Electronic Supplementary material

Computational and data driven-assisted optimizing and understanding of the multiple stage extraction process for polysaccharide and secondary metabolites from natural products

Jiamu Ma ${ }^{\text {a }}$, Jianling $\mathrm{Yao}^{\text {a }}$, Xueyang Ren ${ }^{\text {a }}$, Ying Dong ${ }^{\text {a }}$, Ruolan Song ${ }^{\text {a }}$, Xiangjian Zhong ${ }^{\text {a }}$, Yuan Zheng ${ }^{\text {a }}$, Dongjie Shan ${ }^{\text {a }}$, Fang Lv ${ }^{\text {a }}$, Xianxian Li ${ }^{\text {a }}$, Qingyue Deng ${ }^{\text {a }}$, Yingyu He ${ }^{\text {a }}$, Ruijuan Yuan ${ }^{*}$, and Gaimei She ${ }^{*}{ }^{a}$

School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Fangshan District, 100029 Beijing, China
*Corresponding author. Tel.: +86-10-5391-2129; Fax: $+86-10-5391-2129 ; \quad$ E-Mail: rjyuance@126.com; shegaimei@126.com.

Table of Contents

1.General 3
1.1 List of Figures 3
1.2 List of Tables 3
2. Materials and methods 4
2.1 Measurement and data processing method of panoramic characterization parameters 4
2.2 qNMR analysis procedures 4
2.3 HPLC fingerprint analysis 5
2.4 Molecular weight of polysaccharides 5
2.5 Content determination of specific parameters in OED 6
2.6 Determination of components composition of ideal extracts of BWG by UHPLC-Q-Orbitrap-MS/MS analysis 6
2.7 Monosaccharide composition of polysaccharide of the ideal extraction 7
3. Results and discussion 7
3.1 OED results and the identification of OED extraction process 7
3.2 qNMR analysis for OED 9
3.3 HPLC fingerprint analysis for OED 10
3.4 Molecular weight of polysaccharides analysis for OED 12
4. References 60

1.General

1.1 List of Figures

Fig. S1 Basic information about qNMR analysis.
Fig. S2 HPLC fingerprint schematic diagram of OED. 29 peaks in same were marked.
Fig. S3 Statistical inference of qNMR and HPLC fingerprint based on chemometrics.
Fig. S4 Chromatogram of molecular weight.
Fig. S5. Concentrations of OED samples calculated by MCR-ALS.
Fig. S6. qNMR spectrum of OED samples deconvoluted by MCR-ALS. by MCR-ALS.
Fig. S7. Total ion chromatogram of ideal extract of BWG on positive and negative mode.
Fig. S8. The workflow of the model to optimize the multiple stage extraction process.

1.2 List of Tables

Table S1 OED results of the ethanol extraction process of the influencing factors.
Table S2 OED results of the water extraction process of the influencing factors.
Table S3. Visual table of OED test in EE process
Table S4. Analysis of variance table of OED test in EE process
Table S5. Visual table of OED test in WE process
Table S6. Analysis of variance table of OED test in WE process
Table S7. Same important peaks identification from qNMR in this study.
Table S8. Same peaks identification from HPLC fingerprint analysis in this study.
Table S9. Same peaks identification from MW analysis in this study.
Table S10. Components identified in ideal extracts of BSG.
Table S11. Regression model performance of training data and validation data.

2. Materials and methods

2.1 Measurement and data processing method of panoramic characterization parameters

As the WE process is much more commonly applied in TCM extraction, as well as there are four kinds of materials that take part in the WE process when there is only one material in the EE process, a set of panoramic characterization parameters (qNMR, HPLC fingerprint, and molecular weight of polysaccharide) would explore the changing during the extraction process.

2.2 qNMR analysis procedures

A 2.5 mg BSG was accurately weighed and dissolved in $500 \mu \mathrm{~L}$ of $\mathrm{D}_{2} \mathrm{O}$ containing 0.01 $\mathrm{mM} / \mathrm{mL}$ of DSS- d_{6} for the qNMR sample ${ }^{1,2}$. Then the mixed solution was transferred to a $5-\mathrm{mm}$ NMR tube for subsequent analysis. The ${ }^{1} \mathrm{H}$ NMR was performed by a Bruker Avance 400 MHz NMR spectrometer. The ${ }^{1} \mathrm{H}$ NMR spectrum acquisition parameters were set as default.

The NMR spectra were processed by Bruker Topspin (Bruker Biospin Corp. Billerica, MA, USA) and MestReNova software (Mestrelab Research, Santiago de Compostela, Spain). The peak of DSS- d_{6} was auto-corrected to 0.00 ppm as an internal reference. The embedded modules in Topspin were used to achieve phase correction manually. MestReNova was then used to conduct baseline correction with the Bernstein Polynomial Fit algorithm. The raw spectrum data was handled by binning ($\delta=0.01 \mathrm{ppm}$) for dimensionality reduction.

Many peaks have similar chemical shifts (δ, ppm), and overlapped could cause a dilemma like uncertainty quantitative. Therefore, multivariate curve resolution-alternating least squares (MCR-ALS), as a powerful mathematic method, was introduced for recovering the pure NMR spectrum and the corresponding concentration according to the chemical shift ${ }^{3}$. Principal components analysis (PCA), hierarchical cluster analysis (HCA), and partial least squares discriminant analysis (PLS-DA) were applied in the extracted peaks from MCR-ALS for classifying the peaks with a great contribution to the extraction process. For calculating and predicting the extraction process furtherly, the average mass concentration was brought up based on the whole NMR spectrum. Herein, the following equations were presented for describing OED samples:

$$
\begin{equation*}
W_{x}=\frac{A_{x}}{A_{s}} \frac{E_{x}}{E_{s}} W_{s} \tag{S1}
\end{equation*}
$$

Where W_{x} and W_{s} are the mass concentrations of components and internal standard, A_{x} and A_{s} are the integral areas for characteristic peaks of components and methyl groups of internal standard, and E_{x} and E_{s} are the ratios of molar masses to the numbers from the protons, respectively.

$$
W_{\text {ave }}=W_{x} \times \sum \frac{W_{x}}{W_{T}}(\mathrm{~S} 2)
$$

Where $W_{\text {ave }}$ denotes the meaning of average mass concentration, while W_{T} is the total peak area of all peaks with the chemical shift from $0.5 \sim 10.0 \mathrm{ppm}$.

2.3 HPLC fingerprint analysis

Samples from the WE process of OED were prepared for high-performance liquid chromatography (HPLC) fingerprint analysis. Analyses were performed using a S6000 series HPLC equipment coupled to a PAD detector (Acchorom Tech, China). Compound separation was performed using an Agilent $\mathrm{XDB} \mathrm{C}_{18}$ column ($4.6 \mathrm{~mm} \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$). The column temperature was set at $30^{\circ} \mathrm{C}$. The mobile phases were composed of 0.1% formic acid in water (solvent A) and acetonitrile (solvent B). The applied gradient was as follows: 0-5 min, $5 \% \mathrm{~A}$; 5$20 \mathrm{~min}, 5-10 \% \mathrm{~A} ; 20-40 \mathrm{~min}, 10-20 \% \mathrm{~A} ; 40-55 \mathrm{~min}, 20-25 \% \mathrm{~A} ; 55-70 \mathrm{~min}, 25-30 \% \mathrm{~A} ; 70-80$ $\min , 30-40 \% \mathrm{~A} ; 80-85 \mathrm{~min}, 40-50 \% \mathrm{~A} ; 85-95 \mathrm{~min}, 50-60 \% \mathrm{~A} ; 95-115 \mathrm{~min}, 60-90 \% \mathrm{~A} ; 115-120$ $\min , 90 \% \mathrm{~A}$. The flow velocity and injection volume were $1.0 \mathrm{~mL} / \mathrm{min}$ and $10 \mu \mathrm{~L}$. The UV spectra was set at 254 nm due to the maximum number of peaks of samples. The HPLC data files of OED with the suffix of "AIA" were introduced into the Similarity evaluation system for the chromatographic fingerprint of TCM (Version 2012 A) to generate fingerprint chromatographic and identity common peaks. All sets were as default.

Peak area of same peaks as data input to conducted analysis algorithm based on PCA, HCA, and support vector machine (SVM) for clustering. Furthermore, PLS-DA was performed to identify the variable importance for the projection (VIP) peaks and spotting the key components that had a vital influence to sample.

As the clustering results and picked VIP peaks, the average of the area of VIP components was put up as following equation $(3) \sim(4)$. Since the loss of standards and qualitative properties, $A_{\text {ave }}$ is taken logarithm as normalization.

$$
\begin{gather*}
A_{\text {are }}=A_{r} \times \sum_{n=1}^{8} \frac{A_{n}}{A \tau} \tag{S3}\\
\overline{A_{\text {ave }}}=\log _{10}(\text { Aave }) \tag{S4}
\end{gather*}
$$

Where $A_{\text {ave }}$ denotes the average peak area of each OED sample, A_{n} means the peak area of VIP peaks in each sample, and A_{T} means the total area of the same peaks in each OED sample. $\overline{A_{\text {ave }}}$ means the standardized average peak area of each sample.

2.4 Molecular weight of polysaccharides

Samples to be tested were as same as that in qNMR and HPLC fingerprint. The molecular weight of samples was detected by the HPGPC method on the HPLC (2695, Waters Technology, USA) with an evaporative light-scattering detector (2424, Waters Technology, USA). The sample and standard at a concentration of $5 \mathrm{mg} / \mathrm{mL}$ and $1 \mathrm{mg} / \mathrm{mL}$ were accurately prepared. TSKgel PWXL 6000 (7.8 mm I.D. $\times 30 \mathrm{~cm}$, TOSHO, Japan) and TSKgel PWXL 4000 (7.8 mm I.D. $\times 30$ cm , TOSHO, Japan) were equipped for detection. Ultrapure water was used as the mobile phase at a flow rate of $0.5 \mathrm{~mL} / \mathrm{min}$. The column temperature was maintained at $30^{\circ} \mathrm{C}$. The injection volume was $20 \mu \mathrm{~L}$. The weight-average (M_{W}) molecular weight of each peak was determined by retention time (RT) according to the standard curves. The width of each peak, showing the
duration of the peak, and the number of peaks was also the features in evaluating the M_{W} of polysaccharides. To bridge to differences among all OED experiments and to represent the features more specific, average molecular weight ($M_{\text {wave }}$) was adopted. The equation to calculate $M_{\text {wave }}$ could be expressed as below:

$$
\begin{gather*}
\alpha_{n}=\frac{A_{\mathrm{n}}}{A_{T}} \quad(\mathrm{~S} 5) \tag{S5}\\
M_{\text {wave }}=\sum_{n=1}^{4} \alpha_{n} A_{n} \tag{S6}\\
\overline{M_{\text {wave }}}=\log _{10}\left(M_{\text {wave }}\right) \tag{S7}
\end{gather*}
$$

Where α_{n} denotes the meaning of the proportion of total peak area accounted for every single peak, A_{n} is the peak area of a single peak, and A_{T} refers to the total peak area of all same peaks in OED samples. $M_{\text {wave }}$ has the meaning of average molecular weight of polysaccharides in each OED sample, while $\overline{M_{\text {wave }}}$ is the standardized form of $M_{\text {wave }}$.

