d, J = 11.6 Hz), 135.8 (d, J = 13.2 Hz), 134.2, 134.1, 133.9 (d, J = 19.6 Hz), 130.8 (d, J = 3.6 Hz), 130.3 (d, J = 4.8 Hz), 128.7, 128.4 (d, J = 2.7 Hz), 128.4, 127.1, 113.0, 55.2.

³¹P NMR (162 MHz, CDCl₃) δ: -13.05.

(4'-methyl-[-biphenyl]-2-yl) diphenylphosphine (1f)

Colorless oil. $R_f 0.2$ (hexane/DCM = 5 : 1)

¹H NMR (400 MHz, CDCl₃) *δ*: 7.37 – 7.30 (m, 2H), 7.29 – 7.18 (m, 11H), 7.10 – 7.03 (m, 5H), 2.32 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ : 148.7, 148.4, 139.0 (d, J = 6.6 Hz), 138.0 (d, J = 11.7 Hz), 137.0, 135.8 (d, J = 13.4 Hz), 134.5, 134.0 (d, J = 19.6 Hz), 130.3 (d, J = 5.1 Hz), 129.7 (d, J = 3.7 Hz), 128.9, 128.5, 128.5, 128.4, 127.3, 21.4.

³¹P NMR (162 MHz, CDCl₃) δ: -13.37.

(4'-(tert-butyl)-[-biphenyl]-2-yl) diphenylphosphine (1g)

White solid. $R_f 0.3$ (hexane/DCM = 5 : 1)

¹H NMR (400 MHz, CDCl₃) *δ*: 7.44 (m, 2H), 7.41 – 7.29 (m, 13H), 7.23 (d, *J* = 7.4 Hz, 2H), 7.16 (m, 1H), 1.42 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ : 149.8, 148.3, 148.0, 138.6 (d, J = 6.1 Hz), 137.8 (d, J = 11.7 Hz), 136.0, 135.8, 134.0, 133.8, 130.2 (d, J = 4.7 Hz), 129.4 (d, J = 3.7 Hz), 128.7, 128.4, 128.4, 128.3, 127.1, 124.5, 34.5, 31.4.

³¹P NMR (162 MHz, CDCl₃) δ: -12.28.

[1,1':4',1''-terphenyl]-2-yldiphenylphosphine (1h)

White solid. $R_f 0.4$ (hexane/DCM = 5 : 1)

¹H NMR (400 MHz, CDCl₃) *δ*: 7.71 (d, *J* = 6.7 Hz, 1H), 7.61 (d, *J* = 7.2 Hz, 2H), 7.51 (d, *J* = 7.9 Hz, 2H), 7.43 (m, 3H), 7.29 (m, 13H), 7.10 (d, *J* = 3.0 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ : 148.0 (d, J = 28.4 Hz), 140.9 (d, J = 18.0 Hz), 140.0, 137.6 (d, J = 11.1 Hz), 135.9 (d, J = 13.6 Hz), 134.3, 134.2, 134.0, 130.3, 128.9(d, J = 8.3 Hz), 128.6, 128.6, 128.5, 127.5, 127.3 (d, J = 10.5 Hz), 126.4.

³¹P NMR (162 MHz, CDCl₃) δ: -12.77.

(4'-(trifluoromethyl)-[-biphenyl]-2-yl) diphenylphosphine (1i)

White solid. $R_f 0.2$ (hexane/DCM = 5 : 1)

¹H NMR (400 MHz, CDCl₃) *δ*: 7.53 (d, *J* = 8.1 Hz, 2H), 7.43 (t, *J* = 6.9 Hz, 1H)., 7.38 – 7.28 (m, 10H), 7.25 (m, 4H), 7.12 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ : 146.7 (d, J = 27.9 Hz), 145.4 (d, J = 5.7 Hz), 137.0 (d, J = 11.2 Hz), 136.2 (d, J = 15.1 Hz), 134.2 (d, J = 19.0 Hz), 133.9, 130.2, 130.1, 129.5, 129.2, 128.9, 128.8, 128.6, 128.5, 128.3 – 128.0 (m), 125.8, 124.6 (d, J = 3.4 Hz), 123.0, 120.3.

³¹P NMR (162 MHz, CDCl₃) δ: -12.54.

¹⁹F NMR (376 MHz, CDCl₃) δ: -62.21.

Exact Mass (ESI): Calcd for C₂₅H₁₉F₃P [M+H]⁺, 407.11765, found 407.11631.

2'-(diphenylphosphanyl)-[1,1'-biphenyl]-4-carbonitrile (1j)

White solid. $R_f 0.1$ (hexane/DCM = 5 : 1)

¹H NMR (400 MHz, CDCl₃) δ: 7.53 (d, *J* = 1.9 Hz, 1H), 7.51 (d, *J* = 2.0 Hz, 1H)., 7.45 – 7.36 (m, 1H), 7.35 – 7.12 (m, 14H), 7.11 – 6.99 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ : 146.4 (d, J = 5.7 Hz), 146.1, 145.8, 136.5 (d, J = 11.1 Hz), 136.0 (d, J = 15.4 Hz), 134.0 (d, J = 20.1 Hz), 131.4, 130.5 (d, J = 3.9 Hz), 129.7 (d, J = 4.5 Hz), 128.9, 128.8, 128.5 (d, J = 7.0 Hz), 128.3, 119.0, 110.9.

³¹P NMR (162 MHz, CDCl₃) δ: -12.84.

(4'-(acetyl)-[-biphenyl]-2-yl) diphenylphosphine (1k)

White solid. $R_f 0.1$ (hexane/DCM = 5 : 1)

¹H NMR (400 MHz, CDCl₃) *δ*: 7.93 – 7.85 (m, 2H), 7.47 – 7.39 (m, 1H), 7.38 – 7.28 (m, 10H), 7.26 (m, 4H), 7.11 (m, 1H), 2.61 (m, 3H).

¹³C NMR (100 MHz, CDCl₃) δ : 198.0, 147.1 (d, J = 28.7 Hz), 146.8(d, J = 5.9 Hz), 137.2 (d, J = 11.3 Hz), 136.0, 135.8, 134.3, 134.0 (d, J = 20.0 Hz), 130.0 (d, J = 3.8 Hz), 130.0 (d, J = 4.8 Hz), 129.0, 128.8, 128.6 (d, J = 6.9 Hz), 128.0, 127.8, 26.8.

³¹P NMR (162 MHz, CDCl₃) δ: -13.41.

(4'-(carboxylate)-[-biphenyl]-2-yl) diphenylphosphine (11)

White solid. $R_f 0.2$ (hexane/DCM = 5 : 1)

¹H NMR (400 MHz, CDCl₃) δ: 7.94 (d, *J* = 8.3 Hz, 2H), 7.45 – 7.38 (m, 1H), 7.34 – 7.25 (m, 10H), 7.21 (m, 4H), 7.09 (m, 1H), 3.91 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ : 167.1, 147.3, 147.0, 146.5, 137.2 (d, J = 11.5 Hz), 136.0 (d, J = 15.1 Hz), 134.2, 134.0 (d, J = 19.9 Hz), 130.0, 129.9 (d, J = 4.0 Hz), 129.0, 128.9, 128.7, 128.5 (d, J = 7.0 Hz), 128.0, 52.2.

³¹P NMR (162 MHz, CDCl₃) δ: -12.79.

