Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting information

Regiodivergent Electroreductive Defluorinative Carboxylation of

gem-Difluorocyclopropanes

Bin Zhao, Zichen Pan, Jiayu Pan, Hongping Deng, Xiaoli Bu, Mengtao Ma, Fei Xue

Table of Contents

1. General Information	2
2. Preparation of the substrates	3
3. General procedure for the synthesis of compounds 2 and 3	7
4. Gram-Scale Reaction	
5. Procedure for the product derivatization	8
6. Control experiments	10
7. Cyclic voltammetry	16
8. Characterization of products	17
9. References	27
10. NMR Spectra	28
11. 2D 1H-1H NOESY experiment	

1. General Information

All anaerobic and moisture-sensitive manipulations were carried out with standard Schlenk techniques under nitrogen gas. Analytical thin-layer chromatography (TLC) was performed on silica gel, irradiation with UV light. For column chromatography, 200-300 mesh silica gel was used. NMR spectra were recorded on a BRUKER 600 MHz (or 400 Hz) spectrometer and ¹³C NMR spectra were recorded in CDCl₃ or D₂O at 600 MHz (or 400 Hz). ¹H and ¹³C NMR were referenced to CDCl₃ at δ 7.26 and 77.00 respectively. The following abbreviations were used to explain the multiplicities; s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublets), dq (doublet of quartets), dt (double of triplets), td (triple of double); coupling constants (J) are in Hertz (Hz). HRMS spectra were recorded on a Xevo G2-XS QTof (Waters Corporation) using electrospray ionization. DC power supply MT-152D was used for all experiments.

Pictures of the reaction setups

2. Preparation of the substrates

2.1 General procedure A:

Synthesis of gem-difluorinated cyclopropanes

The *gem*-difluorocyclopropanes were prepared according to the known procedure.^[1-6] To a 250 mL pressure tube charged with a tefloncoated stir bar was added anhydrous NaI (0.3 g, 2.0 mmol, 0.2 equiv), 50.0 mL of freshly distilled THF as solvent, and the corresponding alkene (10.0 mmol, 1.0 equiv) in that order under argon atmosphere. To this mixture was added TMSCF₃ (3.6 g, 25.0 mmol, 2.5 equiv). The reaction vessel was sealed and reflux in an oil bath for a period of 4 h. The reaction mixture was evaporated to dryness under reduced pressure to remove THF. The crude was extracted with ether (30.0 mL) and washed with water (20.0 mL), saturated Na₂SO₃ solution (20.0 mL), saturated NaHCO₃ solution (20.0 mL), and water (20.0 mL), in that order. The ether layer was then collected and dried over anhydrous Na₂SO₄. The ether layer was evaporated under reduced pressure to obtain the crude products. The crude products were purified by flash chromatography on silica gel (PE/EA) to afford the desired products. The gem-difluorinated cyclopropanes. Characterization of new *gem*-difluorocyclopropanes **1d**, **1e**, **1m-1r**, **1t**, **1v**, **1w** are listed below.

4-(2,2-difluoro-1-methylcyclopropyl)benzonitrile (1m). $R_f = 0.5$ (PE: EA = 40:1). The reaction was conducted with General Procedure A. Isolated yield: 1.25 g, 65%. ¹H NMR (600 MHz, CDCl₃): δ 7.63-7.62 (m, 2H), 7.42 (d, J = 8.3 Hz, 2H), 1.72-1.67 (m, 1H), 1.52-1.51 (m, 1H), 1.50-1.47 (m, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 144.4, 132.4, 129.3 (d, J_{C-F} = 1.5 Hz), 118.6, 113.7 (dd, J_{C-F} = 290.8, 286.6 Hz), 111.2, 31.0 (t, J_{C-F} = 10.7 Hz), 22.7 (t, J_{C-F} = 10.0

Hz), 20.8 (d, J = 4.9 Hz). ¹⁹F NMR (565 MHz, CDCl₃): δ -132.3 (dd, J = 151.9, 13.3 Hz, 1F), -137.3(dd, J = 151.8, 11.9 Hz, 1F). HRMS (ESI): calculated for C₁₁H₁₀F₂N [M+H]⁺: 194.0776; Found: 194.0778.

4-(2,2-difluoro-3-methylcyclopropyl)benzonitrile (1n). $R_f = 0.5$ (PE: EA = 40:1). The reaction was conducted with General Procedure A. **1n** was prepared from (E)-4-(prop-1-en-1-yl)benzonitrile. Isolated yield: 1.25g, 65%. **¹H NMR (600 MHz, CDCl₃):** δ 7.58 (d, J = 8.3 Hz, 2H), 7.28 (d, J = 8.3 Hz, 2H), 2.31 (dd, J = 13.3, 7.6 Hz, 1H), 1.92-1.86 (m, 1H), 1.36 (dd, J

= 6.36, 1.6 Hz, 3H). ¹³C{¹H} **NMR (151 MHz, CDCl₃):** δ 140.0, 132.2, 128.5, 118.7, 114.1 (dd, J_{C-F} = 292.0, 289.3 Hz), 110.7, 34.1 (t, J_{C-F} = 11.2 Hz), 25.4 (t, J_{C-F} = 9.9 Hz), 11.3 (d, J = 5.2 Hz). ¹⁹F **NMR (565 MHz, CDCl₃):** δ -137.0 ~ -136.7 (m, 1F), -138.0 ~ -137.7(m, 1F). **HRMS (ESI):** calculated for C₁₁H₁₀F₂N [M+H]⁺: 194.0776; Found: 194.0780.