2.5 Content determination of specific parameters in OED

Content of schisandrin and hesperidin were determined by the methods from their original plant recorded by the Chinese Pharmacopoeia 2020 Edition and performed on HPLC (S6000, Acchrom, China). The yield of dry extract was determined under General Provisions 2201 of the Chinese Pharmacopoeia 2020 Edition, either.

Total sugar content was measured using the slightly modified phenol sulfuric acid method. Extract samples to be tested $(0.1 \mathrm{~g})$ were homogenized in 10 mL of distilled water. The mixture was dropped into ultrasonic for 30 min .0 .24 mL filtrate was mixed with $1.26 \mathrm{~mL} 95 \%$ ethyl alcohol for precipitating total sugar. While waiting for 8 h , the mixture was centrifuged at 7000 $\mathrm{r} / \mathrm{min}$ for 20 min . Then, the part of the solid was dissolved in 5 mL water as a sample for the test. The 2 mL sample was mixed with $1.2 \mathrm{~mL} 5 \%$ phenol and 5.5 mL concentrated sulfuric acid, and the reaction was performed under $90^{\circ} \mathrm{C}$ water bathing for 15 min . The cool solution was detected for absorbance under 485 nm . All measurements were conducted in triple unless was mentioned specially.

2.6 Determination of components composition of ideal extracts of BWG by UHPLC-Q-Orbitrap-

MS/MS analysis

The composition of small molecule compound of BWG was analyzed by an Ultimate 3000 system (Dionex Corp., USA) which was series with Thermo Q Exactive Plus QE (Thermo Fisher Scientific Corp., USA). Data analysis was performed on Compound Discovery 3.2 (Thermo Fisher Scientific Corp., USA). Liquid chromatography analysis was achieved with Agilent ZORBAX Eclipse XDB C ${ }_{18}$ column ($250 \times 4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}$). The mobile phases consisted of 0.1% formic acid water (A) and acetonitrile (B) with the gradient elution of 5% B at $0-5 \mathrm{~min}, 5 \%-10 \%$ B at $5-10 \mathrm{~min}, 10 \%-20 \% \mathrm{~B}$ at $10-40 \mathrm{~min}, 20-25 \%$ B at $40-45 \mathrm{~min}, 25 \%-30 \% \mathrm{~B}$ at $45-55 \mathrm{~min}$, $30 \%-45 \%$ B at $55-67 \mathrm{~min}, 45 \%-50 \%$ B at $67-70 \mathrm{~min}, 50 \%$ B at $70-75 \mathrm{~min}, 50 \%-60 \% \mathrm{~B}$ at $75-85$
$\mathrm{min}, 60 \%-75 \% \mathrm{~B}$ at $85-93 \mathrm{~min}, 75 \%-90 \% \mathrm{~B}$ at $93-105 \mathrm{~min}, 90 \% \mathrm{~B}$ at $105-110 \mathrm{~min}, 90 \%-5 \% \mathrm{~B}$ at $110-110.1 \mathrm{~min}, 5 \% \mathrm{~B}$ at $110.1-120 \mathrm{~min}$. The column temperature was $35^{\circ} \mathrm{C}$. The flow rate was maintained at $1.0 \mathrm{~mL} / \mathrm{min}$, and the injection volume was $5 \mu \mathrm{~L}$. The acquisition of high-resolution mass spectra was conducted in the positive and negative ion modes. Optimized ionization conditions were as follows: sheath gas flow, $40 \mathrm{~L} / \mathrm{min}$; capillary voltage, 3000 V ; gas temperature, $320^{\circ} \mathrm{C}$; the analysis was carried out using a scan of 75 to $1125 \mathrm{~m} / \mathrm{z}$.

2.7 Monosaccharide composition of polysaccharide of the ideal extraction

Monosaccharide composition was determined following PMP derivatization using reverse HPLC ${ }^{4,5}$. In brief, $200 \mu \mathrm{~L} 5 \mathrm{mg} / \mathrm{mL}$ BWGP solution and 4.0 M TFA solution were mixed, then were hydrolyzed at $110^{\circ} \mathrm{C}$ for 120 min . After cooling, $400 \mu \mathrm{~L}$ methanol was added and blown with N_{2} to completely remove the excess TFA. The residue was re-dissolved in a mixture of 300 $\mu \mathrm{L}$ solution with isometric of 0.3 M NaOH solution and PMP-methanol solution. Before $100 \mu \mathrm{~L}$ HCl being added, the mixed solution system was at derivatization reaction at $70^{\circ} \mathrm{C}$ for 60 min . Then the water was added to 3 mL , and equal volume of chloroform was added either for removing the impurities in the water layer. This process was repeated three times, and filtered with a $0.22 \mu \mathrm{~m}$ membrane as sample to be tested. The sample was analyzed by the same instrumentation and column of HPLC fingerprint analysis. The mobile phase was a mixture of 0.1 M phosphate buffer and acetonitrile (83:17, at pH 6.8), while the flow rate and injection volume were $1.0 \mathrm{~mL} / \mathrm{min}$ and $10 \mu \mathrm{~L}$. Standards monosaccharides were processed by using the same method. The content of each monosaccharide in extracts was determined by the calibration curve.

3. Results and discussion

3.1 OED results and the identification of OED extraction process

The simulation conditions based on $\mathrm{L}_{9}\left(3^{4}\right)$ OED of ethanol and water extraction process and also other orthogonal test results are shown in Table S3-S6. Each row in the table were tested twice, therefore there were 18 sets of raw data for simulating with the help of further analysis. Value of observations in detail is shown in Table S1, Table S2.

Table S1 OED results of the ethanol extraction process of the influencing factors.

Case	Yield of Dry Extraction (\%)	Extraction Yield of Schisandrin (\%)
1	23.44 ± 0.13	3.81 ± 0.00
2	34.30 ± 0.77	30.35 ± 0.36
3	37.24 ± 0.25	36.05 ± 0.33
4	28.70 ± 0.35	19.55 ± 0.48
5	37.76 ± 0.17	26.84 ± 0.32
6	30.05 ± 0.14	27.68 ± 0.08
7	30.32 ± 0.09	30.88 ± 0.32

31.29 ± 0.91
48.84 ± 0.32
Though the importance of view of two evaluating indexes were about to be the same, the slight difference may cause incorrect results of extraction. Taking together, the best ethanol extraction process selected in OED analysis could be summarized as: 2.0 g SC and $24 \mathrm{~mL} 50 \%$ ethanol alcohol was refluxed 2 h , this process repeated twice.

While on the water extraction process, some problems which were same as ethanol extraction process happened again. The water extraction process had more observations, it got more trouble in deciding which extraction process was better. With direct result of OED, the water extraction process was determined as following: $6.0 \mathrm{~g} \mathrm{AR}, 3.0 \mathrm{~g} \mathrm{BS}, 3.0 \mathrm{~g} \mathrm{CP}$ and the residue of SC after ethanol extraction process was boiled with water for 1.5 hours, this process was repeated twice.

Table S2 OED results of the water extraction process of the influencing factors.

	Panoramic Characterization Parameters			Specific Characterization Parameters			
$\begin{gathered} \text { Cas } \\ \mathrm{e} \end{gathered}$	$\begin{gathered} \text { Wave } \\ (\mu \mathrm{M} / \mathrm{mL}) \end{gathered}$	$\begin{gathered} \overline{\text { Aave }} \\ (\mathrm{mAu}) \end{gathered}$	$\begin{aligned} & \overline{M_{\text {wave }}} \\ & (\mathrm{kDa}) \end{aligned}$	Yield of Dry Extractio n (\%)	Content of Total Sugar (mg / g)	Content of Hesperidi n (mg / g)	$\begin{gathered} \hline \text { Content of } \\ \text { Astragalosi } \\ \text { de IV } \\ (\mathrm{mg} / \mathrm{g}) \end{gathered}$
1	0.1192 ± 0.01	$\begin{gathered} 5.79 \pm \\ 0.01 \end{gathered}$	4.18 ± 0.07	$\begin{gathered} 20.39 \pm \\ 1.50 \end{gathered}$	$\begin{gathered} 8.13 \pm \\ 0.16 \end{gathered}$	$\begin{gathered} 4.23 \pm \\ 0.09 \end{gathered}$	$\begin{gathered} 0.3628 \pm \\ 0.00 \end{gathered}$
2	0.1703 ± 0.02	$\begin{gathered} 5.99 \pm \\ 0.02 \end{gathered}$	4.01 ± 0.02	$\begin{gathered} 26.54 \pm \\ 0.62 \end{gathered}$	$11.20 \pm$ 0.32	$\begin{gathered} 6.55 \pm \\ 0.04 \end{gathered}$	$\begin{gathered} 0.5099 \pm \\ 0.00 \end{gathered}$
3	0.1085 ± 0.05	$\begin{gathered} 6.19 \pm \\ 0.04 \end{gathered}$	3.91 ± 0.01	$\begin{gathered} 30.05 \pm \\ 0.18 \end{gathered}$	$\begin{gathered} 11.62 \pm \\ 0.21 \end{gathered}$	$\begin{gathered} 8.37 \pm \\ 0.27 \end{gathered}$	$\begin{gathered} 0.5756 \pm \\ 0.02 \end{gathered}$
4	0.1364 ± 0.01	$\begin{gathered} 6.02 \pm \\ 0.05 \end{gathered}$	4.06 ± 0.02	$\begin{gathered} 22.30 \pm \\ 0.17 \end{gathered}$	$\begin{gathered} 8.99 \pm \\ 0.08 \end{gathered}$	$\begin{gathered} 4.70 \pm \\ 0.29 \end{gathered}$	$\begin{gathered} 0.5131 \pm \\ 0.09 \end{gathered}$
5	0.1945 ± 0.01	$\begin{gathered} 5.95 \pm \\ 0.03 \end{gathered}$	3.85 ± 0.02	$\begin{gathered} 26.82 \pm \\ 0.68 \end{gathered}$	$\begin{gathered} 9.61 \pm \\ 0.23 \end{gathered}$	$\begin{gathered} 6.56 \pm \\ 0.34 \end{gathered}$	$\begin{gathered} 0.5829 \pm \\ 0.03 \end{gathered}$
6	0.2205 ± 0.01	$\begin{gathered} 6.13 \pm \\ 0.07 \end{gathered}$	3.79 ± 0.05	$\begin{gathered} 26.68 \pm \\ 0.71 \end{gathered}$	$\begin{gathered} 10.99 \pm \\ 0.21 \end{gathered}$	$\begin{gathered} 9.39 \pm \\ 0.15 \end{gathered}$	$0.6602 \pm$ 0.04
7	0.2209 ± 0.04	$\begin{gathered} 5.95 \pm \\ 0.01 \end{gathered}$	3.92 ± 0.07	$\begin{gathered} 23.62 \pm \\ 0.82 \end{gathered}$	$\begin{gathered} 5.78 \pm \\ 0.02 \end{gathered}$	$\begin{gathered} 4.74 \pm \\ 0.34 \end{gathered}$	$\begin{gathered} 0.4664 \pm \\ 0.01 \end{gathered}$
8	0.1696 ± 0.07	$\begin{gathered} 5.97 \pm \\ 0.06 \end{gathered}$	3.61 ± 0.07	$\begin{gathered} 25.77 \pm \\ 0.20 \end{gathered}$	$\begin{gathered} 7.03 \pm \\ 0.04 \end{gathered}$	$\begin{gathered} 5.68 \pm \\ 0.25 \end{gathered}$	$\begin{gathered} 0.6022 \pm \\ 0.03 \end{gathered}$
9	0.2851 ± 0.01	$\begin{gathered} 6.02 \pm \\ 0.02 \end{gathered}$	3.69 ± 0.07	$\begin{gathered} 31.93 \pm \\ 0.80 \end{gathered}$	$\begin{gathered} 10.44 \pm \\ 0.09 \end{gathered}$	$\begin{gathered} 9.25 \pm \\ 0.23 \end{gathered}$	$\begin{gathered} 0.5869 \pm \\ 0.03 \end{gathered}$