(4'-(ethoxycarbonyl)-[-biphenyl]-2-yl) diphenylphosphine (1m)

White solid. $R_f 0.2$ (hexane/DCM = 5 : 1)

¹H NMR (400 MHz, CDCl₃) *δ*: 7.99 – 7.92 (m, 2H), 7.45 – 7.38 (m, 1H), 7.36 – 7.25 (m, 10H), 7.22 (m, 4H), 7.12 – 7.05 (m, 1H), 4.38 (q, *J* = 7.1 Hz, 2H), 1.39 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ : 166.6, 147.3 (d, J = 28.5 Hz), 146.4 (d, J = 5.9 Hz), 137.3 (d, J = 11.5 Hz), 136.0 (d, J = 14.8 Hz), 134.3, 134.0 (d, J = 19.8 Hz), 130.0 (d, J = 4.7 Hz), 129.8 (d, J = 3.7 Hz), 129.2, 129.0 (d, J = 7.9 Hz), 128.7, 128.5 (d, J = 6.8 Hz), 128.0.

³¹P NMR (162 MHz, CDCl₃) δ: -12.99.

Exact Mass (ESI): Calcd for $C_{27}H_{24}O_2P^+$ [M+H]⁺, 411.15139, found 411.15058.

(2'-(methyl)-[-biphenyl]-2-yl) diphenylphosphine (1n)

White solid. $R_f 0.3$ (hexane/DCM = 5 : 1)

¹H NMR (400 MHz, CDCl₃) δ : 7.38 (m, 1H), 7.32 – 7.24 (m, 7H), 7.22 – 7.13 (m, 7H), 7.08 (m, 1H), 7.00 – 6.95 (m, 1H), 6.79 (d, J = 7.5 Hz, 1H), 2.04 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ : 147.7 (d, J = 30.8 Hz), 141.2 (d, J = 6.8 Hz), 137.4 (d, J = 12.3 Hz), 137.2 (d, J = 11.2 Hz), 136.8, 135.9, 134.0 (d, J = 20.3 Hz), 133.6, 130.4, 129.8 (d, J = 5.3 Hz), 129.7, 128.8, 128.5 (d, J = 4.2 Hz), 128.4 (d, J = 7.1 Hz), 128.3, 127.5 (d, J = 17.6 Hz), 124.9, 20.6 (d, J = 4.0 Hz).

³¹P NMR (162 MHz, CDCl₃) δ: -12.72.

(3'-(methyl)-[-biphenyl]-2-yl) diphenylphosphine (10)

Colorless oil. $R_f 0.3$ (hexane/DCM = 5 : 1)

¹H NMR (400 MHz, CDCl₃) δ : 7.33 (m, 2H), 7.25 (m, 11H), 7.15 (t, J = 7.5 Hz, 1H), 7.10 – 7.04 (m, 2H), 6.99 (d, J = 7.7 Hz, 1H), 6.90 (s, 1H), 2.21 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ : 148.6 (d, J = 29.0 Hz), 141.8 (d, J = 6.4 Hz), 138.0 (d, J = 11.8 Hz), 137.2, 136.1 (d, J = 13.9 Hz), 134.3, 134.1 (d, J = 20.0 Hz), 130.8 (d, J = 3.2 Hz), 130.2 (d, J = 4.8 Hz), 128.8, 128.6 (d, J = 1.8 Hz), 128.5, 128.1, 127.6, 127.4, 126.8 (d, J = 3.6 Hz), 21.6. ³¹P NMR (162 MHz, CDCl₃) δ : -12.84.

(3', 5'-(dimethyl)-[-biphenyl]-2-yl) diphenylphosphine (1p)

1

White solid. $R_f 0.2$ (hexane/DCM = 5 : 1)

¹H NMR (400 MHz, CDCl₃) δ: 7.42 – 7.27 (m, 13H), 7.09 (m, 1H), 6.94 (s, 1H), 6.74 (s, 2H), 2.22 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ : 148.6 (d, J = 29.5 Hz), 141.7 (d, J = 6.7 Hz), 138.2 (d, J = 11.5 Hz), 137.0, 136.0 (d, J = 13.8 Hz), 134.2 (d, J = 3.7 Hz), 134.0, 130.0 (d, J = 4.9 Hz), 128.8 (d, J = 27.1 Hz), 128.5, 128.4, 127.7 (d, J = 3.4 Hz), 127.7 (d, J = 3.4 Hz), 127.2, 127.2, 21.4.

³¹P NMR (162 MHz, CDCl₃) δ: -12.96.

Exact Mass (ESI): Calcd for $C_{26}H_{24}P^+$ [M+H]⁺, 367.16156, found 367.15079.

(5-chloro-[1,1'-biphenyl]-2-yl) diphenylphosphine (1q)

White solid. $R_f 0.2$ (hexane/DCM = 5 : 1)

¹H NMR (400 MHz, CDCl₃) δ: 7.38 – 7.30 (m, 9H), 7.30 – 7.27 (m, 2H), 7.27 – 7.21 (m, 4H), 7.21 – 7.17 (m, 2H), 7.01 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ : 150.0, 149.7, 140.5 (d, J = 6.2 Hz), 137.3 (d, J = 11.6 Hz), 135.6, 134.9 (d, J = 9.5 Hz), 134.7, 134.0 (d, J = 20.0 Hz), 130.2 (d, J = 4.7 Hz), 129.6 (d, J = 3.7 Hz), 128.8, 128.7, 128.6, 127.9, 127.8, 127.6.

³¹P NMR (162 MHz, CDCl₃) δ: -18.03.

diphenyl (5-trifluoromethoxyo)-[1,1'-biphenyl]-2-yl) phosphine (1r)

White solid. $R_f 0.1$ (hexane/DCM = 5 : 1) ¹H NMR (400 MHz, CDCl₃) δ : 7.37 – 7.27 (m, 9H), 7.21 (m, 7H), 7.15 – 7.10 (m, 1H), 7.08 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ : 150.2, 150.0, 149.5, 140.4 (d, J = 5.8 Hz), 137.2 (d, J = 11.5 Hz), 135.8, 134.9 (d, J = 15.7 Hz), 134.0 (d, J = 20.1 Hz), 129.6 (d, J = 3.4 Hz), 128.8, 128.7, 128.6, 127.9, 122.1(d, J = 4.4 Hz), 121.8, 119.4.

³¹P NMR (162 MHz, CDCl₃) δ: -14.04.

diphenyl (4-trifluoromethyl)-[1,1'-biphenyl]-2-yl) phosphine (1s)

White solid. $R_f 0.3$ (hexane/DCM = 5 : 1)

¹H NMR (400 MHz, CDCl₃) *δ*: 7.62 (d, *J* = 9.2 Hz, 1H), 7.41 (m, 1H), 7.36 – 7.30 (m, 6H), 7.30 – 7.23 (m, 4H), 7.22 (s, 4H), 7.16 – 7.12 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ : 151.6, 151.4, 140.5 (d, J = 5.8 Hz), 138.1(d, J = 17.9 Hz), 136.4 (d, J = 11.5 Hz), 134.1, 133.9, 130.5 (d, J = 4.0 Hz), 130.4 (d, J = 3.7 Hz), 129.5 (d, J = 3.6 Hz), 129.0, 128.7 (d, J = 6.9 Hz), 127.9, 125.4 (d, J = 3.6 Hz), 122.8.

³¹P NMR (162 MHz, CDCl₃) δ: -12.27.