Methyl 4-(2,2-difluoro-3-methylcyclopropyl)benzoate (10). $R_f = 0.5$ (PE: EA = 40:1). The reaction was conducted with General Procedure A. Isolated yield: 1.81 g, 80%. $R_f = 0.5$ (PE: EA = 40:1). The reaction was conducted with General Procedure. **10** was prepared from a mixture of cis and trans methyl 4-(prop-1-en-1-yl)benzoate. Isolated yield: 1.25g,

65 %. ¹H NMR (600 MHz, CDCl₃): δ 7.98 (d, J = 8.4 Hz, 2H), 7.25 (d, J = 8.3 Hz, 2H), 3.91 (s, 3H), 2.31 (dd, J = 13. 7, 7.6 Hz, 1H), 1.93-1.86 (m, 1H), 1.36 (dd, J = 6.36, 1.56 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 166.8, 139.7, 129.7, 128.7, 127.7, 114.4 (dd, J_{C-F} = 291.7, 289.7 Hz), 52.1, 34.1 (t, J_{C-F} = 11.1 Hz), 25.0 (t, J_{C-F} = 10.4 Hz), 11.4 (d, J = 4.9 Hz). ¹⁹F NMR (565 MHz, CDCl₃): δ -136.8 ~ -137.1 (m, 1F), -137.9 ~ -138.2 (m, 1F). HRMS (ESI): calculated for C₁₂H₁₃F₂O₂ [M+H]⁺: 227.0878, Found: 227.0876.

2-(2,2-difluoro-3-methylcyclopropyl)naphthalene (1p). $R_f = 0.5$ (PE: EA = 40:1). The reaction was conducted with General Procedure A. **1p** is prepared from a mixture of cis and trans 2-(prop-1-en-1-yl)naphthalene. Isolated yield: 1.66 g, 76%. ¹H NMR (600 MHz, CDCl₃): δ 7.83-7.79 (m,

3H), 7.67 (s, 1H), 7.50-7.45 (m, 2H), 7.33-7.32 (m, 1H), 2.46 (dd, J = 13.6, 7.6 Hz, 1H), 2.01-1.94 (m, 1H), 1.42-1.40 (m, 3H). ¹³C{¹H} **NMR (151 MHz, CDCl₃):** δ 133.3, 132.4, 131.7, 128.1, 127.65, 127.60, 126.5, 126.3, 126.1, 125.8, 114.8 (dd, J_{C-F} = 290.0, 289.1 Hz) 34.2 (t, J_{C-F} = 10.8 Hz), 24.4 (dd, J_{C-F} = 19.9 Hz), 11.5 (d, J = 5.3 Hz). ¹⁹F **NMR (565 MHz, CDCl₃):** δ -137.0 ~ -137.3 (m, 1F), -137.7 ~ -138.0 (m, 1F). **HRMS (ESI):** calculated for C₁₄H₁₃F₂ [M+H]⁺: 219.0980; Found: 219.0982.

Methyl 4-(2,2-difluoro-3-propylcyclopropyl)benzoate (1q). $R_f = 0.5$ (PE: EA = 40:1). The reaction was conducted with General Procedure A. The mixture of cis and trans 1q were prepared from a mixture of cis and trans methyl 4-(pent-1-en-1-yl)benzoate Isolated yield: 1.60g, 63 %. ¹H NMR (600 MHz, CDCl₃): δ 7.83-7.79 (d, J

= 2.0 Hz, 2H), 7.99 (d, J = 2.0 Hz, 2H), 7.37 (d, J = 8.2 Hz, 2H), 7.28 (d, J = 8.4 Hz, 2H), 3.92 (s, 3H), 3.92 (s, 3H), 2.84-2.80 (m, 1H), 2.39-2.36 (m, 1H), 1.95-1.83 (m, 2H), 1.74-1.61 (m, 2H), 1.59-1.51 (m, 2H), 1.41-1.36 (m, 2H), 1.37-1.31 (m, 1H), 1.18-1.10 (m, 1H), 0.99 (t, J = 7.3 Hz, 3H), 0.87 (t, J = 7.2 Hz, 3H). ${}^{13}C{}^{1H}$ NMR (151 MHz, CDCl₃): δ 166.9, 166.8, 139.8, 137.7, 129.9, 129.8, 129.7, 129.5, 128.8, 128.7, 128.2, 127.8, 114.6 (dd, J_{C-F} = 289.3,287.4 Hz), 114.4 (dd, J_{C-F} = 291.5, 290.0 Hz), 52.1, 33.3 (t, J_{C-F} = 11.1 Hz), 30.4 (dd, JC-F = 10.6, 8.9 Hz), 28.9 (dd, J_{C-F} = 12.9, 9.6 Hz), 28.71, 28.69, 27.9 (t, J_{C-F} = 10.0 Hz), 24.3 (d, J_{C-F} = 2.9 Hz), 21.9, 21.8, 13.53, 13.52. HRMS (ESI): calculated for $C_{14}H_{12}F_2O_2$ [M+H]⁺: 255.1191; Found: 255.1190.