3.2 qNMR analysis for OED

To date, all studies relating to extraction process have utilized chromatographic techniques for quantification of observations like content of some key components and others with more comprehensive characteristic based on retention times. qNMR provides a brand new view for obtaining panoramic condition of sample. Whereas, compared to other spectrum method, qNMR has grown to be a significantly analytical technique of secondary metabolites and the structure of polysaccharide ${ }^{6,7}$.

The ${ }^{1} \mathrm{H}$ qNMR spectrum of raw data and dimension by binning data were shown in Fig. 4. Attributed to the dimension of binning processing, the peaks were lightful more concentrate which greatly convenient for the next data analysis. According to the chemical shift of each peak, the spectrum was divided into 3 parts which were high field area (mainly consisting organic acid and some amino acid, ranging $0.50-3.30 \mathrm{ppm}$), medium field area (mainly was the glycoside components, ranging $3.30-5.50 \mathrm{ppm}$), and low field area (mainly was the aromatic components, ranging 5.50-10.00 ppm). With the insight of the total area of 3 parts of ${ }^{1} \mathrm{H}$ NMR spectrum, the changing trend of category of components was shown. Along the extraction process, the radio of aromatic components was almost the same, yet the radios between glycoside components, organic acid and amino acid varied a lot. That indicated the extraction process may have noticeable influence on the components like glycoside, organic acid and amino acid, while may affect the components like aromatic little.

To figure out which peaks had close relation with the extraction process, MCR-ALS was introduced for this exploring. 32 peaks were spotted as characteristic peak in the extraction process. Their information in detail was shown in Supplementary material. Then, PCA and HCA results stand the opinion of these peaks were to separate as 3 parts, which mainly suggested their chemical shift was the incontrovertible reason for their classes. PLS-DA acquired 8 peaks as VIP peak among all 32 peaks, also they were noted in Supplementary material. There were 5 peaks coming from the area of medium field area, and 3 peaks could trace to the source of high field area. Glycoside components as well as the small molecule compounds played a vital role of clarifying the extraction process. Herein, the following experiments were to look into the extraction process.

Fig. S 1 Basic information about qNMR analysis. (A) Raw spectrum of $1 \mathrm{H}-\mathrm{qNMR}$ spectrum, (B) Binning from $0.50-10.00 \mathrm{ppm}$ of $1 \mathrm{H}-\mathrm{qNMR}$ spectrum, (C) Radio of total peak area in various field.

3.3 HPLC fingerprint analysis for OED

Chromatography fingerprint map is considered to be a reasonable quality evaluation method for TCM and related products ${ }^{8}$. It can capture the slightly difference and has been a powerful methodology to highlight differences during extraction process. Considering about the complex compound composition causing by the formula and their potential interactions, a HPLC fingerprint method was established for analysis the secondary metabolites during extraction process. The HPLC chromatogram of OED samples was shown in Fig. S2. 29 peaks in common (besides the peak of solvent) were gained after basic chromatogram comparison, that were also collected for further analysis. Among which 10 peaks was identified with standards. Hesperidin was set to be the reference peak due to its moderate retention time and suitable area of peak. The HPLC fingerprint was validated by methodological examination of precision, repeatability and stability in 24 h , which had RSD of $0.37 \%, 2.70 \%$ and 0.56%, respectively. The similarity of all samples was within the range of $88.6 \% \sim 99.5 \%$.

For the better knowing about how the extraction process influence the secondary metabolites, PCA and HCA were conducted for the same peaks in the first place. The area of peak was taken the logarithm for eliminating the huge range of different peak. Peaks were shown gathered into 4 fuzzy groups in PCA, while there were 3 groups in HCA were clearly divided at the same time. SVM is a kind of machine learning algorithm with ability of using a small number of samples for prediction without feature extraction ${ }^{9}$. Therefore, PCA-SVM was introduced for better highlight
in clustering the peaks. 95% of classification accuracy was shown in the model of PCA-SVM, while all peaks were divided into 5 parts (Fig. S3). Yet it was still hard for understanding which components or which classification group was more likely impacted by the extraction process with the inefficient cluster in PCA-SVM. The results showed that all peaks could be analyzed by three main components, which accounted for 96.14% of the total variance. PLS-DA was severed for investigating the key peak by VIP value, which 11 peaks in total were characterized. Peak 19, peak 8 (calycosin-7-glucoside), peak 14 (militarine), peak 5 (ferulic acid), peak 3, peak 10 (tangeretin), peak 11 (hesperidin), peak 1, peak 23, peak 9, and peak 6 were selected to be VIP component in analysis. As the retention time from peak 1 to peak 4 were above 4 min, that may be disturbed by various factors and being erratic, therefore they were all get rid of further analysis.

Fig. S 2 HPLC fingerprint schematic diagram of OED. 29 peaks in same were marked.

Fig. S 3 Statistical inference of qNMR and HPLC fingerprint based on chemometrics. (A) MCR-ALS resolved spectral profiles of qNMR (3.40-4.00 ppm), (B) PCA of characteristic peak from qNMR, (C) HCA of qNMR, (D) PCA of same peaks from HPLC fingerprint, (E) PCA-SVM of same peaks from HPLC fingerprint based on a Gaussian Kernel, VIP peak was marked as red, (F) HCA of HPLC fingerprint.

3.4 Molecular weight of polysaccharides analysis for OED

M_{W} is an indispensable factor in the study of the structure-function relationship of polysaccharides, also is an important parameter for emulsifying and rheological properties that influencing digestion and absorption in the body a $\operatorname{lot}^{10-12}$. Here, the symbol results of each OED experiment were shown in Fig. S4. It was obvious that extraction influenced a lot in Mw of polysaccharide, the data about M_{w} of each peak and their duration time in detail was shown in Table.S9. As the figure showing, way of peak being different with other samples could be diverse. There were 5 main peaks in all samples, yet they may be slightly splitting accompany with extraction process. In all, the M_{W} had trend in being small when the trend of fully extraction performance happened, showing the way was that the retention time of peak was delayed. According to the result shown in Fig.8, BWGP showed heterogeneous structures since there were several elution peaks following elution. As shown in figure, BWGP had 5 peaks, and the mean M_{W} was $36.35 \sim 1301.98 \mathrm{kDa}$, while peak 1 , peak 5 were out of the range of standard linear regression equation. On the other words, M_{w} of peak 1 was greater than $2457 \mathrm{kDa}, \mathrm{M}_{\mathrm{w}}$ of peak 5 were less than 12.6 kDa . Polysaccharide with smaller molecular weights has remarkable
bioactivities than the one with larger polysaccharides ${ }^{13}$. It is thought to contribute to smaller polysaccharides pass through biological membranes more easily, and also can more efficiently exert effects without inciting immune stress ${ }^{14}$.

Fig. S 4 Chromatogram of molecular weight.