1-(2-diphenylphosphinophenyl) naphthalene (1t)

White solid. $R_f 0.2$ (hexane/DCM = 5 : 1)

¹H NMR (400 MHz, CDCl₃) δ: 7.83 (d, *J* = 8.3 Hz, 1H), 7.77 (d, *J* = 8.4 Hz, 1H), 7.62 – 7.58 (m, 1H), 7.54 (s, 1H), 7.48 – 7.37 (m, 5H), 7.34 – 7.22 (m, 11H), 7.17 – 7.10 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ : 148.5, 148.2, 139.3 (d, J = 6.3 Hz), 137.8 (d, J = 11.2 Hz), 136.2 (d, J = 13.8 Hz), 134.3 (d, J = 20.8 Hz), 134.0, 132.8, 132.6, 130.5 (d, J = 4.9 Hz), 129.0 (d, J = 3.9 Hz), 129.0, 128.7, 128.6, 128.5, 128.3, 128.1 (d, J = 3.0 Hz), 127.8, 127.6, 127.3, 126.1 (d, J = 12.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ : -13.07.

2-(2-diphenylphosphinylphenyl) furan (1w)

Colorless oil. $R_f 0.3$ (hexane/DCM = 5 : 1)

¹H NMR (400 MHz, CDCl₃) *δ*: 7.75 (m, 1H), 7.38 (m, 2H), 7.33 – 7.24 (m, 10H), 7.16 (m, 1H), 6.97 (m, 1H), 6.53 – 6.47 (m, 1H), 6.35 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ : 152.8 (d, J = 4.1 Hz), 137.6 (d, J = 11.1 Hz), 136.4 (d, J = 26.2 Hz), 134.8, 134.6 (d, J = 19.3 Hz), 134.2 (d, J = 19.7 Hz), 129.0, 129.0 (d, J = 6.3 Hz), 128.8, 128.5 (d, J = 5.0 Hz), 127.9, 111.6, 111.1 (d, J = 12.5 Hz).

³¹P NMR (162 MHz, CDCl₃) δ: -9.13.

5,5-diphenyl-5H-benzo[b]phosphindol-5-ium trifluoromethanesulfonate (2a)

White solid (75.8 mg, 78%). M.p. 124 – 125 °C, $R_f 0.3$ (DCM/CH₃OH = 50 : 1). ¹H NMR (400 MHz, CDCl₃) δ : 8.15 (m, 4H), 7.90 (m, 2H), 7.80 (m, 6H), 7.70 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ : 144.2 (d, *J* = 19.2 Hz), 136.9, 136.1, 133.5 (d, *J* = 11.8 Hz), 132.6 (d, *J* = 9.9 Hz), 131.8 (d, *J* = 11.9 Hz), 131.0 (d, *J* = 13.6 Hz), 123.9 (d, *J* = 10.0 Hz), 120.9 (d, *J* = 95.1 Hz), 116.3 (d, *J* = 87.7 Hz). ³¹P NMR (162 MHz, CDCl₃) δ : 22.79.

¹⁹F NMR (376 MHz, CDCl₃) δ: -78.02.

Exact Mass (ESI): Calcd for $C_{24}H_{18}P^+$ [M-OTf] + 337.11406, found 337.11442.

3-fluoro-5,5-diphenyl-5H-benzo[b]phosphindol-5-ium trifluoromethanesulfonate (2b)

White solid (62.8 mg, 62%). M.p. 252 - 253 °C, $R_f 0.3$ (DCM/CH₃OH = 50 : 1).

¹H NMR (400 MHz, CDCl₃) *δ*: 8.26 (m, 1H), 8.17 (m, 1H), 8.11 (t, *J* = 8.7 Hz, 1H), 7.88 (t, *J* = 7.6 Hz, 1H), 7.84 – 7.75 (m, 7H), 7.73 – 7.63 (m, 5H), 7.58 (t, *J* = 8.3 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ : 164.7 (d, J = 16.8 Hz), 162.2 (d, J = 17.4 Hz), 143.0 (d, J = 18.4 Hz), 140.2 (d, J = 18.9 Hz), 136.9, 136.0, 133.1 (d, J = 11.8 Hz), 132.3 (d, J = 10.2 Hz), 131.0 (d, J = 12.4 Hz), 130.8 (d, J = 13.7 Hz), 126.2, 126.1, 126.0, 124.1 (d, J = 22.3 Hz), 123.8 (d, J = 9.9 Hz), 123.4, 122.4, 122.2, 120.6, 119.7, 119.0, 119.0, 118.7 (d, J = 11.2 Hz), 115.7, 114.8.

³¹P NMR (162 MHz, CDCl₃) δ: 23.20.

¹⁹F NMR (376 MHz, CDCl₃) δ: -78.04, -105.73.

Exact Mass (ESI): Calcd for C₂₄H₁₇FP⁺ [M-OTf] ⁺ 355.10464, found 355.10490.

3-chloro-5,5-diphenyl-5H-benzo[b]phosphindol-5-ium trifluoromethanesulfonate (2c)

White solid (66.6 mg, 64%). M.p. 151 - 152 °C, $R_f 0.3$ (DCM/CH₃OH = 50 : 1).

¹H NMR (400 MHz, CDCl₃) δ: 8.26 (s, 3H), 8.01 (d, *J* = 9.6 Hz, 1H), 7.93 (s, 1H), 7.86 (m, *J* = 6.8 Hz, 7H), 7.74 (m, 5H).

¹³C NMR (100 MHz, CDCl₃) δ : 143.2 (d, J = 18.7 Hz), 142.8 (d, J = 19.1 Hz), 137.4 (d, J = 15.6 Hz), 137.2 (d, J = 5.0 Hz), 136.4 (d, J = 2.9 Hz), 133.5 (d, J = 11.7 Hz), 132.8 (d, J = 10.1 Hz), 131.9 (d, J = 12.2 Hz), 131.5 (d, J = 11.1 Hz), 131.2 (d, J = 13.6 Hz), 129.4, 127.2, 125.8 (d, J = 10.9 Hz), 124.5 (d, J = 9.9 Hz), 123.6, 122.7 (d, J = 4.9 Hz), 121.0, 119.7 (d, J = 55.7 Hz), 115.6 (d, J = 87.6 Hz).

³¹P NMR (162 MHz, CDCl₃) δ: 23.37.

¹⁹F NMR (376 MHz, CDCl₃) δ: -77.97.

Exact Mass (ESI): Calcd for $C_{24}H_{17}ClP^+$ [M-OTf] + 371.07509, found 371.07546.

3-bromo-5,5-diphenyl-5H-benzo[b]phosphindol-5-ium trifluoromethanesulfonate (2d)

White solid (67.7 mg, 60%). M.p. 219 - 220 °C, $R_f 0.4$ (DCM/CH₃OH = 50 : 1).

¹H NMR (400 MHz, CDCl₃) *δ*: 8.27 – 8.15 (m, 2H), 8.14 – 8.07 (m, 2H), 8.01 (d, *J* = 8.5 Hz, 1H), 7.91 (m, 1H), 7.87 – 7.77 (m, 6H), 7.72 (m, 5H).

¹³C NMR (100 MHz, CDCl₃) δ : 143.3 (d, J = 8.6 Hz), 143.1 (d, J = 8.1 Hz), 140.0, 137.3, 136.5 (d, J = 2.7 Hz), 134.3 (d, J = 10.7 Hz), 133.5 (d, J = 12.0 Hz), 132.9 (d, J = 10.3 Hz), 132.2 (d, J = 12.1 Hz), 131.2 (d, J = 13.8 Hz), 125.8 (d, J = 10.6 Hz), 125.2 (d, J = 15.1 Hz), 124.4 (d, J = 9.8 Hz), 123.9, 122.8 (d, J = 41.5 Hz), 120.8, 119.6 (d, J = 53.0 Hz), 115.5 (d, J = 87.6 Hz).