2.2 Procedure B

One typical example for the preparation of complex compounds and drug derivatives

4-(2,2-difluorocyclopropyl)benzoic acid (0.99 g, 5 mmol) was dissolved in dry CH2Cl2 (25 mL) under

N₂ atmosphere and sec-butyl 2-(2-hydroxyethyl)piperidine-1-carboxylate (1.14 g, 5 mmol), DCC (1.03 g, 5mmol), DMAP (0.61 g, 5 mmol) was slowly added and stirred for 12 h at rt. The organic layer was washed with water and brine, dried over MgSO₄, removed by filtration. The crude products were purified by flash chromatography on silica gel (PE/EA) to afford the desired products (1.76 g, 86%).

4-(2,2-difluorocyclopropyl)-N-phenylbenzamide (1d). $R_f = 0.5$ (PE: EA = 5:1). The reaction was conducted with Procedure B. Isolated yield: 1.10 g, 81%. ¹H NMR (600 MHz, CDCl₃): δ 7.88 (s, 1H), 7.82 (d, J = 7.6 Hz, 2H), 7.63 (d, J = 7.4 Hz, 2H), 7.36 (t, J = 7.3 Hz, 2H), 7.31 (d, J = 7.5 Hz, 2H), 7.15 (t, J = 7.0 Hz, 2H), 2.82-2.77 (m, 1H), 1.91-1.87 (m, 1H), 1.69-1.67 (m, 1H). ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 137.9, 133.8, 130.2, 129.1, 128.4,

127.5, 127.2, 124.6, 120.2, 112.3 (dd, $J_{C-F} = 1.5 \text{ Hz}$), 118.6, 113.7 (dd, $J_{C-F} = 287.8 282.8 \text{ Hz}$), 27.1 (t, $J_{C-F} = 11.5 \text{ Hz}$), 17.4 (t, $J_{C-F} = 10.5 \text{ Hz}$). ¹⁹**F NMR (565 MHz, CDCl₃):** δ -125.6 (dt, J = 153.5, 11.8 Hz, 1F), -142.1 (ddd, J = 153.5, 13.6, 3.5 Hz, 1F). **HRMS (ESI):** calculated for $C_{16}H_{14}F_2NO [M+H]^+$: 274.1038; Found: 274.1038.

N-(sec-butyl)-4-(2,2-difluorocyclopropyl)benzamide (1e). $R_f = 0.5$ (PE: EA = 5:1). The reaction was conducted with Procedure B. Isolated yield: 1.05 g, 83%. ¹H NMR (600 MHz, CDCl₃): δ 7.71 (d, J = 8.3 Hz, 2H), 7.25 (d, J = 7.9 Hz, 2H), 5.96 (d, J = 7.2 Hz, 1H), 4.13-4.08 (m, 1H), 2.79-2.74 (m, 1H), 1.89-1.83 (m, 1H), 1.67-1.62 (m, 1H), 1.59-1.54 (m, 2H), 1.21 (d, J = 6.6 Hz, 3H), 0.95 (t, J = 7.5 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃):

δ 166.5, 137.1, 133.9, 128.1, 127.0, 112.3 (dd, J_{C-F} = 287.3, 283.9 Hz), 47.1, 29.8, 27.1 (t, J_{C-F} = 23.2 Hz), 20.5, 17.3 (t, J_{C-F} = 10.5 Hz), 10.4. ¹⁹F NMR (565 MHz, CDCl₃): δ -125.6 ~ -125.9 (m, 1F), -142.1 ~ -142.3 (m, 1F). HRMS (ESI): calculated for C₁₄H₁₈F₂NO [M+H]⁺: 254.1351; Found: 254.1355.

(38,88,98,10R,13R,148,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17-tetradecahydro-1H-

cyclopenta[a]phenanthren-3-yl-4-(2,2-difluorocyclopropyl)benzoate (1r). $R_f = 0.5$ (PE: EA = 8:1). The reaction was conducted with Procedure B. Isolated yield: 2.35 g, 83%. ¹H NMR (600 MHz, CDCl₃): δ 8.00 (d, J = 8.2 Hz, 2H), 7.28 (d, J = 8.2 Hz, 2H), 5.42 (d, J = 4.0 Hz, 1H), 4.88-4.83 (m, 1H), 2.81-2.76 (m, 1H), 2.46 (d, J = 7.7 Hz, 2H), 2.04-1.10 (m, 25H), 1.07 (s, 3H), 1.04-0.97 (m, 3H), 0.93 (d, J = 6.5 Hz, 3H), 0.87 (dd, J = 6.6, 2.6 Hz, 6H), 0.69 (s, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃): δ165.6, 139.6, 138.7, 129.7, 127.9, 122.8, 112.3 (dd, J_{C-F} = 287.0, 284.7 Hz), 74.6, 56.7, 56.2, 50.1, 42.3, 39.8, 39.5, 38.2, 37.0, 36.7, 36.2, 35.8, 32.0, 31.9, 28.3, 28.0, 27.9, 27.3 (t, J_{C-F} = 11.6 Hz), 24.3, 23.9, 22.8, 22.6, 21.1, 19.4, 18.7, 17.5 (t, J_{C-F} = 10.5 Hz), 11.9. ¹⁹F NMR (565 MHz, CDCl₃): δ -125.4 ~ -125.7 (m, 1F), -142.0 ~ -142.3 (m, 1F). HRMS (ESI): calculated for C₃₇H₅₃F₂O₂ [M+H]⁺: 567.4008; Found: 567.4002.