Table S3. Visual table of OED test in EE process

Experiment number	A	B	C	D	Yield of Dry Extraction (\%)	Extraction Yield of Schisandrin (\%)
1	1	1	1	1	23.44	3.81
2	1	2	2	2	34.30	30.35
3	1	3	3	3	37.24	36.05
4	2	1	2	3	28.70	19.55
5	2	2	3	1	37.76	26.84
6		2	3	1	2	30.05
7	3	1	3	2	30.32	27.68
8		3	2	1	3	25.36

$\begin{array}{lllll}K_{2} & 74.07 & 74.72 & 98.74 & 88.91\end{array}$
$\begin{array}{lllll}K_{3} & 97.25 & 112.57 & 93.77 & 73.13\end{array}$
$\begin{array}{lllll}R & 27.04 & 58.33 & 49.72 & 15.78\end{array}$

Table S4. Analysis of variance table of OED test in EE process

Observation	Source of Variance	Sum of Squared Deviations	Degrees of Freedom	F Radio	F-Critical Value	Significance
	A	107.747	2	289.117	19.00	$p<0.01$
Yield of Dry Extraction	B	235.705	2	632.463	19.00	$p<0.01$
	C	3.882	2	10.417	19.00	$p<0.01$
	D	34.988	2	93.884	19.00	$p<0.01$
	1167.654	2	6644.884	19.00	$p<0.01$	
Extraction Yield of Schisandrin	B	999.522	2	5688.081	19.00	$p<0.01$
	C	24.106	2	478.631	19.00	$p<0.01$

Table S5. Visual table of OED test in WE process

Experiments Number	A	B	C	D	Yield of Dry Extraction (\%)	Content of Total Sugar $(\mathrm{mg} / \mathrm{g})$	Content of Hesperidin (mg / g)	Content of Astragaloside IV $(\mathrm{mg} / \mathrm{g})$	$\begin{gathered} W_{\text {are }} \\ (\mu \mathrm{M} / \mathrm{m} \\ \mathrm{L}) \end{gathered}$	$\begin{aligned} & \overline{A_{\text {ave }}} \\ & (\mathrm{mA} \\ & \text { u) } \end{aligned}$	$\overline{M_{\text {wave }}}$ (kDa)
1	1:10	1	1	1	20.39	8.125	4.2295	0.3628			
2	1:10	2	1.5	2	26.54	11.195	6.5521	0.5099			
3	1:10	3	2	3	30.05	11.620	8.3655	0.5756			
4	1:12	1	1.5	3	22.30	8.995	4.6957	0.5131			
5	1:12	2	2	1	26.82	9.610	6.5636	0.5829			
6	1:12	3	1	2	26.68	10.99	9.3949	0.6602			
7	1:14	1	2	2	23.62	5.775	4.7400	0.4664			
8	1:14	2	1	3	25.77	7.025	5.6836	0.6022			
9	1:14	3	1.5	1	31.93	10.435	9.2457	0.5869			
	76.98	66.31	72.84	79.14							
Yield of Dry	75.80	79.13	80.77	76.84							
Extraction	81.32	88.66	80.49	78.12							
	5.52	22.35	7.93	2.30							
Content of Total	30.94	$\begin{gathered} 22.89 \\ 5 \end{gathered}$	26.14	28.17							
Sugar	$\begin{gathered} 29.59 \\ 5 \end{gathered}$	27.83	$\begin{gathered} 30.62 \\ 5 \end{gathered}$	27.96							

		K	23.23	33.04	27.00
	3	5	5	5	27.64
	R	7.705	10.15	4.485	0.53
	K	19.14	13.66	19.30	20.03
	1	71	52	8	88
	K	20.65	18.79	20.49	20.68
Content of	2	42	93	35	7
Hesperidin	K	19.66	27.00	19.66	18.74
	3	93	61	91	48
	R	1.507	13.34	1.185	1.942
	K	1.448	1.342	1.625	1.532
	1	3	3	2	6
	K	1.756	1.695	1.609	1.636
		2	5	2	

	R	$\begin{gathered} 0.277 \\ 6 \end{gathered}$	$\begin{gathered} 0.137 \\ 6 \end{gathered}$	$\begin{gathered} 0.082 \\ 5 \end{gathered}$	$\begin{gathered} 0.197 \\ 2 \end{gathered}$
	K	17.97	17.89	17.89	17.76
	1				
	K	18.1	17.91	18.03	18.07
$\overline{A_{\text {ave }}}$	2				
	K	17.94	18.34	18.09	18.18
	3				
	R	0.16	0.45	0.2	0.42
	K	12.1	11.58	11.58	11.72
	1				
	K	11.7	11.47	11.76	11.72
$M_{\text {wave }}$	2				
	K	11.22	11.39	11.68	11.58
	3				
	R	0.88	0.19	0.18	0.14

Table S6. Analysis of variance table of OED test in WE process

Observations	Source of Variance	Sum of Squared Deviations	Degrees of Freedom	F Radio	F-Critical Value	Significance
Yield of Dry Extraction	A	11.244	2	5.622	19.00	$p<0.01$
	B	167.639	2	83.820	19.00	$p<0.01$
	C	26.979	2	13.489	19.00	$p<0.01$
	D	1.763	2	0.882	19.00	$p>0.05$
Content of Total Sugar	A	22.664	2	11.332	19.00	$p<0.01$
	B	34.216	2	17.108	19.00	$p<0.01$
	C	7.501	2	3.751	19.00	$p<0.01$
	D	0.102	2	0.051	19.00	$p>0.05$
Content of Hesperidin	A	0.781	2	0.390	19.00	$p<0.01$
	B	60.377	2	30.189	19.00	$p<0.01$
	C	0.492	2	0.246	19.00	$p>0.05$
	D	1.304	2	0.652	19.00	$p<0.01$
Content of Astragaloside IV	A	0.034	2	0.017	19.00	$p<0.01$
	B	0.088	2	0.044	19.00	$p<0.01$
	C	6.114×10^{-6}	2	3.057×10^{-6}	19.00	$p>0.05$

Observations	Source of Variance	Sum of Squared Deviations	Degrees of Freedom	F Radio	F-Critical Value	Significance
	D	0.007	2	0.003	19.00	$p>0.05$
$W_{\text {ave }}$	A	0.026	2	5.514	19.00	$p>0.05$
	B	0.006	2	0.874	19.00	$p>0.05$
	C	0.003	2	0.331	19.00	$p>0.05$
	D	0.016	2	2.727	19.00	$p>0.05$
$\overline{A_{\text {ave }}}$	A	0.142	2	1.054	19.00	$p>0.05$
	B	0.298	2	2.607	19.00	$p>0.05$
	C	0.108	2	0.775	19.00	$p>0.05$
	D	0.126	2	0.921	19.00	$p>0.05$
\bar{M} wave	A	0.254	2	6.644	19.00	$p<0.01$
	B	0.243	2	6.136	19.00	$P<0.05$
	C	0.010	2	0.140	19.00	$p>0.05$
	D	0.010	2	0.137	19.00	$p>0.05$

Table S7. Same important peaks identification from qNMR in this study.

Chemi	Peak area										
-cal Shift (ppm)	NO. 1	NO. 2	NO. 3	NO. 4	NO. 5	NO. 6	NO. 7	NO. 8	NO. 9	OED optimization	Computing optimiza- tion
2.93	11454526.9 1	11537535.2 8	9266132.33	11345907.2 5	11939306.8 8	5761783.11	$\begin{gathered} 14164971.0 \\ 4 \end{gathered}$	13224192.5 5	13839838.2 7	11302835.5 5	15038298.2 5
3.87	975229.42	1050224.14	666964.55	833644.105	966248.245	401955.635	460471.055	994297.705	914281.96	996072.01	959667.195
5.41	5540059.97	5233124.34	3804338.84	4746057.76 5	4210563.65	3875423.55 5	3148333.36	4156639.67	4196153.43 5	$\begin{gathered} 3237661.66 \\ 5 \end{gathered}$	3677723.61 5
0.63	14017726.8 5	15736797.4 5	7280167.64	9477185.89	23112447.9 2	$\begin{gathered} 14418125.5 \\ 3 \end{gathered}$	23264025.8 4	18008448.6 5	$\begin{gathered} 19717640.4 \\ 6 \end{gathered}$	13031761.2 5	26739496.0 6
1.79	3135717.73 5	2831974.69	1517072.44 5	2519822.53	$\begin{gathered} 3124981.66 \\ 5 \end{gathered}$	3749597.96	3775626.97	3228514.29 5	3449716.14	2543699.16	3542366.54
0.61	$\begin{gathered} 9353203.04 \\ 5 \end{gathered}$	$\begin{gathered} 10424304.3 \\ 9 \end{gathered}$	9499038.68 5	10275496	11067877.7 3	5685545.54 5	$\begin{gathered} 11014359.5 \\ 4 \end{gathered}$	$\begin{gathered} 11779540.0 \\ 9 \end{gathered}$	$\begin{gathered} 13030474.7 \\ 6 \end{gathered}$	11298351.4 1	12888226.0 7
0.64	2920597.54	5785430.57	3827773.26	3891355.81	3730915.68	691056.56	3646904.05	2696641.99	3001857.85	2690787.63	3877442.31

Chemi	Peak area										
-cal Shift (ppm)	NO. 1	NO. 2	NO. 3	NO. 4	NO. 5	NO. 6	NO. 7	NO. 8	NO. 9	OED optimiza- tion	Computing optimiza- tion
	5	5	5	5	5			5		5	5
1.72	2376948.03	2749966.44 5	$\begin{gathered} 2097386.95 \\ 5 \end{gathered}$	$\begin{gathered} 2546713.92 \\ 5 \end{gathered}$	2945122.54	1487590.61 5	3028559.26 5	3121989.95	3471517.84 5	2774053.25	3680828.78
1.74	4393430.16 5	4797865.60 5	4256608.57 5	4654720.51	5399286.80 5	3386934.98	4096960.92 5	5471307.06 5	5832777.66 5	4434929.07 5	5260206.67
1.75	3658858.08	4447181.40 5	3038950.92 5	4055347.53	3995395.75 5	3451659.42 5	4748256.59 5	3921931.61	3577484.79	3910455.08	4412677.69
1.76	10117948.0 1	10831743.7 6	9505591.14 5	10626926.1 2	12734797.5 4	7320678.19	12228937.4	13059440.4 2	14593762.6 5	11406455.4	13729467.3 6
1.77	2209420.44	3557639.11	1066403.48	2283943.89	3893544.69	2543846.51	2268515.82	4698722.58 5	5816705.39	3678646.06 5	4040190.14 5
2.90	10292157.6 3	12025890.6 6	9430303.52 5	10870866.8 2	$\begin{gathered} 12484507.1 \\ 4 \end{gathered}$	5769020.59 5	11440103.4 7	13465317.6	14373359.9 7	12303878.0 5	14530820.7 4