³¹P NMR (162 MHz, CDCl₃) δ: 23.32.

¹⁹F NMR (376 MHz, CDCl₃) δ: -77.95.

Exact Mass (ESI): Calcd for C₂₄H₁₇BrP⁺ [M-OTf] ⁺ 415.02458, found 415.02489.

3-methoxy-5,5-diphenyl-5H-benzo[b]phosphindol-5-ium trifluoromethanesulfonate (2e)

White solid (60.9 mg, 59%). M.p. 162 - 163 °C, $R_f 0.3 (DCM/CH_3OH = 50 : 1)$.

¹H NMR (400 MHz, CDCl₃) *δ*: 8.03 (m, 3H), 7.82 (m, 3.9 Hz, 7H), 7.72 – 7.65 (m, 4H), 7.63 – 7.55 (m, 2H), 7.38 (m, 1H), 3.93 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ : 162.2 (d, J = 15.3 Hz), 144.5 (d, J = 19.2 Hz), 136.9, 136.4, 136.3, 136.0 (d, J = 2.9 Hz), 133.5 (d, J = 11.7 Hz), 132.3 (d, J = 10.0 Hz), 131.0 (d, J = 13.6 Hz), 130.3 (d, J = 12.0 Hz), 125.3 (d, J = 12.0 Hz), 123.2 (d, J = 10.1 Hz), 122.4 (d, J = 41.3 Hz), 120.7, 119.6 (d, J = 38.4 Hz), 116.8 (d, J = 12.2 Hz), 116.3 (d, J = 63.6 Hz), 56.7.

³¹P NMR (162 MHz, CDCl₃) δ: 23.08.

¹⁹F NMR (376 MHz, CDCl₃) δ: -78.02.

Exact Mass (ESI): Calcd for C₂₅H₂₀OP⁺ [M-OTf] ⁺ 367.12463, found 367.12423.

3-methyl-5,5-diphenyl-5H-benzo[b]phosphindol-5-ium trifluoromethanesulfonate (2f)

White solid (70.0 mg, 70%). M.p. 166 - 167 °C, $R_f 0.3$ (DCM/CH₃OH = 50 : 1).

¹H NMR (400 MHz, CDCl₃) δ: 8.09 (d, *J* = 8.7 Hz, 2H), 8.02 (d, *J* = 4.5 Hz, 1H), 7.88 (t, *J* = 9.4 Hz, 2H), 7.84 – 7.75 (m, 6H), 7.74 – 7.64 (m, 6H), 2.51 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ : 144.3 (d, J = 19.5 Hz), 142.7 (d, J = 11.8 Hz), 141.6 (d, J = 19.3 Hz), 137.8, 136.9, 136.0 (d, J = 2.7 Hz), 133.4 (d, J = 11.6 Hz), 132.5 (d, J = 6.7 Hz), 132.4 (d, J = 6.7 Hz), 131.2 (d, J = 12.2 Hz), 131.0 (d, J = 13.6 Hz), 125.8, 123.8 (d, J = 10.6 Hz), 123.7 (d, J = 10.1 Hz), 122.6, 121.2 (d, J = 30.4 Hz), 120.5, 119.8 (d, J = 72.6 Hz), 116.5 (d, J = 87.4 Hz), 21.6.

³¹P NMR (162 MHz, CDCl₃) δ : 22.63.

¹⁹F NMR (376 MHz, CDCl₃) δ: -77.96.

Exact Mass (ESI): Calcd for $C_{25}H_{20}P^+$ [M-OTf] $^+$ 351.12971, found 351.13052.

3-(tert-butyl)-5,5-diphenyl-5H-benzo[b]phosphindol-5-ium trifluoromethanesulfonate (2g)

White solid (82.4 mg, 76%). M.p. 93 – 94 °C, R_f 0.4 (DCM/CH₃OH = 50 : 1). ¹H NMR (400 MHz, CDCl₃) δ: 8.11 (m, 3H), 7.95 (d, *J* = 2.8 Hz, 1H), 7.93 (d, *J* = 1.7 Hz, 1H), 7.91 – 7.76 (m, 7H), 7.75 – 7.66 (m, 5H), 1.38 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ: 155.8 (d, *J* = 10.6 Hz), 144.1 (d, *J* = 19.4 Hz), 141.9 (d, *J* = 19.6 Hz), 136.9, 136.1, 134.5, 133.4 (d, *J* = 11.5 Hz), 132.4 (d, *J* = 9.8 Hz), 131.3 (d, *J* = 12.4 Hz), 131.1 (d, *J* = 13.4 Hz), 128.3 (d, *J* = 10.0 Hz), 123.9 (q, *J* = 10.2 Hz), 122.6, 121.4 (d, *J* = 4.7 Hz), 119.9 (d, *J* = 96.3

Hz), 116.5 (d, *J* = 87.2 Hz), 35.6, 31.2.

³¹P NMR (162 MHz, CDCl₃) δ: 22.94.

¹⁹F NMR (376 MHz, CDCl₃) δ: -77.92.

Exact Mass (ESI): Calcd for C₂₈H₂₆P⁺ [M-OTf] ⁺ 393.17666, found 393.17669.

3,5,5-triphenyl-5H-benzo[b]phosphindol-5-ium trifluoromethanesulfonate (2h)

White solid (78.7 mg, 70%). M.p. 234 - 235 °C, $R_f 0.3$ (DCM/CH₃OH = 50 : 1).

¹H NMR (400 MHz, CDCl₃) δ : 8.30 (s, 1H), 8.20 (d, J = 15.5 Hz, 2H), 8.13 (s, 2H), 7.96 – 7.77 (m, 7H), 7.76 – 7.59 (m, 7H), 7.47 (d, J = 5.6 Hz, 2H), 7.39 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ : 144.7 (d, J = 11.6 Hz), 143.9 (d, J = 19.2 Hz), 143.0 (d, J = 19.3 Hz), 137.9, 137.0, 136.2 (d, J = 2.8 Hz), 135.4, 133.5 (d, J = 11.9 Hz), 132.7 (d, J = 10.0 Hz), 131.7 (d, J = 11.9 Hz), 131.1 (d, J = 13.6 Hz), 130.1 (d, J = 10.3 Hz), 129.3 (d, J = 30.0 Hz), 127.2, 124.6 (d, J = 10.4 Hz), 124.1 (d, J = 9.8 Hz), 122.6 (d, J = 10.3 Hz), 121.5 (d, J = 14.7 Hz), 119.9 (d, J = 107.3 Hz), 116.2 (d, J = 87.3 Hz).

³¹P NMR (162 MHz, CDCl₃) δ: 23.05.

¹⁹F NMR (376 MHz, CDCl₃) δ: -77.91.

Exact Mass (ESI): Calcd for $C_{30}H_{22}P^+$ [M-OTf] $^+$ 413.14536, found 413.14668.