Sec-butyl 2-(2-((4-(2,2-difluorocyclopropyl)benzoyl)oxy)ethyl) piperidine-1-carboxylate (1t) $R_f = 0.5$ (PE: EA = 10:1). The reaction was conducted with Procedure B. Isolated yield: 1.76 g, 86%. ¹H NMR (600 MHz, CDCl₃): δ . 7.99 (d, J = 8.2, 2H), 7.27 (d, J = 8.1 Hz, 2H),4.74-4.70 (m, 1H), 4.51 (s, 1H), 4.32-4.30 (m, 2H), 4.11-4.08 (m, 1H), 2.85 (t, J = 13.0 Hz, 1H), 2.80-2.74 (m, 1H),

2.22-2.17 (m, 1H), 1.90-1.84 (m, 2H), 1.69-1.41 (m, 9H), 1.15 (d, J = 6.3 Hz, 3H), 0.85 (t, J = 7.4 Hz, 3H). ¹³C{¹H} **NMR (151 MHz, CDCl₃):** δ 166.2, 155.5 (d, J_{C-F} = 4.6 Hz), 138.9, 129.7, 129.2, 127.9, 112.2 (dd, J_{C-F} = 287.8, 283.9 Hz), 72.99, 72.96, 62.69, 62.66, 48.0, 39.0, 29.1, 28.9, 28.6, 27.3 (t, J_{C-F} = 11.6 Hz), 25.5, 19.7, 19.1, 17.5 (t, J_{C-F} = 10.5 Hz), 9.71, 9.68. ¹⁹F **NMR (565 MHz, CDCl₃):** δ -125.4 ~ -125.7 (m, 1F), -142.1 ~ -142.3 (m, 1F). **HRMS (ESI):** calculated for C₂₂H₃₀F₂NO₄ [M+H]⁺: 410.2137; Found: 410.2137.

(38, 58, 8R, 98, 108, 138, 148)-10, 13-dimethyl-17oxohexadecahydro-1H-cyclopenta[a]phenanthren-3-yl 4-(2, 2-difluorocyclopropyl)benzoate (1v). $R_f = 0.5$ (PE: EA = 5:1). The reaction was conducted with Procedure B. Isolated yield: 1.81 g, 77%. ¹H NMR (600 MHz, CDCl₃): δ 7.97 (d, J = 8.3, 2H), 7.26 (d, J = 8.2 Hz, 2H), 4.95-4.89 (m, 1H), 2.80-2.74 (m, 1H), 2.42 (dd, J = 19.3, 8.7 Hz, 1H), 2.09-2.02 (m, 1H), 1.94-1.45

(m, 13H), 1.37-1.21 (m, 6 H), 1.12-1.07 (m, 1H), 1.03-0.96 (m, 1H), 0.89 (s, 3H), 0.85 (s, 3H), 0.76-0.72 (m, 1H). ¹³C{¹H} **NMR (151 MHz, CDCl₃):** δ 165.7, 138.8, 129.7, 127.8, 112.3 (dd, J_{C-F} = 287.7, 283.9 Hz), 74.16, 54.3, 51.4, 47.8, 44.7, 36.7, 35.8, 25.7, 35.0, 34.0, 31.5, 30.8, 28.3, 27.5, 27.2 (t, J_{C-F} = 11.6 Hz), 21.8, 20.5, 17.4 (t, J_{C-F} = 10.6 Hz), 13.8, 12.3. ¹⁹F **NMR (565 MHz, CDCl₃):** δ -125.4 ~ -125.7 (m, 1F), -142.2 (dd, J = 153.9, 12.9, 1F). **HRMS (ESI):** calculated for C₂₉H₃₇F₂O₃ [M+H]⁺: 471.2705; Found: 471.2701

(7R, 11R, E)-3, 7, 11, 15-tetramethylhexadec -2en-1-yl 4-(2, 2-difluorocyclopropyl)benzoate (1w). $R_f = 0.5$ (PE: EA = 10:1). The reaction was conducted with Procedure B. Isolated yield: 1.93 g,

81%. ¹H NMR (600 MHz, CDCl₃): δ . 8.01 (d, J = 8.3, 2H), 7.27 (d, J = 8.2 Hz, 2H), 5.47-5.45 (m, 1H), 4.84 (d, J = 7.1 Hz, 2H), 2.81-2.75 (m, 1H), 2.06-2.01 (m, 2H), 1.91-1.84 (m, 1H), 1.76 (s, 3 H), 1.70-1.65 (m, 1H), 1.55-1.50 (m, 1H), 1.47-1.04 (m, 18H), 0.88-0.84 (m, 12H). ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 166.3, 142.9, 138.8, 129.8, 129.5, 127.9, 118.1, 112.2 (dd, J_{C-F} = 287.2, 284.5 Hz), 61.9, 39.9, 39.4, 37.43, 37.37, 37.3, 36.6, 32.8, 32.7, 29.7, 28.0, 27.3 (t, J_{C-F} = 11.6 Hz), 25.0, 24.8, 24.5, 22.7, 22.6, 19.7 (d, J = 4.4 Hz), 17.5 (t, J_{C-F} = 10.5 Hz), 16.5. ¹⁹F NMR (565 MHz, CDCl₃): δ -125.4 ~ -125.7 (m, 1F), -142.0 ~ -142.3 (m, 1F). HRMS (ESI): calculated for C₃₀H₄₇F₂O₂ [M+H]⁺: 477.3539; Found: 477.3541.