Chemi	Peak area										
-cal Shift (ppm)	NO. 1	NO. 2	NO. 3	NO. 4	NO. 5	NO. 6	NO. 7	NO. 8	NO. 9	OED optimization	Computing optimization
2.91	$\begin{gathered} 13705180.1 \\ 4 \end{gathered}$	$\begin{gathered} 19991831.2 \\ 6 \end{gathered}$	7650475.75 5	14739294.5 7	$\begin{gathered} 17357430.0 \\ 2 \end{gathered}$	$\begin{gathered} 10667047.3 \\ 6 \end{gathered}$	$\begin{gathered} 19282166.6 \\ 2 \end{gathered}$	18675123.3 5	22781758.6 1	17903594.0 5	21752978.6 6
3.27	610500.68	398881.915	319120.635	439366.71	439388.81	357144.67	424680.51	384021.1	310278.55	343110.145	430678.47
3.34	315945.695	213195.785	194588.37	269700.69	200712.595	249821.5	420467.725	240962.8	353373.595	341220.66	313382.885
3.44	1905065.39	2029251.65	1334418.21	1706544.20 5	1778605.05	1258737.52 5	1194303.69	1858770.64	1749658.57	1355073.13 5	1455821.71 5
3.49	2329158.52	2577697	1559998.07	2205605.02	2171328.25 5	1236773.71	1163666.35	1973411.49 5	2061503.94	1530217.54	1775575.95
3.54	1979526.67 5	1922769.41 5	1242027.44 5	1769980.66	1643855.33	1073117.91 5	1164809.95	1480813.33	1568927.27 5	1208677.14 5	1296559.18 5
3.56	2590120.53	4588664.06 5	$\begin{gathered} 1854830.89 \\ 5 \end{gathered}$	$\begin{gathered} 2989140.25 \\ 5 \end{gathered}$	2725988.33	2216958.65 5	3329117.55	$\begin{gathered} 2735136.94 \\ 5 \end{gathered}$	4734093.71	2747935.8	3093780.54 5
3.57	2753923.96	3760658.57	2224088.55	1507552.34	2302651.91	2855537.17	2695378.58	1806064.78	3007288.86	1143881.34	1397078.61

Chemi	Peak area										
-cal Shift (ppm)	NO. 1	NO. 2	NO. 3	NO. 4	NO. 5	NO. 6	NO. 7	NO. 8	NO. 9	OED optimiza- tion	Computing optimization
						5	5	5		5	5
3.67	16973641.3	17914732.1 3	12257128.5 3	16227635.6 5	16889342.1 6	9993111.18 5	9136190.55 5	14885578.4 8	16192876.1 3	11430701.5 5	$\begin{gathered} 13104142.3 \\ 2 \end{gathered}$
3.78	1979945.70 5	2293770.17	1388859.53 5	933069.99	2040419.00 5	1079684.25	1239000.35	1134147.87 5	1824931.82	1421835.06 5	1626468
3.79	165354.835	6834643.79	3989896.29	1002461.77	9681635.63 5	4665141.34	5054533.97 5	7645433.42 5	9125199.52 5	7008404.88	293365.465
3.80	7705070.51	8092189.18 5	4455262.92	8005834.34 5	9827530.83	7554101.14	2886230.06 5	8999296.99	12373223	5834924.6	7667023.75
3.81	13517552.3 6	14372303.4	10798712.3 8	11079150.1 2	13461077.8 5	11130638.6 5	12043723.5 6	9411795.75 5	12160475.3	9008590.12	7220166.25 5
3.88	2237213.16 5	2713335.05	1464372.28 5	1891664.75	2596913.86 5	1527041.14	1301400.04	1969410.85	2031612.03	2161250.7	2021911.61

Chemi	Peak area										
-cal Shift (ppm)	NO. 1	NO. 2	NO. 3	NO. 4	NO. 5	NO. 6	NO. 7	NO. 8	NO. 9	OED optimiza- tion	Computing optimiza- tion
3.89	$\begin{gathered} 1064466.25 \\ 5 \end{gathered}$	1644069.13 5	651470.38	890521.55	850229.09	560913.325	494696.325	1506280.39 5	856050.085	601645.795	683180.745
3.99	1203077.64	827561.73	524341.915	617671.52	592347.78	403391.975	882815.335	607029.735	457597.465	627471.615	733088.515
4.02	$\begin{gathered} 1976254.84 \\ 5 \end{gathered}$	2126845.15	1421364.82 5	1776329.66 5	1924774.26 5	$\begin{gathered} 1137067.04 \\ 5 \end{gathered}$	837225.245	1749080.91	$\begin{gathered} 1826451.10 \\ 5 \end{gathered}$	1234003.88	1611223.88
4.07	2172445.97 5	2060923.33	1361528.64	1825813.03	1826427.57	1232368.73	1141126.57 5	1628125.57	1684746.16 5	1205091.04 5	1525086.11
4.20	4058215.82	3875661.26	3066871.17 5	4252647.92 5	3359090.24	2235409.98	2039277.82	4182280.69	1063335.30 5	3227384.05 5	2320883.11

Table S8. Same peaks identification from HPLC fingerprint analysis in this study.

	Peak area										
(min)	NO. 1	NO. 2	NO. 3	NO. 4	NO. 5	NO. 6	NO. 7	NO. 8	NO. 9	OED optimization	Computing optimization
2.193	661051	$1696263 .$ 1	$1526555 .$ 4	140689 3	$\begin{gathered} 109207 \\ 6 \end{gathered}$	$674929 .$ 6	$1209560 .$ 8	130583 6	161620 3	1733608	1521460
2.374	213058	$2795863 .$ 9	$2678988 .$ 8	277087 9	$\begin{gathered} 200799 \\ 4 \end{gathered}$	$\begin{gathered} 179516 \\ 3 \end{gathered}$	$2392183 .$ 1	234236 2	253337 2	3181681	3155345
2.619	$175019 .$ 2	89110.02	96790.72 7	43107.7 1	$115807 .$ 8	$495469 .$ 8	85892.76 4	$129392 .$ 1	200877. 4	84305.35	83074.195
3.046	$375220 .$ 8	$\begin{gathered} 808107.5 \\ 6 \end{gathered}$	578758.4 7	539068. 4	$612416 .$ 9	$419094 .$ 5	574043.5	632688. 5	$822320 .$ 7	943303.3	900400.84
9.397	13986.0 3	17318.34	28303.53 1	16898.1 4	18514.8 2	12232.1 4	$\begin{gathered} 16768.34 \\ 3 \end{gathered}$	18514.7 7	31811.9	45119.84	36802.572
25.918	18618.8 3	17521.72 1	16907.12 6	19524.3 2	13058.3 3	12405.1 2	14089.80 3	9164.40 8	12725.1	12514.25	10746.536

	Peak area										
(min)	NO. 1	NO. 2	NO. 3	NO. 4	NO. 5	NO. 6	NO. 7	NO. 8	NO. 9	OED optimization	Computing optimization
35.578	15016.8 8	14993.20 2	$\begin{gathered} 14145.10 \\ 6 \end{gathered}$	$\begin{gathered} 11894.1 \\ 9 \end{gathered}$	12447.6	$\begin{gathered} 13100.8 \\ 8 \end{gathered}$	$\begin{gathered} 18982.96 \\ 3 \end{gathered}$	18772.4 2	13879.3	19177.75	12904.029
38.950	19826.7	28438.21 7	21393.04 2	$\begin{gathered} 14578.4 \\ 4 \end{gathered}$	11150.6 6	$\begin{gathered} 14302.2 \\ 2 \end{gathered}$	22881.23 2	8786.01 2	12314.7 6	26396.88	15637.017
42.773	14513.8	16170.94 1	15775.18 6	$\begin{gathered} 23093.8 \\ 2 \end{gathered}$	11637.3 6	$\begin{gathered} 17294.5 \\ 3 \end{gathered}$	21226.92 7	17593.4 4	13150.8 5	20290.83	18008.108
43.288	95234.6	149137.7 4	$\begin{gathered} 192910.5 \\ 2 \end{gathered}$	$214435 .$	$183270 .$	163315	209719.4 6	195167. 9	$241496 .$ 2	241511.8	201475.31
46.399	192747. 4	326629.6 7	528129.7 2	$275544 .$	$344142 .$	$513346 .$ 2	392474.8 1	$378426 .$	$497024 .$ 4	343465	425288.8
48.476	$117233 .$	117590.4 8	100636.9 1	120210	95930.9	111619	146504.4 4	$131616 .$ 5	$103419 .$ 7	147096.4	117783.93
51.544	81144.1 3	106994.2 5	$\begin{gathered} 119950.9 \\ 6 \end{gathered}$	$\begin{gathered} 89160.0 \\ 8 \end{gathered}$	98603.2 3	$131598 .$ 2	77735.80 5	95905.4	105521	62004.56	55039.053

	Peak area										
(min)	NO. 1	NO. 2	NO. 3	NO. 4	NO. 5	NO. 6	NO. 7	NO. 8	NO. 9	OED optimization	Computing optimization
54.464	78940.5 4	191319.2	209984.6 3	$120213 .$	99238.1	86533.7	108925.5 4	151757. 4	$106195 .$ 6	169350.5	230626.36
59.450	$204726 .$ 5	263407.8 8	283359.2 3	$\begin{gathered} 252669 . \\ 5 \end{gathered}$	$237241 .$ 5	$362701 .$ 6	278326.9 8	$257006 .$ 1	$360258 .$ 9	344675.3	452794.3
79.040	15447.8 4	12535.81 8	27042.78 5	$\begin{gathered} 20978.4 \\ 4 \end{gathered}$	13604.3 5	21959.6 6	12116.33 8	10673.8 4	12375.9	12283.37	14009.096
80.223	55446.5	$\begin{gathered} 95763.04 \\ 3 \end{gathered}$	$\begin{gathered} 116187.7 \\ 3 \end{gathered}$	82028.4	90159.5 4	$122499 .$ 3	79846.56 7	93952.6 5	138350	126319.2	170404.13
85.526	13668.8 3	$\begin{gathered} 14229.59 \\ 9 \end{gathered}$	$\begin{gathered} 14760.40 \\ 2 \end{gathered}$	16468	17886.6	26897.2	15946.32 7	14911.8 2	22531.4 3	16966.27	26654.664
86.906	39384.4 7	$\begin{gathered} 61505.60 \\ 2 \end{gathered}$	376722.9 9	$197315 .$	44216.0 7	$462987 .$	88296.80 7	86576.3	73674.3 3	73253.65	253517.86
88.638	84017.4	$\begin{gathered} 115308.7 \\ 9 \end{gathered}$	$\begin{gathered} 128183.4 \\ 9 \end{gathered}$	85550.9 4	$109686 .$ 1	113128. 5	111244	$116022 .$	$141011 .$ 2	125843.7	120991.16