5,5-diphenyl-3-(trifluoromethyl)-5H-benzo[b]phosphindol-5-ium trifluoromethanesulfonate (2i)

White solid (29.9/57.6 mg, 27/57%). M.p. 177 – 178 °C, $R_f 0.4$ (DCM/CH₃OH = 50 : 1). ¹H NMR (400 MHz, CDCl₃) δ : 8.47 (d, J = 9.8 Hz, 1H), 8.34 (d, J = 19.9 Hz, 1H), 8.28 (t, J = 9.7 Hz, 1H), 8.19 (q, J = 9.1 Hz, 2H), 7.97 (t, J = 7.6 Hz, 1H), 7.89 – 7.77 (m, 7H), 7.73 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 147.8 (d, J = 19.1 Hz), 142.6 (d, J = 18.4 Hz), 137.4, 136.6 (d, J = 2.8 Hz), 134.2, 133.8, 133.6, 133.5, 133.2 (d, J = 21.5 Hz), 133.0, 132.9 (d, J = 3.8 Hz), 131.4, 131.2, 128.5 (d, J = 7.8 Hz), 125.4 (q, J = 4.0 Hz), 124.3, 123.1, 122.6, 122.1, 121.7, 121.6, 120.8, 119.4, 115.2 (d, J = 87.9 Hz).
³¹P NMR (162 MHz, CDCl₃) δ: 23.74.
¹⁹F NMR (376 MHz, CDCl₃) δ: -62.48, -78.06.
Exact Mass (ESI): Calcd for C₂₅H₁₇F₃P⁺ [M-OTf] ⁺ 405.10145, found 405.10097. **3-cyano-5,5-diphenyl-5H-benzo[b]phosphindol-5-ium trifluoromethanesulfonate (2j)**

White solid (51.1 mg, 50%). M.p. 218 – 219 °C, R_f 0.2 (DCM/CH₃OH = 50 : 1). ¹H NMR (400 MHz, CD₃OD) δ: 8.79 (m, 1H), 8.48 (m, 1H), 8.42 (m, 1H), 8.34 (d, *J* = 7.9 Hz, 1H), 8.30 (d, *J* = 7.4 Hz, 1H), 8.04 (t, *J* = 7.7 Hz, 1H), 7.92 (dd, *J* = 14.9, 7.6 Hz, 6H), 7.83 (m, 1H), 7.75 (m, 4H).

¹³C NMR (100 MHz, CD₃OD) δ : 148.0 (d, J = 19.0 Hz), 142.9 (d, J = 18.3 Hz), 140.1, 137.0, 136.1, 133.6 (d, J = 12.0 Hz), 132.5 (d, J = 12.0 Hz), 130.7 (d, J = 13.9 Hz), 125.1, 124.6, 123.8, 122.6 (d, J = 50.3 Hz), 121.7 (d, J = 65.9 Hz), 116.4 (d, J = 54.1 Hz), 115.3, 114.8 (d, J = 14.1 Hz).

³¹P NMR (162 MHz, CD₃OD) δ : 23.84.

¹⁹F NMR (376 MHz, CD₃OD) δ: -76.01.

Exact Mass (ESI): Calcd for $C_{25}H_{17}NP^+$ [M-OTf]⁺ 362.10931, found 362.11211.

3-acetyl-5,5-diphenyl-5H-benzo[b]phosphindol-5-ium trifluoromethanesulfonate (2k)

White solid (63.4 mg, 60%). M.p. 97 - 98 °C, $R_f 0.2$ (DCM/CH₃OH = 50 : 1).

¹H NMR (400 MHz, CDCl₃) δ: 8.77 (d, *J* = 9.6 Hz, 1H), 8.53 (s, 1H), 8.42 (s, 1H), 8.33 (s, 1H), 8.21 (s, 1H), 7.97 (s, 1H), 7.84 (m, 7H), 7.72 (m, 4H), 2.75 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ : 196.5, 147.7 (d, J = 20.0 Hz), 143.1 (d, J = 18.6 Hz), 139.2 (d, J = 10.8 Hz), 137.2, 136.4, 133.8 (d, J = 11.9 Hz), 133.0, 132.7 (d, J = 11.9 Hz), 132.3 (d, J = 10.5 Hz), 131.2 (d, J = 13.7 Hz), 125.1 (d, J = 63.9 Hz), 122.5 (d, J = 33.4 Hz), 121.6 (d, J = 32.9 Hz), 119.4, 115.7 (d, J = 87.7 Hz), 27.4.

³¹P NMR (162 MHz, CDCl₃) δ: 22.98.

¹⁹F NMR (376 MHz, CDCl₃) δ: -78.00.

Exact Mass (ESI): Calcd for $C_{26}H_{20}OP^+$ [M-OTf] + 379.12463, found 379.13001.

3-(methoxycarbonyl)-5,5-diphenyl-5H-benzo[b]phosphindol-5-ium trifluoromethanesulfonate (2l)

White solid (79.4 mg, 73%). M.p. 160 - 161 °C, $R_f 0.2$ (DCM/CH₃OH = 50 : 1).

¹H NMR (400 MHz, CDCl₃) δ : 8.57 (d, J = 10.1 Hz, 1H), 8.52 (d, J = 7.9 Hz, 1H), 8.42 – 8.27 (m, 2H), 8.27 – 8.17 (m, 1H), 7.94 (t, J = 7.3 Hz, 1H), 7.78 (m, 7H), 7.70 (m, 4H), 3.93 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ : 164.8, 148.1 (d, *J* = 19.5 Hz), 142.9 (d, *J* = 18.6 Hz), 138.0, 137.3, 136.4 (d, *J* = 2.5 Hz), 133.5 (d, *J* = 11.8 Hz), 132.9, 132.9, 132.8, 131.2 (d, *J* = 13.7 Hz), 125.8, 125.3 (d, *J* = 13.7 Hz), 125.8 Hz), 125

9.7 Hz), 124.6 (d, *J* = 9.8 Hz), 122.6, 122.1 (d, *J* = 28.8 Hz), 121.3, 120.2 (d, *J* = 163.7 Hz), 115.6 (d, *J* = 87.7 Hz), 53.1.

³¹P NMR (162 MHz, CDCl₃) δ : 22.84.

¹⁹F NMR (376 MHz, CDCl₃) δ: -78.00.

Exact Mass (ESI): Calcd for $C_{26}H_{20}O_2P^+$ [M-OTf] + 395.11954, found 395.11921.

3-(ethoxycarbonyl)-5,5-diphenyl-5H-benzo[b]phosphindol-5-ium trifluoromethanesulfonate (2m)

White solid (65.8 mg, 59%). M.p. 90 - 91 °C, $R_f 0.2$ (DCM/CH₃OH = 50 : 1).

¹H NMR (400 MHz, CDCl₃) δ : 8.62 – 8.51 (m, 2H), 8.39 – 8.24 (m, 3H), 7.96 (t, *J* = 7.7 Hz, 1H), 7.90 – 7.76 (m, 7H), 7.72 (m, 4H), 4.43 (q, *J* = 8.9 Hz, 2H), 1.41 (t, *J* = 8.9, 3H).

¹³C NMR (100 MHz, CDCl₃) δ : 164.4, 148.2 (d, J = 19.6 Hz), 142.8 (d, J = 17.0 Hz), 137.9, 137.2, 136.4, 133.6 (d, J = 11.8 Hz), 133.2 (d, J = 11.5 Hz), 133.0, 132.8 (d, J = 11.4 Hz), 131.2 (d, J = 13.7 Hz), 125.1, 124.5, 122.6, 122.2 (d, J = 24.1 Hz), 121.3 (d, J = 24.7 Hz), 119.4, 115.6 (d, J = 87.8 Hz), 62.4, 14.4.