3. General procedure for the synthesis of compounds 2 and 3

To a 10 mL hydrogenation tube containing a stir bar were added "Bu₄NI (74.0 mg, 0.2 mmol, 0.025 M), MeCN (8.0 mL), followed by the addition of **1a** (42.4 mg, 0.2 mmol). Then the tube was installed with Zn-plate (10 mm x 10 mm x 0.2 mm) as anode and Pt-plate (10 mm x 10 mm x 0.1 mm) as cathode. The resulting mixture was bubbled with CO₂ gas for 10 min. The reaction mixture was then stirred and electrolyzed at a constant current of 15 mA with a constant CO₂ flow for 3.5 h. After that, the reaction mixture was transferred to a 50 mL Erlenmeyer flask and acidized with HCl (2 N, 10 mL). The aqueous layer extracted with EtOAc (3 x 10 mL) and the combined organics were washed with H₂O (10 mL), brine (10 mL) and dried over Na₂SO₄. The crude residue was dissolved in Et₂O (2.0 mL) and MeOH (0.5 mL) and cooled to 0 °C. The hexane solution of TMSCHN₂ (0.2 mL, 2.0 mol/L, 0.4 mmol, 2.0 equiv) was added at 0 °C. The mixture was stirred at 0 °C for further 50 min. The volatile was removed under reduced pressure and the crude residue was purified by column chromatography using PE/EtOAc (10:1, v/v) as the eluent to afford the desired product **2**.

To a 10 mL hydrogenation tube containing a stir bar were added "Bu₄NClO₄ (68.2 mg, 0.2 mmol, 0.025 M), DMSO (8.0 mL), followed by the addition of **1a** (42.4 mg, 0.2 mmol). Then the tube was installed with Ni-plate (10 mm x 10 mm x 0.2 mm) as anode and Pt-plate (10 mm x 10 mm x 0.1 mm) as cathode. The resulting mixture was bubbled with CO₂ gas for 10 min. The reaction mixture was then stirred and electrolyzed at a constant current of 15 mA with a constant CO₂ flow for 6 h. After that, the reaction mixture was transferred to a 50 mL Erlenmeyer flask and acidized with HCl (2 N, 10 mL). The aqueous layer extracted with EtOAc (3 x 10 mL) and the combined organics were washed with H₂O (10 mL), brine (10 mL) and dried over Na₂SO₄. The crude residue was dissolved in Et₂O (2.0 mL) and MeOH (0.5 mL) and cooled to 0 °C. The hexane solution of TMSCHN₂ (0.2 mL, 2.0 mol/L, 0.4 mmol, 2.0 equiv) was added at 0 °C. The mixture was stirred at 0 °C for 50 min. The volatile was removed under reduced pressure and the crude residue was purified by column chromatography using PE/EtOAc (10:1, v/v) as the eluent to afford the desired product **3**.

4. Gram-Scale Reaction

To a 100 mL hydrogenation tube containing a stir bar were added ⁿBu₄NI (2.96 g, 8 mmol, 0.1 M), MeCN (80.0 mL), followed by the addition of **1a** (1.70 g, 8 mmol). Then the tube was installed with Zn-plate (30 mm x 30 mm x 0.2 mm) as anode and Pt-plate (30 mm x 30 mm x 0.1 mm) as cathode. The resulting mixture was bubbled with CO₂ gas for 10 min. The reaction mixture was then stirred and electrolyzed at a constant current of 15 mA with a constant CO₂ flow for 6 h. After that, the reaction mixture was transferred to a 250 mL erlenmeyer flask and acidized with HCl (2 N, 100 mL). The aqueous layer extracted with EtOAc (2 x 50 mL) and the combined organics were washed with H₂O (80 mL), brine (80 mL) and dried over Na₂SO₄. The volatile was removed under reduced pressure and the crude residue was purified by column chromatography using PE/EtOAc (3:1, v/v) as the eluent to afford the desired product **2a-H**.