	Peak area										
(min)	NO. 1	NO. 2	NO. 3	NO. 4	NO. 5	NO. 6	NO. 7	NO. 8	NO. 9	OED optimization	Computing optimization
89.126	42243.2	$\begin{gathered} 71264.12 \\ 9 \end{gathered}$	49136.66	43164.5 3	70229.6	69820.8 7	$\begin{gathered} 63701.74 \\ 2 \end{gathered}$	83723.4	85344.7	87425.01	73257.094
92.027	80129.4 5	98708.53 1	$\begin{gathered} 101139.4 \\ 2 \end{gathered}$	$\begin{gathered} 91590.6 \\ 7 \end{gathered}$	92424.2 7	46298.0 2	34079.86 6	41697.2	41817.1	23303.55	28345.684
92.678	158013. 3	185791.7 8	$\begin{gathered} 176818.2 \\ 9 \end{gathered}$	$\begin{gathered} 176456 . \\ 4 \end{gathered}$	$173640 .$	88284.2 2	36572.33 6	76490.2 8	$\begin{gathered} 75189.1 \\ 2 \end{gathered}$	25015.44	33639.84
96.132	11081.9 4	15048.75	15285.81 1	$\begin{gathered} 10148.6 \\ 2 \end{gathered}$	12988.5	14301.4 3	13642.95	15477.4 4	$\begin{gathered} 18392.8 \\ 3 \end{gathered}$	15611.19	15782.153
103.252	57575.9	59367.95 4	59234.81 7	58143.1	57900.1	25975.6	26278.66	27241.2	22915.8 6	19127.81	19758.927
107.970	22016.0	27644.62 6	22665.72 4	$\begin{gathered} 29874.0 \\ 5 \end{gathered}$	26537.0	9601.61 1	8772.771 5	12301	14759.9 4	10911.51	8118.3245
110.466	$185020 .$ 7	189196.8 5	$\begin{gathered} 189445.2 \\ 9 \end{gathered}$	$\begin{gathered} 190120 . \\ 3 \end{gathered}$	$191404 .$	58874.6 7	59669.31 3	60107.3 8	57676.9	56161.03	55283.932

	Peak area										
(min)	NO. 1	NO. 2	NO. 3	NO. 4	NO. 5	NO. 6	NO. 7	NO. 8	NO. 9	OED optimization	Computing optimization
114.193	93810.1 4	101397.0 9	100043.1 2	$101176 .$ 7	100674	$\begin{gathered} 36407.0 \\ 8 \end{gathered}$	$\begin{gathered} 38577.19 \\ 4 \end{gathered}$	38430.6 6	35000.7 7	33227.17	32459.584
116.653	55064.7 2	56950.27 7	55983.51 2	56479.3 2	$\begin{gathered} 57540.3 \\ 5 \end{gathered}$	$\begin{gathered} 14546.3 \\ 7 \end{gathered}$	$\begin{gathered} 15386.85 \\ 5 \end{gathered}$	14901.7 7	13566.4 4	13705.2	13507.394

Table S9. Same peaks identification from M_{w} analysis in this study.

	Peak 1		Peak 2		Peak 3		Peak 4		Peak 5	
Sample	$\mathrm{M}_{\mathrm{W}}(\mathrm{kDa})$	Duration Time (min)								
NO. 1	>2457	$\begin{aligned} & 17.610- \\ & 25.070 \end{aligned}$	602.088	30.135- 31.810	244.511	31.810- 33.130	55.583	$\begin{aligned} & 37.790- \\ & 38.550 \end{aligned}$	<12.6	$\begin{aligned} & 42.520- \\ & 45.550 \end{aligned}$
NO. 2	>2457	$\begin{aligned} & 16.425- \\ & 24.676 \end{aligned}$	606.589	29.380- 31.100	447.252	31.100- 32.250	103.595	34.300- 36.500	<12.6	$\begin{aligned} & 42.54- \\ & 46.34 \end{aligned}$
NO. 3	>2457	17.315- 26.150	671.217	29.660- 31.220	506.007	31.220- 31.970	120.621	$\begin{aligned} & 33.780- \\ & 35.950 \end{aligned}$	<12.6	21.130- 45.680
NO. 4	>2457	$\begin{aligned} & 17.505- \\ & 26.623 \end{aligned}$	422.829	$\begin{aligned} & 30.590- \\ & 32.320 \end{aligned}$	308.595	$\begin{aligned} & 32.320- \\ & 33.650 \end{aligned}$	75.783	$\begin{aligned} & 35.900- \\ & 37.000 \end{aligned}$	<12.6	$\begin{aligned} & 42.250- \\ & 45.800 \end{aligned}$
NO. 5	>2457	18.400- 28.100	622.902	29.200- 31.700	320.782	32.600- 33.600	66.451	35.950- 37.250	<12.6	$42.300-$ 45.810
NO. 6	>2457	18.550- 28.300	471.764	29.700- 32.200	200.464	$\begin{aligned} & 32.900- \\ & 34.050 \end{aligned}$	48.473	36.020- 37.600	<12.6	42.200- 46.100
NO. 7	>2457	18.900-	490.787	29.250-	266.465	31.600-	48.686	35.900-	<12.6	42.200-

		27.900		31.330		34.100		37.700		46.750
NO. 8	>2457	19.850-	444.011	30.100-	262.006	32.200-	42.396	36.550-	<12.6	42.250- 46.400
		28.900		32.100		34.700		38.175		
NO. 9	>2457	20.250-	408.445	30.000-	256.318	32.500-	37.725	36.500-	<12.6	42.500- 45.900
		29.200		32.350		34.000		38.350		

Table S10. Components identified in ideal extracts of BSG

Peak Number	Identification Component	Molecular Formula	Retention	TheoreticalMass (m/z)	Experimental Mass (m/z)	Delta mmu	Main MS/MS Fragments Detected			Mode
			Time (min)							
		Formula		Mass (m/z)	Mass (m/z)					
Flavonoids and their glycosides										
1	Rutin	$\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{16}$	19.32	611.1606	611.1620	1.389	303.0564;	3.0194; 285.076		+H
2	Vicenin II	$\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{15}$	22.52	593.1500	593.1518	1.764	437.1595	415.1756;	537.2	-H
							371.1490			
3	Isorhamnetin-3-O-neohesperidin	$\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{16}$	24.33	623.1606	623.1625	0.999	623.1611	383.0773;	339.0	-H
							312.0637			
4	Narirutin 4'-glucoside	$\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{O}_{19}$	24.65	741.2236	741.2255	1.865	271.0611;	151.0036;	433.1	-H
							272.0643			
5	Naringin-7-O-glucoside	$\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{10}$	24.70	435.1285	435.1293	0.727	200.2374;	201.2409;	116.1	+H
							57.0701; 71.0779			
6	Oroxylin A glucoronide	$\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{O}_{10}$	31.63	447.1285	447.1291	0.547	285.0757;	.0522; 286.0		+H
7	Baicalin	$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{11}$	31.87	445.0765	445.0803	-2.091	269.0414;	4.0482; 240.038		-H

Peak Number	Identification Component	Molecular Formula	Retention Time (min)	Theoretical Mass (m/z)	Experimental Mass (m/z)	Delta mmu	Main MS/MS Fragments Detected			Mode
8	Eriocitrin	$\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{O}_{15}$	31.91	595.1657	595.1674	1.673	151.0035;	135.0451;	287.0561;	-H
							107.0138			
9	Genistin	$\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{10}$	32.55	433.1129	433.1131	0.267	433.1496;	1.0591		+H
10	Vicenin III	$\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{O}_{14}$	32.66	563.1395	563.1409	1.458	N/A			-H
11	Quercetin	$\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{7}$	32.88	303.0499	303.0503	0.391		285.0768;		+H
							234.9901; 243.0642; 287.0535			
12	Kaempferol 3-gentiobioside	$\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{16}$	32.96	609.1450	609.1467	1.779	255.0310;69.0283			-H
13	Apigenin	$\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{5}$	33.22	269.0444	269.0458	1.39	269.2121;	1.2031		-H
14	Kaempferol 3-neohesperidoside	$\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{15}$	33.75	593.1500	593.1511	1.084	179.0558;	3.0141		+H
15	Homoplantaginin	$\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{11}$	36.74	461.1078	461.1095	1.692	417.2987;	3.3093		-H
16	Narirutin	$\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{O}_{14}$	38.51	579.1708	579.1724	1.658	271.0613;	151.0036;		-H
							107.0138; 272.0647			

Peak Number	Identification Component	Molecular Formula	Retention Time (min)	Theoretical Mass (m/z)	Experimental Mass (m/z)	Delta mmu	Main MS/MS Fragments Detecte		Mode
17	Naringin chalcone	$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{5}$	38.53	273.0757	273.0759	0.210	$\begin{aligned} & 273.0757 \\ & 153.0183 \end{aligned}$	248.8788;	+H
18	7-O-Methylluteolin	$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{6}$	39.42	301.0706	301.0707	0.045	286.0485;	3.0504	+H
19	Rhoifolin	$\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{14}$	39.83	577.1551	577.1567	1.558	269.0456;	7911; 99.9255	-H
20	Calycosin-7-O- β-D-glucoside	$\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{10}$	40.39	445.1129	445.1140	1.117	268.0375;	9.0347; 283.0612	-H
21	Rhamnocitrin	$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{6}$	41.50	299.0550	299.0563	1.325	93.0344; 1	0244; 152.8950	-H
22	Diosmin	$\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{15}$	41.62	609.1813	609.1803	-1.037	303.0863		+H
23	Hesperetin	$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{6}$	43.11	301.0705	301.0719	-0.547	151.0037;	6.0012; 164.0116	-H
24	Neohesperidin	$\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{O}_{15}$	43.11	609.1813	609.1826	1.283	$\begin{aligned} & 301.0718 \\ & 302.0748 \end{aligned}$	$\begin{aligned} & \text { 164.0116; } \\ & 6.0484 \end{aligned}$	-H
25	Hesperidin	$\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{O}_{15}$	43.13	611.197	611.198	1.013	$\begin{aligned} & 303.0864 \\ & \text { 177.0548 } \end{aligned}$	$\begin{aligned} & .0284 ; 71.0492 ; 1 . \\ & 5.0292 \end{aligned}$	+H