³¹P NMR (162 MHz, CDCl₃) δ: 22.95.

¹⁹F NMR (376 MHz, CDCl₃) δ: -78.02.

Exact Mass (ESI): Calcd for $C_{27}H_{22}O_2P^+$ [M-OTf] $^+$ 409.13519, found 409.13766.

1-methyl-5,5-diphenyl-5H-benzo[b]phosphindol-5-ium trifluoromethanesulfonate (2n)

White solid (51.0 mg, 51%). M.p. 148 – 149 °C, $R_f 0.3$ (DCM/CH₃OH = 50 : 1).

¹H NMR (400 MHz, CDCl₃) δ : 8.29 (m, 1H), 8.15 (m, 1H), 7.97 – 7.89 (m, 2H), 7.82 – 7.75 (m, 5H), 7.74 (d, J = 1.2 Hz, 1H), 7.71 (dd, J = 7.9, 4.2 Hz, 1H), 7.67 (m, 5H), 7.60 (m, 1H), 2.84 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 145.4 (d, J = 19.4 Hz), 141.9 (d, J = 19.1 Hz), 140.2 (d, J = 1.4 Hz), 137.8 (d, J = 9.9 Hz), 136.8 (d, J = 1.4 Hz), 136.0 (d, J = 2.8 Hz), 133.4 (d, J = 11.6 Hz), 132.9 (d, J = 9.7 Hz), 131.0, 130.9 (d, J = 4.2 Hz), 130.7, 130.4 (d, J = 10.2 Hz), 127.6 (d, J = 10.2 Hz), 122.6, 121.6 (d, J = 33.4 Hz), 120.7 (d, J = 33.2 Hz), 119.4, 116.5 (d, J = 88.1 Hz), 22.8.

³¹P NMR (162 MHz, CDCl₃) *δ*: 20.88.

¹⁹F NMR (376 MHz, CDCl₃) δ : -77.96.

Exact Mass (ESI): Calcd for $C_{25}H_{20}P^+$ [M-OTf] $^+$ 351.12971, found 351.12975.

2-methyl-5,5-diphenyl-5H-benzo[b]phosphindol-5-ium trifluoromethanesulfonate (20) 4-methyl-5,5-diphenyl-5H-benzo[b]phosphindol-5-ium trifluoromethanesulfonate (20')

White solid (81.0 mg, 81%). M.p. 144 – 145 °C, R_f 0.3 (DCM/CH₃OH = 50 : 1).

¹H NMR (400 MHz, CDCl₃) δ: 8.12 (m, 4H), 8.05 – 8.00 (m, 1H), 8.00 – 7.92 (m, 4H), 7.91 – 7.80 (m, 7H), 7.80 – 7.69 (m, 18H), 7.69 – 7.58 (m, 8H), 7.51 (m, 1H), 7.42 (m, 1H), 2.54 (s, 3.93H, **20'**), 2.37 (s, 3H, **20**).

¹³C NMR (100 MHz, CDCl₃) δ : 148.7, 145.0 (d, J = 20.2 Hz), 144.5, 144.3 (d, J = 4.7 Hz), 144.2, 144.1 (d, J = 4.2 Hz), 143.9 (d, J = 19.3 Hz), 137.6, 136.8, 136.4 (d, J = 2.9 Hz), 136.0 (d, J = 2.8 Hz), 1336 (d, J = 11.7 Hz), 133.3 (d, J = 11.6 Hz), 133.0 (d, J = 10.6 Hz), 132.7, 132.5 (d, J = 8.1 Hz), 132.3 (d, J = 6.8 Hz), 132.2, 131.9, 131.7 (d, J = 3.4 Hz), 131.6, 131.5, 131.2 (d, J = 13.5 Hz), 131.0 (d, J = 13.6 Hz), 124.7 (d, J = 10.2 Hz), 124.0, 123.9, 122.7 (d, J = 4.6 Hz), 122.0 (d, J = 9.8 Hz), 121.8 (d, J = 9.9 Hz), 120.9, 119.6 (d, J = 19.4 Hz), 118.7, 117.7, 117.2, 116.5 (d, J = 35.3 Hz), 114.9 (d, J = 86.5 Hz), 22.3, 21.5 (d, J = 4.0 Hz).

³¹P NMR (162 MHz, CDCl₃) δ: 24.75 (20), 22.15 (20').

¹⁹F NMR (376 MHz, CDCl₃) δ: -77.95.

Exact Mass (ESI): Calcd for $C_{25}H_{20}P^+$ [M-OTf] $^+$ 351.12971, found 351.12975.

2,4-dimethyl-5,5-diphenyl-5H-benzo[b]phosphindol-5-ium trifluoromethanesulfonate (2p)

White solid (87.4 mg, 85%). M.p. 201 - 202 °C, $R_f 0.3$ (DCM/CH₃OH = 50 : 1).

¹H NMR (400 MHz, CDCl₃) δ: 8.13 (m, 1H), 7.94 (m, 1H), 7.90 – 7.83 (m, 4H), 7.83 – 7.77 (m, 3H), 7.77 – 7.70 (m, 5H), 7.64 (m, 1H), 7.27 (d, *J* = 5.5 Hz, 1H), 2.56 (s, 3H), 2.36 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ : 149.4 (d, J = 1.5 Hz), 145.2 (d, J = 20.5 Hz), 144.0 (d, J = 13.7 Hz), 143.8 (d, J = 4.2 Hz), 136.6, 136.2 (d, J = 2.8 Hz), 133.8 (d, J = 10.9 Hz), 133.5 (d, J = 11.8 Hz), 131.7, 131.6 (d, J = 9.7 Hz), 131.1 (d, J = 13.5 Hz), 125.8, 123.7 (d, J = 9.8 Hz), 123.2, 122.8 (d, J = 10.2 Hz), 122.4 (d, J = 40.5 Hz), 119.4, 116.0 (d, J = 39.8 Hz), 115.0 (d, J = 31.1 Hz), 22.1, 21.4 (d, J = 3.8 Hz). ³¹P NMR (162 MHz, CDCl₃) δ : 24.12.

¹⁹F NMR (376 MHz, CDCl₃) δ: -77.95.

Exact Mass (ESI): Calcd for $C_{26}H_{22}P^+$ [M-OTf] + 365.14536, found 365.14524.

2-chloro-5,5-diphenyl-5H-benzo[b]phosphindol-5-ium trifluoromethanesulfonate (2q)

White solid (65.5 mg, 63%). M.p. 130 - 131 °C, $R_f 0.4$ (DCM/CH₃OH = 50 : 1).

¹H NMR (400 MHz, CDCl₃) δ: 8.23 (t, *J* = 8.8 Hz, 1H), 8.19 – 8.09 (m, 2H), 8.07 (s, 1H), 7.93 (t, *J* = 7.5 Hz, 1H), 7.85 – 7.72 (m, 7H), 7.68 (m, 5H).

¹³C NMR (100 MHz, CDCl₃) δ : 145.8 (d, J = 20.5 Hz), 144.1, 142.9 (d, J = 18.6 Hz), 137.0, 136.2 (d, J = 2.7 Hz), 134.0 (d, J = 10.9 Hz), 133.5 (d, J = 11.9 Hz), 132.8 (d, J = 9.8 Hz), 132.4 (d, J = 11.8 Hz), 132.0 (d, J = 12.5 Hz), 131.1 (d, J = 13.6 Hz), 124.2 (d, J = 11.0 Hz), 122.6, 121.9, 121.0, 119.1 (d, J = 97.0 Hz), 115.9 (d, J = 88.1 Hz).