5. Procedure for the product derivatization

Procedure for the synthesis of 4

To a 10 mL flask were added **2a-H** (0.2 mmol, 47.6 mg), Et₂O (2.0 mL) and MeOH (0.5 mL), and the hexane solution of TMSCHN₂ (0.2 mL, 2 mol/L, 0.4 mmol) was added at 0 °C. The mixture was stirred at that temperature for another 50 min. Then the solvent was removed under reduced pressure, and the crude residue was dissolved in DMF (1 mL), followed by the addition of K₃PO₄ (0.2 mmol, 42 mg). The resulting mixture was slowly warmed to room temperature and stirred overnight. After monitored by TLC till full conversion to the product, the reaction was quenched by saturated aqueous solution of NaCl (5 mL) and extracted with Et₂O (5 mL x 3). The combined organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography using PE/EtOAc (10:1, v/v) as eluent to afford **4** in 39.3 mg with 78% yield. ¹H NMR (600 MHz, CDCl₃): δ 8.02 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.2 Hz, 2H), 3.90(s, 3H), 3.71 (s, 3H), 2.48 (d, J = 19.7 Hz, 3H) . ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 168.6 (d, J_{C-F} = 271.8 Hz), 167.1, 167.0, 166.8, 137.4, 129.9 (d, J_C F = 2.0 Hz), 129.3, 114.8 (d, J_{C-F} = 20.5 Hz), 52.2 (d, J_{C-F} = 4.9 Hz), 17.9, 17.7. ¹⁹F NMR (565 MHz, CDCl₃): δ -68.3 (q, J = 19.7 Hz, 1F). HRMS (ESI): calculated for C₁₃H₁₄FO₄ [M+H]⁺: 253.0871; Found: 253.0875.

Procedure for the synthesis of 5

The carboxylic acid **2a-H** (0.2 mmol, 47.6 mg) was dissolved in DMF (2 mL), then sec-butylamine (21.9 mg, 0.3 mmol), *o*-(7-Azabenzotriazol-1-yl)-N,N,N',N'-tramethyluronium hexafluorophosphate (HATU, 152.0 mg, 0.4 mmol) and Et₃N (60.7 mg, 0.6 mmol) were added. The resulting mixture was stirred for 6 h at room temperature till full conversion of **2a-H**. Then the reaction was quenched with H₂O and extracted with EtOAc (3 x 10 mL). The combined organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography using PE/EtOAc (3:1, v/v) as eluent to afford **5** (85%, 49.8 mg). ¹**H NMR (600 MHz, CDCl₃):** δ 8.05 (d, J = 8.4 Hz, 2H), 7.40 (d, J = 8.2 Hz, 2H), 3.97-3.93 (m, 1H), 3.92 (s, 3H), 2.41 (d, J = 19.5 Hz, 3H), 1.44-1.33 (m, 2H), 1.06 (d, J = 6.6 Hz, 3H), 0.84 (t, J = 7.5 Hz, 3H). ¹³C{¹H} **NMR (151 MHz, CDCl₃):** δ 166.6, 165.8 (d, J_{C-F} = 14.1 Hz), 163.7 (d, J_{C-F} = 267.9 Hz), 137.7, 129.9, 129.6, 129.5 (d, J_{C-F} = 3.2 Hz), 116.8 (d, J_{C-F} = 14.9 Hz), 52.2, 47.1, 29.4, 20.2, 17.3 (d, J_{C-F} = 26.8), 10.3. ¹⁹F NMR (565 MHz, CDCl₃): δ -79.3 (q, J = 19.3 Hz, 1F). HRMS (ESI): calculated for C₁₆H₂₁FNO₃ [M+H]⁺: 294.1500; Found: 294.1505.

Procedure for the synthesis of 6

The carboxylic acid **2a-H** (0.2 mmol, 47.6 mg) was dissolved in anhydrous THF (1 mL) and cooled to 0 °C under an N₂ atmosphere. A solution of LiAlH₄ (1M in THF) 0.4 ml was added dropwise at 0 °C before the reaction was warmed to rt, and stirred then for 3 h. The reaction was cooled to 0°C before being carefully quenched with water. The solution was extracted with EtOAc (10 mL) and the combined organics dried over MgSO₄ and concentrated under reduced pressure. The crude product was purified by silica-gel column chromatography to give the product **6** (50%, 19.6 mg). ¹**H** NMR (600 MHz, CDCl₃): δ 7.36 (d, J = 8.1 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 4.76 (dd, J = 18.0, 3.1 Hz, 1H), 4.68 (s, 2H), 4.45 (dd, J = 50.4, 3.1 Hz, 1H), 4.02 (dd, J = 11.0, 7.4 Hz, 1H), 3.88 (dd, J = 11.0, 6.7 Hz, 1H), 3.77-3.68 (m, 1H). ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 165.1 (d, J_{C-F} = 259.9 Hz), 140.3, 136.8, 128.4, 127.5, 92.3 (d, J_{C-F} = 19.5 Hz), 64.9, 63.6 (d, J_{C-F} = 4.2 Hz), 51.1 (d, J_{C-F} = 25.1 Hz). ¹⁹F NMR (565 MHz, CDCl₃): δ - 98.9 ~ -99.1. HRMS (ESI): calculated for C₁₁H₁₄FO₂ [M+H]⁺: 197.0972; Found: 197.0973.

6. Control experiments

6.1 Radical trapping experiment

To a 10 mL hydrogenation tube containing a stir bar were added ⁿBu₄NI (74.0 mg, 0.2 mmol, 0.025 M), MeCN (8.0 mL), followed by the addition of **1a** (42.4 mg, 0.2 mmol) and BHT (132.2 mg, 0.6 mmol). Then the tube was installed with Zn-plate (10 mm x 10 mm x 0.2 mm) as anode and Pt-plate (10 mm x 10 mm x 0.1 mm) as cathode. The resulting mixture was bubbled with CO₂ gas for 10 min. The reaction mixture was then stirred and electrolyzed at a constant current of 15 mA with a constant CO₂ flow for 3.5 h. After that, the reaction mixture was transferred to a 50 mL erlenmeyer flask and acidized with HCl (2 N, 10 mL). The aqueous layer extracted with EtOAc (3 x 10 mL) and the combined organics were washed with H₂O (10 mL), brine (10 mL) and dried over Na₂SO₄. Then the BHT-adduct was detected by HRMS (ESI, m/z), calculated for $[C_{27}H_{34}F_2O_5+H]^+$: 477.2453; Found: 477.2450.