Peak Number	Identification Component	Molecular Formula	Retention Time (min)	Theoretical Mass (m/z)	Experimental Mass (m/z)	Delta mmu	Main MS/MS Fragments Detected			Mode
26	Isosakuranin	$\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{10}$	43.13	449.1442	449.1449	0.677	195.0290;	263.0551;	85.0285;	+H
							245.0445;	219.0291;	177.0547;	
							165.0185; 69.0336			
27	Formononetin	$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{4}$	47.56	267.0651	267.0662	1.035	252.0428;	267.0663;	223.0400;	-H
							253.0464; 251.0353			
28	Ononin	$\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{9}$	47.58	431.1336	431.1342	0.561	269.0808;	241.0864;	137.0232;	+H
							133.0645			
29	Pinocembrin	$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{4}$	50.00	255.0651	255.0662	1.035	255.2330;	3.7852; 116.9	1; 74.0247	-H
30	Tangeretin	$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{7}$	51.02	371.1125	371.1137	1.211	315.2539;	6.2578; 297.2		-H
31	Eriodictyol	$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{6}$	52.34	283.0550	287.0558	0.805	287.7753;	3.0325		-H
32	(R)-Isomucronulatol	$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5}$	52.59	303.1227	303.1233	0.62	303.0862;	5.0754		+H
33	Wogonin	$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{5}$	52.71	283.0600	283.0612	1.12	283.0613;	1.0351; 223.0		-H
34	Calycosin	$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{5}$	52.72	285.0757	285.0759	0.21	285.0758;	0.0522; 137.02		+H

Peak Number	Identification Component	Molecular Formula	Retention Time (min)	Theoretical Mass (m/z)	Experimental Mass (m/z)	Delta mmu	Main MS/MS Fragments Detected			Mode
43	Isosakuranetin	$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{5}$	71.40	285.0757	285.0769	1.150	$\begin{aligned} & 285.0769 \\ & 286.0800 \end{aligned}$	$\begin{array}{r} 164.0114 \\ 6.0167 ; 151 \end{array}$	196.0013;	-H
44	Chrysosplenetin B	$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{8}$	71.50	373.0917	373.0930	1.286	$\begin{aligned} & 343.0461 \\ & 344.0480 \end{aligned}$	$\begin{gathered} 358.0695 \\ 2.9982 ; 285 . \end{gathered}$	328.0218;	-H
45	Isosinensetin	$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{7}$	74.32	373.1281	373.1285	0.391	$\begin{aligned} & 358.1046 \\ & 287.0889 \end{aligned}$	343.0814;	315.0876;	+H
46	Demethylnobiletin	$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{8}$	78.07	389.1230	389.1230	-0.074	359.0780; 3	1.0656; 285.0		+H
47	Gardenin B	$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{7}$	83.26	359.1125	359.1128	0.351	N/A			+H
Lignans and their glycosides										
48	Schisanwilsonin A	$\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{O}_{9}$	56.25	501.2119	501.2123	0.431	479.1825; 418.1969; 375.1808; 83.0492			+H
49	Gomisin S	$\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{7}$	68.96	419.2064	419.207	0.66	300.0993			+H
50	Schisandrin	$\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{7}$	72.42	433.2220	433.2224	0.762	152.9958; 7	9590		+H

Peak Number	Identification Component	Molecular Formula	Retention Time (min)	Theoretical Mass (m/z)	Experimental Mass (m/z)	Delta mmu	Main MS/MS Fragments Detected			Mode
51	Schisantherin E	$\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{O}_{9}$	73.12	539.2275	539.226	-1.489	89.0597;	133.0860;	327.2015;	+H
							177.1122; 540.5418			
52	Taccalonolide A	$\mathrm{C}_{36} \mathrm{H}_{46} \mathrm{O}_{14}$	73.94	701.2803	701.2821	1.788	717.8382;	6.0506; 115.9	7; 99.0452	-H
53	Gomisin J	$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{6}$	75.03	389.1958	389.196	0.215	389.1960;	287.0914;	227.0704;	+H
							357.1700			
54	Gomisin O/ Gomisin A	$\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{7}$	75.90	417.1907	417.1912	0.470	417.2272;	316.1305;	301.1071	+ H
							347.1490;	285.1118;	418.2307;	
							402.2038; 242.0937 ; 317.1349			
55	Schisandrin B	$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}$	76.36	183.0785	183.0807	0.318	105.0336;	3.0807; 95.04	, 106.0369	+H
56	Benzoylgomisin H	$\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{O}_{8}$	79.21	523.2326	523.2312	-1.384	523.2307;	3.1824; 315.1		+H
57	Schisphenlignan A	$\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{O}_{9}$	80.42	523.1962	523.2307	-1.934	523.2307;	5.0336; 524.2		+H
58	Bulbocol	$\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{4}$	82.07	365.1747	365.1756	0.864	N/A			+H
59	Schisanhenol	$\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{6}$	86.26	403.2115	403.2121	0.615	111.0087;	.9257; 154.94	; 116.9284	+ H

Peak Number	Identification Component	Molecular Formula	Retention	Theoretical Mass (m/z)	Experimental Mass (m/z)	Delta mmu	Main MS/MS Fragments Detected			Mode
			$\begin{aligned} & \text { Time } \\ & (\mathrm{min}) \end{aligned}$							
60	Gomisin G / Schisantherin A	$\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{O} 9$	87.63	537.2119	537.2101	-1.769	415.1752;	437.1569;	371.1491;	+H
							340.1305; 537.2095			
61	Schisantherin D	$\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{O} 9$	88.56	521.1806	521.1799	-0.619	184.0735;	.1070; 86.09	; 124.9999	+H
62	Shancigusin B	$\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{O}_{5}$	89.43	443.1853	443.1833	-1.98	N/A			+H
63	Schizandrol B	$\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{O}_{9}$	90.81	512.2275	512.2283	0.831	385.1648;	355.1539;	316.0943;	+H
							323.1275; 354.1459; 312.0992;			
64	Schizandrin A	$\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{6}$	94.57	417.2271	417.2274	0.315	417.2274;	316.1305;	301.1070;	+H
							347.1489;	285.1119;	418.2304;	
							402.2042; 242.0937			
65	Schisanlactone B	$\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{O}_{4}$	95.33	467.3155	467.3162	0.634	95.0855	449.3051	431.2940;	+H
							1007.0855; 145.1011			
66	Schisandrin C	$\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{6}$	98.63	385.1645	385.1650	0.445		355.1542;	285.0757;	+H
							277.0702			

Peak	Identification Component	Molecular	Retention	Theoretical	Experimental	Delta	Main MS/MS Fragments Detected	Mode
Number		Formula		Mass (m/z)	Mass (m/z)	mmu		
			(min)					
67						-	401.1961; 402.1996;	
	Schisandrin B	$\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{6}$	99.44	401.1958	401.1855			+H
						10.285	386.1726387 .1781	
68	Schisanlactone D	$\mathrm{C}_{30} \mathrm{H}_{44} \mathrm{O}_{3}$	102.73	453.3363	453.3363	-0.022	N/A	+H
Other Type								
68	L-Arginine	$\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~N}_{4}$	2.30	175.1189	175.1192	0.278	$70.0652 ; 60.0559 ; 116.0706 ; 175.1192 ;$$130.0976 ; 158.0926$	+H
69	Betaine	$\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{NO}_{2}$	2.49	118.0862	118.0863	0.075	118.0863	+H
70	Sucrose	$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$	2.51	341.1078	341.1089	1.082	341.1098; 161.0545	-H
71	Quinic acid	$\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{6}$	2.57	191.0550	191.0562	1.215	N/A	-H
72	Stachydrine	$\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{NO}_{2}$	2.62	144.1004	144.1021	0.205	144.1019; 58.0654; 84.0807; 145.1054;	+H
							102.2848	
73	Adenine	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}_{5}$	2.71	136.0617	136.062	0.238	136.0217	+H
74	Shikimic acid	$\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{O}_{5}$	2.76	173.04444	173.0454	1.040	173.0457; 155.0350	-H

Peak Number	Identification Component	Molecular Formula	Retention Time (min)	Theoretical Mass (m/z)	Experimental Mass (m/z)	Delta mmu	Main MS/MS Fragments Detected	Mode
75	p-Hydroxybenzoic acid	$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}$	2.76	137.0233	137.0243	1.029	N/A	-H
76	Niacin	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$	3.39	124.0393	124.0394	0.155	N/A	+H
77	6-Demethoxytangeretin	$\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}$	3.43	191.0186	191.0199	1.281	N/A	-H
78	Citric acid	$\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}$	3.47	191.0186	191.0198	-0.156	111.0087; 191.0561; 179.0091	-H
79	Catechin	$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{6}$	3.57	289.0706	289.0678	-2.825	$\begin{aligned} & 290.0885 ; \quad 128.0353 ; \quad 133.0143 \\ & 115.0036 ; 200.0564 \end{aligned}$	-H
80	Adenosine	$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{4}$	3.68	268.104	268.1042	0.19	136.0619; 268.1055	+H
81	Gastrodin	$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{8}$	5.25	285.0968	285.0981	1.261	123.0451; 124.0484; 99.9258; 95.0502	-H
82	D (-)-Salicin	$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{7}$	5.25	285.0968	285.0980	1.201	283.8006; 195.0417	-H
83	Vanillic acid	$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{4}$	10.11	167.0338	167.0349	1.105	166.9933	-H
84	Protocatechuic acid	$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{4}$	10.37	153.0182	153.0193	1.095	N/A	-H

Peak	Identification Component	Molecular	Retention	Theoretical	Experimental	Delta	Main MS/MS Fragments Detected	Mode
Number		Formula		Mass (m/z)	Mass (m/z)	mmu		
			(min)					
85	Parishin E	$\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{13}$	12.81	459.1133	459.1145	1.183	111.0087; 112.0121; 67.0789	-H
86	4-Hydroxybenzoic acid	$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}$	14.05	137.0233	137.0244	1.109	N/A	-H
87	Chlorogenic acid	$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{9}$	16.11	355.1023	355.1026	0.331	N/A	+H
88	Caffeic acid	$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$	18.42	179.0338	179.0347	0.885	N/A	-H
89	Bletlos B	$\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{O}_{7}$	19.03	463.1751	463.1711	1.884	463.3031; 127.0367; 377.1919	+H
90	L-Phenylalanine	$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2}$	19.14	166.0862	166.0874	1.145	N/A	-H
91	Ferulic acid	$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4}$	30.10	193.0495	193.0506	1.105	134.0374; 178.0273; 137.0244	-H
92	1-(p-Hydroxybenzyl)-4,7- dimethoxyphenanthrene-2-ol	$\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}_{4}$	33.58	359.1277	359.1256	-2.116	$\begin{aligned} & 99.9259 ; 203.8657 ; 70.9377 ; 199.8516 \text {; } \\ & 97.9312 \end{aligned}$	-H
93	Deacetylnomilinic acid	$\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{9}$	37.61	491.2275	491.2291	1.631	N/A	+H