³¹P NMR (162 MHz, CDCl₃) δ: 22.57.

¹⁹F NMR (376 MHz, CDCl₃) δ: -78.03.

Exact Mass (ESI): Calcd for $C_{24}H_{17}ClP^+$ [M-OTf] + 371.07509, found 371.07817.

5,5-diphenyl-2-(trifluoromethoxy)-5H-benzo[b]phosphindol-5-ium trifluoromethanesulfonate (2r)

White solid (71.8 mg, 63%). M.p. 151 - 152 °C, $R_f 0.3$ (DCM/CH₃OH = 50 : 1).

¹H NMR (400 MHz, CDCl₃) δ : 8.41 (t, J = 8.8 Hz, 1H), 8.16 (dd, J = 7.9 Hz, 2H), 8.02 – 7.92 (m, 1H), 7.90 – 7.74 (m, 8H), 7.68 (d, J = 3.0 Hz, 4H), 7.54 (d, J = 7.0 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ : 155.8, 146.9, 142.8, 137.1, 136.2, 135.2, 133.5 (d, *J* = 11.8 Hz), 132.7 (q, *J* = 10.8 Hz), 131.1 (d, *J* = 13.6 Hz), 124.3, 123.1, 122.1, 121.2, 118.9 (d, *J* = 97.6 Hz), 116.2, 115.5 (d, *J* = 29.5 Hz).

³¹P NMR (162 MHz, CDCl₃) δ: 22.31.

¹⁹F NMR (376 MHz, CDCl₃) δ: -57.24, -78.10.

Exact Mass (ESI): Calcd for $C_{25}H_{17}F_3OP^+$ [M-OTf] + 421.09636, found 421.09607.

7,7-diphenyl-7H-benzo[kl]acridophosphin-7-ium trifluoromethanesulfonate (2t) 7,7-diphenyl-7H-dibenzo[b,e]phosphindol-7-ium trifluoromethanesulfonate (2t')

Yellow solid (71.8 mg, 67%). M.p. 121 – 122 °C, R_f 0.2 (DCM/CH₃OH = 50 : 1).

¹H NMR (400 MHz, CDCl₃) δ : 8.84 (d, J = 11.7 Hz, 1H), 8.59 (d, J = 3.2 Hz, 1H), 8.47 (dd, J = 8.5, 0.9 Hz, 9H), 8.37 – 8.29 (m, 5H), 8.26 (dd, J = 7.7, 3.2 Hz, 4H), 8.18 – 8.02 (m, 3H), 7.91 (dd, J = 17.3, 9.6 Hz, 3H), 7.87 – 7.78 (m, 14H), 7.76 (dd, J = 10.1, 3.6 Hz, 1H), 7.69 (td, J = 7.7, 3.6 Hz, 14H), 7.60 (dd, J = 15.7, 5.3 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ : 146.2 (d, J = 18.8 Hz), 144.7, 143.9 (d, J = 20.2 Hz), 139.0, 137.0, 136.8, 136.3, 135.9, 134.4 (d, J = 9.6 Hz), 133.8 (d, J = 11.8 Hz), 133.5 (d, J = 11.8 Hz), 132.4 (d, J = 9.5 Hz), 132.2, 132.0 (d, J = 11.1 Hz), 131.3, 131.2, 131.0, 130.9, 130.7, 130.2, 129.2, 128.9, 128.5, 124.5, 124.3 (d, J = 5.1 Hz), 124.1 (d, J = 12.9 Hz), 123.5 (d, J = 9.7 Hz), 123.1, 122.7, 120.7 (d, J = 11.3 Hz), 119.5 , 117.7, 116.9, 116.0, 115.1 (d, J = 10.0 Hz).

³¹P NMR (162 MHz, CDCl₃) δ: 24.75, 21.57.

¹⁹F NMR (376 MHz, CDCl₃) δ: -77.98.

Exact Mass (ESI): Calcd for $C_{28}H_{20}P^+$ [M-OTf] + 387.12971, found 387.13144.

5,5-di-tert-butyl-5H-benzo[b]phosphindol-5-ium trifluoromethanesulfonate (2u)

White solid (83.0 mg, 93%). M.p. 124 - 125 °C, $R_f 0.3$ (DCM/CH₃OH = 50 : 1).

¹H NMR (400 MHz, CDCl₃) δ : 8.11 (dd, J = 4.9, 2.5 Hz, 2H), 8.10 – 8.05 (m, 2H), 7.92 – 7.83 (m, 2H), 7.73 (m, 2H), 1.51 (d, J = 3.6 Hz, 9H), 1.47 (d, J = 3.6 Hz, 9H).

¹³C NMR (100 MHz, CDCl₃) δ : 145.0 (d, J = 12.9 Hz), 136.0, 132.1 (d, J = 8.7 Hz), 131.2 (d, J = 10.4 Hz), 123.7 (d, J = 8.3 Hz), 119.5 (d, J = 77.2 Hz), 36.1 (d, J = 31.9 Hz), 27.0.

³¹P NMR (162 MHz, CDCl₃) δ: 51.87.
 ¹⁹F NMR (376 MHz, CDCl₃) δ: -77.91.
 Exact Mass (ESI): Calcd for C₂₀H₂₆P⁺ [M-OTf] + 297.17666, found 297.17670.
 5,5-dicyclohexyl-5H-benzo[b]phosphindol-5-ium trifluoromethanesulfonate (2v)

White solid (87.7 mg, 88%). M.p. 216 - 217 °C, $R_f 0.3$ (DCM/CH₃OH = 50 : 1).

¹H NMR (400 MHz, CDCl₃) δ : 8.15 (t, J = 7.9 Hz, 2H), 7.97 (dd, J = 7.6, 5.7 Hz, 2H), 7.82 (t, J = 7.6 Hz, 2H), 7.71 – 7.56 (m, 2H), 3.51 – 3.29 (m, 2H), 1.91 (s, 4H), 1.72 (d, J = 23.0 Hz, 6H), 1.58 – 1.40 (m, 4H), 1.28 – 1.05 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ : 145.2, 135.6, 132.9 (d, J = 9.4 Hz), 130.8 (d, J = 10.9 Hz), 122.9 (d, J = 8.5 Hz), 118.4 (d, J = 81.5 Hz), 30.6 (d, J = 39.2 Hz), 26.1, 25.6 (d, J = 14.1 Hz), 25.2.

³¹P NMR (162 MHz, CDCl₃) δ: 43.10.

¹⁹F NMR (376 MHz, CDCl₃) δ: -78.02.

Exact Mass (ESI): Calcd for C₂₄H₃₀P⁺ [M-OTf] ⁺ 349.20796, found 349.20940.