In an oven-dried undivided two-necked bottle (10 mL) equipped with a stir bar, *gem*difluorocyclopropanes **1a** (0.2 mmol, 42.4 mg), ⁿBu₄NI (0.2 mmol, 74.0 mg) and TEMPO (93.7 mg, 0.6 mmol) were combined and added. The bottle was equipped with Zn-plate (10 mm × 10 mm × 0.2 mm) as the anode and Pt-plate (10 mm × 10 mm × 0.1 mm) as the cathode and was then charged with nitrogen. Under the protection of N₂, MeCN (8.0 mL) were injected respectively into the tubes via syringes. The reaction mixture was stirred and electrolyzed at a constant current of 15 mA at 25°C for 3.5 h. After that, the reaction mixture was transferred to a 50 mL erlenmeyer flask and acidized with HCl (2 N, 10 mL). The aqueous layer extracted with EtOAc (3 x 10 mL) and the combined organics were washed with H₂O (10 mL), brine (10 mL) and dried over Na₂SO₄. Then the TEMPO-adduct was detected by HRMS (ESI, m/z), calculated for $[C_{20}H_{28}FNO_3+H]^+$: 350.2126; Found: 350.2126.

6.2 D-labeling experiments

In an oven-dried undivided two-necked bottle (10 mL) equipped with a stir bar, gemdifluorocyclopropanes **1a** (0.2 mmol, 42.4 mg), and ⁿBu₄NI (0.2 mmol, 74.0 mg) were combined and added. The bottle was equipped with Zn-plate (10 mm \times 10 mm \times 0.2 mm) as the anode and Pt-plate (10 mm \times 10 mm \times 0.1 mm) as the cathode and was then charged with nitrogen. Under the protection of N₂, D₂O (1.0 mL) and MeCN (8.0 mL) were injected respectively into the tubes via syringes. The reaction mixture was stirred and electrolyzed at a constant current of 15 mA at 25°C for 3.5 h. After that, the reaction mixture was transferred to a 50 mL erlenmeyer flask and acidized with HCl (2 N, 10 mL). The aqueous layer extracted with EtOAc (3 x 10 mL) and the combined organics were washed with H₂O (10 mL), brine (10 mL) and dried over Na₂SO₄. The volatile was removed under reduced pressure and the crude residue was purified by column chromatography using petroleum ether as the eluent to afford the desired product (total yield: 85%).

The ¹H NMR spectrums were provided as below pictures. (Compounds **6a-D**, **E-7a-D** and **Z-7a-D** couldn't be separated by column chromatography, the mixture of them were provided as shown in below picture.

To a 10 mL hydrogenation tube containing a stir bar were added ⁿBu₄NI (74.0 mg, 0.2 mmol, 0.025 M), MeCN (7.0 mL), D₂O (1.0 mL) followed by the addition of **1a** (42.4 mg, 0.2 mmol). Then the tube was installed with Zn-plate (10 mm x 10 mm x 0.2 mm) as anode and Pt-plate (10 mm x 10 mm x 0.1 mm) as cathode. The resulting mixture was bubbled with CO₂ gas for 10 min. The reaction mixture was then stirred and electrolyzed at a constant current of 15 mA with a constant CO₂ flow for 6 h. After that, the reaction mixture was transferred to a 50 mL Erlenmeyer flask and acidized with HCl (2 N, 10 mL). The aqueous layer extracted with EtOAc (3 x 10 mL) and the combined organics were washed with H₂O (10 mL), brine (10 mL) and dried over Na₂SO₄. The volatile was removed under reduced pressure and the crude residue was purified by column chromatography using petroleum ether as the eluent to afford the desired product (total yield: 43%).

The ¹H NMR spectrums were provided as below pictures. (Compounds **6a-D**, **E-7a-D** and **Z-7a-D** couldn't be separated by column chromatography, the mixture of them were provided as shown in below picture.

6.3 Competitive experiment between CO₂ and H₂O

To a 10 mL hydrogenation tube containing a stir bar were added "Bu₄NI (74.0 mg, 0.2 mmol, 0.025 M), MeCN (8.0 mL), followed by the addition of **1a** (42.4 mg, 0.2 mmol) and H₂O (36 μ L, 2 mmol or 108 μ L, 6mmol). Then the tube was installed with Zn-plate (10 mm x 10 mm x 0.2 mm) as anode and Pt-plate (10 mm x 10 mm x 0.1 mm) as cathode. After bubbling of CO₂ gas into the electrolytes for 10 min, The reaction mixture was stirred and electrolyzed at a constant current of 15 mA at 25 °C for 3.5 h. After that, the reaction mixture was transferred to a 50 mL erlenmeyer flask and acidized with HCl (2 N, 10 mL). The aqueous layer extracted with EtOAc (3 x 10 mL) and the combined organics were washed with H₂O (10 mL), brine (10 mL) and dried over Na₂SO₄. The volatile was removed under reduced pressure and the crude residue was purified by column chromatography using PE: EtOAc (3:1, v/v) as the eluent to afford the defluorocarboxylation products (total yield: 52% and 62%).