Peak Number	Identification Component	Molecular Formula	Retention Time (min)	Theoretical Mass (m/z)	Experimental Mass (m/z)	Delta mmu	Main MS/MS Fragments Detected			Mode
118	3-(4-Hydroxybenzyl)-4-methoxy- 2,7-dihydroxy-9,10-dihydrophene	$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{4}$	66.08	349.1434	349.1393	-4.096	259.2458;	. 2146		+H
119	4,7-Dihydroxy-1-(p-hydroxybenzyl)- 2-methoxy-9,10-dihydrophene	$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{4}$	66.13	347.1278	347.129	1.214	332.1052;	.1290; 331.098	1;99.9257	-H
120	Lusianthridin	$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3}$	66.18	243.1016	243.101	-0.571	$\begin{aligned} & 242.2842 \\ & \text { 158.1905 } \end{aligned}$	$\begin{aligned} & 243.2877 \\ & .0702 \end{aligned}$	208.8836;	+H
121	Propindilactone G	$\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{O}_{8}$	66.74	515.2639	515.2634	-0.515	$\begin{aligned} & 515.2279 \\ & 355.1539 \end{aligned}$	469.2212	385.1648	+H
122	1-(4-Hydroxybenzyl)-4-methoxy- 2,7-dihydroxyphenanthrene	$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{4}$	67.02	345.1121	345.1134	3.751	$\begin{aligned} & 345.1133 \\ & 237.0557 \end{aligned}$	$\begin{aligned} & 330.0897 \\ & 92577 \end{aligned}$	302.0954;	-H

Peak Number	Identification Component	Molecular Formula	Retention Time (min)	Theoretical Mass (m/z)	Experimental Mass (m/z)	Delta mmu	Main MS/MS Fragments Detected			Mode
123	1-(p-Hydroxybenzy)-4,8- dimethoxyphenanthrene-2,7-diol	$\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}_{5}$	68.15	375.1227	375.124	1.380	$\begin{aligned} & 317.0817 \\ & 361.1044 \end{aligned}$	$\begin{gathered} 360.1003 \\ 8.0864 ; 346.08 \end{gathered}$	345.0771;	-H
124	Blestrin B	$\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{O}_{6}$	68.50	483.185	483.1793	-0.865	483.2380	.0491; 55.0546		+H
125	Blestriarene A	$\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{O}_{6}$	68.55	481.1645	481.1659	1.425	$\begin{aligned} & 481.1664 \\ & 465.1347 \end{aligned}$	$\begin{aligned} & 146.9388 ; \\ & .9258 \end{aligned}$	102.9487;	-H
126	Limonin	$\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O}_{8}$	68.78	469.1856	469.1868	1.166	$\begin{aligned} & 367.7307 \\ & 111.0087 \end{aligned}$	309.3000;	179.0564;	-H
127	3,3'-Dihydroxy-4-(p- hydroxybenzyl)-5-methoxy-bibenzyl	$\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{4}$	68.88	349.1434	349.1447	1.274	$\begin{aligned} & 243.1023 ; \\ & 103.9201 \end{aligned}$	$\text { 7.0714; } 93.034$	5; 99.9257;	-H
128	3'-O-Methylbatatasin III	$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3}$	68.90	245.1172	245.1175	0.299	$\begin{aligned} & 226.8936 \\ & \text { 224.9272; } \end{aligned}$	$\begin{aligned} & 208.8831 ; \\ & 7.8909 \end{aligned}$	180.8882;	+H

Peak Number	Identification Component	Molecular Formula	Retention Time (min)	Theoretical Mass (m/z)	Experimental Mass (m/z)	Delta mmu	Main MS/MS Fragments Detected			Mode
129	Blestrin D	$\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{O}_{6}$	69.31	479.1489	479.1503	1.415	415.2114;	4.1926; 369		-H
130	Nomilinic acid	$\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{O}_{10}$	69.38	531.2224	531.2239	1.466	$\begin{aligned} & 59.0138 \\ & 414.7184 \end{aligned}$	$9259 ; 60.0$	325	-H
131	Blestriarene A	$\mathrm{C}_{30} \mathrm{H}_{22} \mathrm{O}_{6}$	69.84	477.1332	477.135	1.805	293.1260;	7.0492		-H
132	Blestritin B	$\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{O}_{6}$	70.37	485.1958	485.1958	0.025	$\begin{aligned} & 146.9386 ; \\ & 99.0815 ; 1 \end{aligned}$	$\begin{gathered} 123.0452 \\ .0765 ; 129.05 \end{gathered}$	$102 .$	-H
133	$\begin{aligned} & \text { 3,3'-Dihydroxy-2,6-bis(p- } \\ & \text { hydroxybenzyl)-5-methoxy-bibenzyl } \end{aligned}$	$\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{O}_{5}$	70.74	455.1853	455.1868	1.59	$\begin{aligned} & 361.1445 \\ & 304.1097 \end{aligned}$	$\begin{aligned} & 346.1203 ; \\ & 5.1027 \end{aligned}$	$331 .$	-H
134	5,6,7,3', ${ }^{\prime}$, 5^{\prime} '-Hexamethoxyflavone	$\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{8}$	70.85	403.1387	403.1391	0.356	403.1388;	$3.0918 ; 355.0$		+H
135	2,7-Dihydroxy-1,3-di(p- hydroxybenzyl) -4-methoxy-9, 10dihydrophene	$\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{O}_{5}$	70.94	453.1696	453.1711	1.46	$\begin{aligned} & 68.8936 \\ & 359.5929 \end{aligned}$	$\begin{aligned} & 290.5523 ; \\ & .9958 ; 179.4 \end{aligned}$		-H

Peak Number	Identification Component	Molecular Formula	Retention Time (min)	Theoretical Mass (m/z)	Experimental Mass (m/z)	Delta mmu	Main MS/MS Fragments Detected			Mode
140	3-Hydroxy-5,6,7,8,3',4’hexamethoxyflavone	$\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{9}$	74.36	419.1336	419.1339	0.281	N/A			+H
141	Blestritin A	$\mathrm{C}_{37} \mathrm{H}_{36} \mathrm{O}_{6}$	74.66	577.2584	577.2602	1.785	N/A			+H
142	2,6-Bis(4-hydroxybenzyl)-3',5-dimethoxy-3-hydroxyl bibenzyl	$\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{O}_{5}$	79.02	469.2009	469.2021	1.17	$\begin{aligned} & 469.3320 ; \\ & 468.3203 \end{aligned}$	470.3356;	451.3221	-H
143	Pregomisin	$\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{6}$	79.51	391.2115	391.2118	0.365	$\begin{aligned} & 391.2117,1 \\ & 237.1486 \end{aligned}$	$\begin{aligned} & .0704,205.1 \\ & 9.1845 \end{aligned}$		+H
144	$\begin{aligned} & \text { 4,7,3'5'-Tetramethoxy-9',10'- } \\ & \text { dihydro-[1,2'-biphenanthrene]-2,7'- } \\ & \text { diol } \end{aligned}$	$\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{O}_{6}$	79.56	506.1723	506.1701	-2.29	N/A			-H
145	Bleochranol D	$\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{O}_{8}$	83.53	569.2169	569.2152	-1.724	431.2065; 3	.1803; 356.	2;68.8067	+H

* N / A denotes the meaning of the component cannot find the secondary fragment in ion spectrum.

		BPNN		RBFNN	
		Training data	Validation data	Training data	Validation data
Yield of Dry					
Extraction					
Extraction					
Process	Extraction Yield of	0.9966	0.9901	0.9977	0.9986
	Schisandrin				
Yield of Dry					
Extraction					
Content of Total					
		0.9984	0.9985	0.9948	0.9694
Sugar					
Water Extraction Content of					
Process		0.9971	0.9997	0.9969	0.9041
	Hesperidin				
	$W_{\text {ave }}$	0.8771	0.8955	0.9764	0.9631
	$\overline{A_{\text {ave }}}$	0.9647	0.9839	0.9708	0.9720
	$\overline{M w a v e}$	0.9647	0.9742	0.9636	0.9592

Fig. S5. Concentrations of OED samples calculated by MCR-ALS.

Fig. S6. qNMR spectrum of OED samples deconvoluted by MCR-ALS. by MCR-ALS.

Fig. S7. Total ion chromatogram of ideal extract of BWG on positive and negative mode.

Fig. S8. The workflow of the model to optimize the multiple stage extraction process.

4. References

1 T. Yamazaki, S. Nakamura and T. Saito, Metrologia, 2017, 54, 224-228.
2 S. Westwood, T. Yamazaki, T. Huang, B. Garrido, I. Ün, W. Zhang, G. Martos, N. Stoppacher, T. Saito and R. Wielgosz, Metrologia, 2019, 56, 064001.
3 T.-Q. Peng, X.-L. Yin, H.-W. Gu, W. Sun, B. Ding, X.-C. Hu, L.-A. Ma, S.-D. Wei, Z. Liu and S.-Y. Ye, Food Chemistry, 2021, 347, 128959.

4 D. J. Strydom, Journal of Chromatography A, 1994, 678, 17-23.
5 X. Li, X. Wang, Y. Dong, R. Song, J. Wei, A. Yu, Q. Fan, J. Yao, D. Shan, F. Lv, X. Zhong and G. She, Industrial Crops and Products, 2022, 175, 114288.

6 S. K. Bharti and R. Roy, TrAC Trends in Analytical Chemistry, 2012, 35, 5-26.
7 S. Zhou, G. Huang and G. Chen, FOOD CHEMISTRY, , DOI:10.1016/j.foodchem.2021.130089.
8 C. Peng, Y. Zhu, F. Yan, Y. Su, Y. Zhu, Z. Zhang, C. Zuo, H. Wu, Y. Zhang, J. Kan and D. Peng, Food Chemistry, 2021, 340, 127907.
9 L. Zhu, G. Wang, F. Huang, Y. Li, W. Chen and H. Hong, IEEE Geosci. Remote Sensing Lett., 2022, 19, 1-5.

10 N. Liu, W. Yang, X. Li, P. Zhao, Y. Liu, L. Guo, L. Huang and W. Gao, FOOD CHEMISTRY, , DOI:10.1016/j.foodchem.2022.132683.

11 M. Yu, Carbohydrate Polymers, 2021, 9.
12 F. Dranca, M. Vargas and M. Oroian, Food Hydrocolloids, 2020, 100, 105383.
13 X. Chen, G. Chen, Z. Wang and J. Kan, International Journal of Biological Macromolecules, 2020, 151, 635-649.
14 X. Li, L. Wang, Y. Wang and Z. Xiong, PROCESS BIOCHEMISTRY, 2016, 51, 1100-1108.

