Supporting Information

Ethanol-induced transformation of furfural into 1,4-pentanediol over a Cu/SiO2 catalyst with enhanced metal-acid sites by copper phyllosilicate

Yanni Zheng^a, Jiaxuan Zang^a, Qian Zhang^{a,b}, Xiaoping Wu^{a,b}, Songbai Qiu^{a,b}, Qingwei Meng^{a,b*}, Tiejun Wang^{a,b*}

^a School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China

^b Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China

* Corresponding authors: *E-mail: qwmeng@gdut.edu.cn (Q. Meng) and tj<u>wang@gdut.edu.cn</u> (T. Wang).*

1 EXPERIMENTAL SECRION

1.1 Materials.

Cu(NO₃)₂·3H₂O (A.R., Macklin Ltd.), 28% ammonia aqueous solution (A.R., Guangzhou Chemical Reagent Factory), silica sol (Shandong Yinfeng Nano New Material Co. Ltd), fumed SiO₂ powder (Sigma-Aldrich). 1,4-pentanediol (98%), furfural (99%), furfuryl alcohol (97%), 2ethoxymethyl-furan (98%), ethyl levulinate (98%), γ-valerolactone (98%), 3-acetyl-1-propanol (95%), 2-methyltetrahydrofuran (99.5%), 2-methyl furan (98%), cyclopentanone (99.5%), cyclopentanol (99.5%), tetrahydro furfuryl alcohol (99%) and ethanol (100%) were purchased from Aladdin Ltd. Furfural and furfuryl alcohol were purified by distillation in vacuum at 80°C before used. Other chemicals were used without further purification.

1.2 Catalyst characterizations.

ICP-OES (Inductively Coupled Plasma Optical Emission Spectrometry) was used to determine the Cu loading of the catalysts with a Perkin-Elmer OPTIMA 8000 instrument. Textural properties were examined utilizing N₂ physical adsorption at -196 °C on a Micromeritics instrument (Tristar II 3020). Prior to tests, the samples were degassed under vacuum (10⁻³ torr) at 200 °C for 12 h. The crystalline structures of the catalysts were characterized by XRD (X-ray diffraction) using a MiniFlex 600 instrument with Cu K α radiation ($\lambda = 1.54059$ Å). XRD patterns were collected with a scanning range of 10-80° and step size of 0.02°/s. The IR spectra were recorded on a Nicolet NEXUS 470 in the range of 4000-400 cm⁻¹ with a 4 cm⁻¹ resolution. H₂-TPR (H₂-temperature programmed reduction) of the catalysts were conducted using a chemisorption analyzer (AutoChem II 2920, America Micromeritics) equipped with a thermal conductivity detector (TCD). Prior to the experiments, all of the catalysts (20 mg) were dried in flowing He (30 mL/min) at 100 °C for 30 min. After cooling down to room temperature, the flow was changed to 30 mL/min of 10%H₂/Ar. Subsequently, the catalysts were heated to 500 °C in H₂ with a rate of 10 °C/min, and the TCD signal was recorded. TEM (transmission electron microscopy) was tested on a FEI Talos F200S (accelerating voltage of 200 kV).

"The average particle size was calculated using an equation of $d = \sum n_i d_i^3 / \sum n_i d_i^2$, where n_i is the number of particles with diameter of d_i . The particle size distribution was determined by measuring 100-200 particles." The acidity of the catalysts was analyzed by NH₃-TPD (NH₃-temperature-programmed desorption) with a TP-5080 (China Xianquan) instrument. Firstly, the catalysts (200 mg) were reduced with hydrogen at 260 °C for 2 h and then were purged with He at 300 °C for 1 h to remove the adsorbed H₂. After that, the catalysts were saturated with NH₃ at 100 °C and purged with He to remove the physisorbed NH₃. Finally, the samples were heated to 500 °C in He with a rate of 10 °C/min.

1.3 Products analysis.

In this work, carbon balance, conversion and products yields were calculated by the following equations:

Carbon balance (C-mol%) = $\frac{\sum \text{Mole of carbon in the product}}{\text{Moles of carbon in the initial substrate}} \times 100\%$ Conversion = 100% - $\frac{\text{Moles of carbon in the products}}{\text{Moles of carbon in the initial substrate}} \times 100\%$ Yield = $\frac{\text{Moles of carbon in a spesific product}}{\text{Moles of carbon in the initial substrate}} \times 100\%$

Chambred	A 1 1	Condensed structural		
Chemical	Abbreviation	formulas		
furfuryl alcohol	FOL	O O H		
2-ethoxymethyl-furan	2-(EoM)F	o o		
ethyl levulinate	EL			
γ-valerolactone	GVL			
3-acetyl-1-propanol	3-AP	Ю		
1,4-pentanediol	1,4-PeD	ОН		
2-methyltetrahydrofuran	2-MTHF			
2-methylfuran	2-MF	O		
cyclopentanol	CPL	OH		
cyclopentanone	СРО	○ ► ○		
tetrahydrofurfuryl alcohol	THFOL	O O H		

Table S1. Chemical, abbreviation and condensed structural formulas.

Entry Substr	Substrate	Conv.	Yield (%)			Carbon	
	Substrate	e (%)	1,4-PeD	3-AP	2-MTHF	Others ^a	balance (%)
1	1,4-PeD	24.0	-	0.0	19.0	5.0	99.9
2	2-MF	24.9	7.5	0.6	16.8	0.0	99.9

Table S2. Transformation of the substrates over the reduced 20Cu/SiO₂-AE catalyst.

Reaction conditions: 300 mg 20Cu/SiO₂-AE catalyst, 5.2 mmol substrate, 12.0 mL H₂O/ethanol (9:3 volume ratio), 4.0 MPa H₂, 180 °C, reaction for 8 h.

^a Including 1-pentanol, 2-pentanol and humins.

1,4-PeD = 1,4-pentanediol, 3-AP= 3-acetyl-1-propanol, 2-MTHF = 2-methyltetrahydrofuran, 2-MF = 2-methylfuran.

Figure S1. (a) N_2 adsorption-desorption isotherms; (b) Pore distribution curves of the calcined catalysts.

Figure S2. (a) TEM image of the reduced $20Cu/SiO_2$ -AE catalyst; (b) High annular dark-field scanning TEM (HAADF-STEM) and the corresponding elemental mapping images of the reduced $20Cu/SiO_2$ -AE catalyst.