¹H NMR spectrum of 1b

¹³C NMR spectrum of 1b

³¹P NMR spectrum of 1b

¹H NMR spectrum of 1c

¹³C NMR spectrum of 1c

³¹P NMR spectrum of 1c

¹H NMR spectrum of 1d

¹³C NMR spectrum of 1d

³¹P NMR spectrum of 1d

¹H NMR spectrum of 1e

¹³C NMR spectrum of 1e

³¹P NMR spectrum of 1e

¹H NMR spectrum of 1f

¹³C NMR spectrum of 1f

³¹P NMR spectrum of 1f

¹H NMR spectrum of 1g

¹³C NMR spectrum of 1g

³¹P NMR spectrum of 1g

¹H NMR spectrum of 1h

¹³C NMR spectrum of 1h

³¹P NMR spectrum of 1h

¹H NMR spectrum of 1i

¹³C NMR spectrum of 1i

³¹P NMR spectrum of 1i

¹⁹F NMR spectrum of 1i

¹H NMR spectrum of 1j

¹³C NMR spectrum of 1j

³¹P NMR spectrum of 1j

¹H NMR spectrum of 1k

³¹P NMR spectrum of 1k

¹H NMR spectrum of 11

¹³C NMR spectrum of 11

³¹P NMR spectrum of 11

¹H NMR spectrum of 1m

¹³C NMR spectrum of 1m

³¹P NMR spectrum of 1m

¹H NMR spectrum of 1n

¹³C NMR spectrum of 1n

³¹P NMR spectrum of 1n

¹H NMR spectrum of 10

¹³C NMR spectrum of 10

³¹P NMR spectrum of 10

¹H NMR spectrum of 1p

¹³C NMR spectrum of 1p

³¹P NMR spectrum of 1p

¹H NMR spectrum of 1q

¹³C NMR spectrum of 1q

³¹P NMR spectrum of 1q

¹H NMR spectrum of 1r

¹³C NMR spectrum of 1r

³¹P NMR spectrum of 1r

¹H NMR spectrum of 1s

¹³C NMR spectrum of 1s

³¹P NMR spectrum of 1s

¹H NMR spectrum of 1t

¹³C NMR spectrum of 1t

³¹P NMR spectrum of 1t

¹H NMR spectrum of 1w

¹³C NMR spectrum of 1w

³¹P NMR spectrum of 1w

¹H NMR spectrum of 2a

¹³C NMR spectrum of 2a

³¹P NMR spectrum of 2a

¹⁹F NMR spectrum of 2a

¹H NMR spectrum of 2b

¹³C NMR spectrum of 2b

³¹P NMR spectrum of 2b

¹⁹F NMR spectrum of 2b

¹H NMR spectrum of 2c

¹³C NMR spectrum of 2c

³¹P NMR spectrum of 2c

¹⁹F NMR spectrum of 2c

¹H NMR spectrum of 2d

¹³C NMR spectrum of 2d

³¹P NMR spectrum of 2d

¹⁹F NMR spectrum of 2d

¹H NMR spectrum of 2e

¹³C NMR spectrum of 2e

· · · ·														
50	300	250	200	150	100	50	0 ppm	-50	-100	-150	-200	-250	-300	-3

¹⁹F NMR spectrum of 2e

¹H NMR spectrum of 2f

¹³C NMR spectrum of 2f

³¹P NMR spectrum of 2f

¹⁹F NMR spectrum of 2f

¹H NMR spectrum of 2g

¹³C NMR spectrum of 2g

55.8	55.7	44.2	44.0	42.0	41.8	36.9	36.1	34.5	33.4	33.3	32.5	32.4	31.4	31.3	31.2	31.0	28.4	28.3	24.1	24.0	23.9	23.8	22.6	21.4	21.3	20.4	17.0	35.61	31.2
	_	_	_	_	_	_	_	_	_	_	_	_	_		_		_		_			_	_		_	_		-(1)	(4.)
-	-	-	-	-	-		-	-	-	-	-	-	-	2	-	-	-	_	_			_	_	_		_	-	- (1

³¹P NMR spectrum of 2g

· · · ·	- · ·	· · ·												_
50	300	250	200	150	100	50	0 ppm	-50	-100	-150	-200	-250	-300	-3

¹⁹F NMR spectrum of 2g

¹³C NMR spectrum of 2h

³¹P NMR spectrum of 2h

¹⁹F NMR spectrum of 2h

¹H NMR spectrum of 2i

¹³C NMR spectrum of 2i

7.9	1.7	2.7	2.5	7.6	7.4	7.2	6.6	4.3	4.1	3.8	3.6	3.5	3.4	3.3	3.1	3.0	2.8	1.3	1.2	8.8	8.4	5.8	5.6	5.5	5.5	5.3	5.2	4.3	3.0	2.6	2.1	1.7	1.6	0.7	9.4	6.2	5.6	4.8
1	1	4	14	13	13	13	13	<u>t</u>	Ξ	13	13	13	13	13	13	13	13	13	13	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	11	11	11	Ē
- L-				_					-	L	L	_	~	1		_	_	_	_		_																	

³¹P NMR spectrum of 2i

¹⁹F NMR spectrum of 2i

¹H NMR spectrum of 2j

¹³C NMR spectrum of 2j

50	300	250	200	150	100	50	0 ppm	-50	-100	-150	-200	-250	-300	-3

¹⁹F NMR spectrum of 2j

¹H NMR spectrum of 2k

¹³C NMR spectrum of 2k

S72

³¹P NMR spectrum of 2k

¹⁹F NMR spectrum of 2k

¹H NMR spectrum of 2l

¹³C NMR spectrum of 2l

∞	0 ~ ~ 4 ~ 4 ~ 6 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
÷	∞ $\overline{)}$ \overline{)} $\overline{)}$ \overline{)} $\overline{)}$ \overline{)} \overline{)} $\overline{)}$ \overline{)} $\overline{)}$ \overline{)})	
é	0 - 1 - m m m m m m m m m m m	ά
	+	S
1		

³¹P NMR spectrum of 21

¹⁹F NMR spectrum of 2l

¹H NMR spectrum of 2m

¹³C NMR spectrum of 2m

³¹P NMR spectrum of 2m

¹⁹F NMR spectrum of 2m

¹H NMR spectrum of 2n

³¹P NMR spectrum of 2n

¹⁹F NMR spectrum of 2n

¹H NMR spectrum of 20 and 20'

¹³C NMR spectrum of 20 and 20'

³¹P NMR spectrum of 20 and 20'

¹⁹ F NMR spectrum of 20 and 20'

¹H NMR spectrum of 2p

ppm

³¹P NMR spectrum of 2p

¹⁹F NMR spectrum of 2p

¹H NMR spectrum of 2q

$\begin{array}{c} -8.25\\ -8.23\\ -8.15\\ -8.15\\ -8.13\\ -8.13\\ -8.11\\ -8.13\\ -8.11\\ -8.13\\ -8.11\\ -8.20\\ -7.95\\ -7.93\\ -7.93\\ -7.93\\ -7.73\\ -7$

¹³C NMR spectrum of 2q

145.9 144.1 144.1 144.1 144.1 144.1 144.1 144.1 144.1 144.1 144.1 144.1 144.1 144.1 144.1 134.1 135.2 135.4</

³¹P NMR spectrum of 2q

														_
50	300	250	200	150	100	50	0 ppm	-50	-100	-150	-200	-250	-300	-3

¹⁹F NMR spectrum of 2q

¹H NMR spectrum of 2r

³¹P NMR spectrum of 2r

¹⁹F NMR spectrum of 2r

¹H NMR spectrum of 2t and 2t'

¹³C NMR spectrum of 2t and 2t'

³¹P NMR spectrum of 2t and 2t'

¹⁹F NMR spectrum of 2t and 2t'

¹H NMR spectrum of 2u

¹³C NMR spectrum of 2u

³¹P NMR spectrum of 2u

¹⁹F NMR spectrum of 2u

¹H NMR spectrum of 2v

¹³C NMR spectrum of 2v

³¹P NMR spectrum of 2v

¹⁹F NMR spectrum of 2v

