Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting information for:

A high-solid DES pretreatment using never-dried biomass as the starting material: towards high-quality lignin fractionation

Jinyuan Cheng^a, Chen Huang^{a,*}, Yunni Zhan^a, Xuze Liu^a, Jia Wang^b, Xianzhi Meng^c, Chang Geun Yoo^f, Guigan Fang^a, Arthur J. Ragauskas^{c,d,e,*}

^aInstitute of Chemical Industry of Forest Products, Chinese Academy of Forestry,

Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042

^bCo-Innovation Center for Efficient Processing and Utilization of Forest Resources,

Nanjing Forestry University, Nanjing 210037, China

^cDepartment of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, USA.

^dDepartment of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, The University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA.

^eJoint Institute for Biological Science, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.

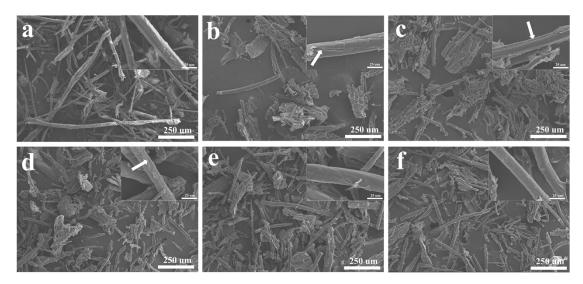

^fDepartment of Paper and Bioprocess Engineering, State University of New York College of Environmental Science and Forestry, Syracuse, New York 13210-2781, United States.

Table S1. The lignin recovery yield based on the lignin removal, and the sugars analysis of recovered lignins.

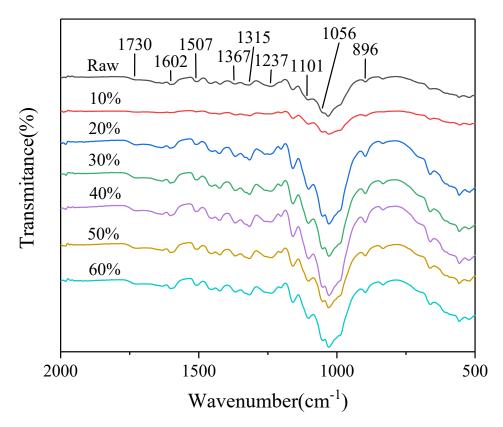

Substrates water contents	Lignin recovery	Glucose	Xylose	Arabinose
(%)/Solid:DES (w:w)	yield (%)	(%)	(%)	(%)
10	96.1	0	0	0
20	98.4	0	0	0
30	97.4	0	0	0
40	91.4	0	0.1	0
50	93.1	0	0	0
60	97.7	0	0	0
1:2	96.4	0	0	0
1:4	97.1	0	0	0
1:6	95.5	0	0	0
1:8	94.1	0	0.1	0
1:10	95.1	0	0	0

Table S2. Quantification of CEL and recovered Lignin (results expressed as per 100 Ar).

Sample	β-β (%)	β-5 (%)	FA (%)	PCE (%)
CEL	4	5	6	25
L10% (1:4)	3	4	0	39
L20% (1:4)	3	6	1	35
L40% (1:4)	3	8	1	30
L60% (1:4)	3	6	1	28
L60% (1:10)	2	7	1	34

Fig. S1. SEM images of the original (a) and the pretreated feedstocks under different water contents of 20% (b), 30% (c), 40% (d), 50% (e), and 60% (f).

Fig. S2. FTIR analysis of raw and pretreated substrates under different substrates water content.

Fig. S3. Lignin extraction in normal case, and the lignin protection by our 1,4-BDO.

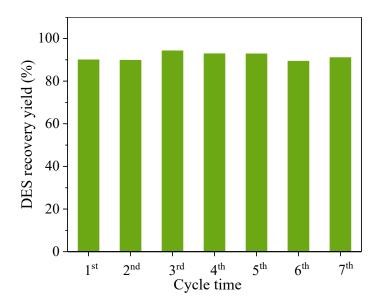


Fig. S4. DES recovery yield under different pretreatment cycles.