6.4 The investigation of CO₂ radical anion

detected by NMR

To a 10 mL hydrogenation tube containing a stir bar were added $^{n}Bu_{4}NI$ (74.0 mg, 0.2 mmol, 0.025 M), DMF (8.0 mL). Then the tube was installed with Zn-plate (10 mm x 10 mm x 0.2 mm) as anode and Pt-

plate (10 mm x 10 mm x 0.1 mm) as cathode. The resulting mixture was bubbled with CO_2 gas for 10 min. The reaction mixture was then stirred and electrolyzed at a constant current of 15 mA with a constant CO_2 flow for 6 h. After that, the reaction mixture was transferred to a 50 mL erlenmeyer flask and acidized with HCl (2 N). The aqueous layer was collected and concentrated in vacuo, and 2.0 mL D₂O was added. The aqueous phase was analyzed by crude ¹H NMR and ¹³C NMR. The formic acid was detected. ^[8-9]

Crude ¹H NMR spectrum of the aqueous

Crude ¹³C NMR spectrum of the aqueous

6.5 The effect of mixture solvent (Ch3CN/DMSO) on reaction

To a 10 mL hydrogenation tube containing a stir bar were added ⁿBu₄NI (74.0 mg, 0.2 mmol, 0.025 M), MeCN/DMSO (x/y mL), followed by the addition of **1a** (42.4 mg, 0.2 mmol). Then the tube was installed with Zn-plate (10 mm x 10 mm x 0.2 mm) as anode and Pt-plate (10 mm x 10 mm x 0.1 mm) as cathode. Firstly, Bubbling of CO₂ gas into the mixture solvent for 10 min, the reaction mixture was stirred and electrolyzed at a constant current of 15 mA at 25 °C for 3.5 h. After that, the reaction mixture was transferred to a 50 mL Erlenmeyer flask and acidized with HCl (2 N, 10 mL). The aqueous layer extracted with EtOAc (3 x 10 mL) and the combined organics were washed with H₂O (10 mL), brine (10 mL) and dried over Na₂SO₄. Part of the organics was concentrated and applied to ¹H NMR analysis to determine the ratio of branched/linear product. See table 1.

entry	solvent	Ratio of 2a/3a (b/l)
1	MeCN (8 mL)	16/1
2	MeCN/DMSO (7 mL/1 mL)	8/1
3	MeCN/DMSO (6 mL/2 mL)	9/2
4	MeCN/DMSO (4 mL/4 mL)	1/2
5	DMSO (8 mL)	1/18

S-15

6.6 The effect of concentration of carbon dioxide in acetonitrile

In an oven-dried undivided two-necked bottle (10 mL) equipped with a stir bar, *gem*difluorocyclopropanes **1a** (0.2 mmol, 42.4 mg), and ⁿBu₄NI (0.2 mmol, 74.0 mg) were combined and added. The bottle was equipped with Zn-plate (10 mm \times 10 mm \times 0.2 mm) as the anode and Pt-plate (10 mm \times 10 mm \times 0.1 mm) as the cathode and was then charged with nitrogen. Under the protection of N₂, CO₂-saturated-MeCN (bubbling of CO₂ gas into the MeCN (8.0 mL) for 30 min) were injected into the two-necked bottle via syringes. The reaction mixture was stirred and electrolyzed at a constant current of 15 mA at 25 °C for 3.5 h. After that, the reaction mixture was transferred to a 50 mL erlenmeyer flask and acidized with HCl (2 N, 10 mL). The aqueous layer extracted with EtOAc (3 x 10 mL) and the combined organics were washed with H₂O (10 mL), brine (10 mL) and dried over Na₂SO₄. The volatile was removed under reduced pressure and the crude residue was purified by column chromatography using petroleum ether as the eluent to afford the desired products.

Table S2. The ratio of branched/linear products

entry	Solvent	Ratio of 2a/3a (b/l)
1	Saturated CO ₂ in MeCN (8 mL)	4/1
2	Saturated CO ₂ in MeCN (4 mL) + dry MeCN (4 mL)	3/1

7. Cyclic voltammetry

The cyclic voltammetry was carried out with a Wuhai Corrtest CS310H workstation. A glassy-carbon electrode (3mm-diameter) was used as the working electrode, a Pt wire (1mm-diameter) was used as the auxiliary electrode and an Ag/AgCl electrode was used as a reference electrode. The measurements of Methyl 4-(2,2-difluorocyclopropyl)benzoate **1a** (0.1 M) were carried out at a scan rate of 100 mV s⁻¹ in MeCN/nBu₄NI (0.1 M) (Figure **S1a**) or DMSO/nBu₄NClO₄ (0.1 M) (Figure **S1b**); *gem*-difluorocyclopropane **1z** (0.1 M) was carried out at a scan rate of 100 mV s⁻¹ in DMF/nBu₄NClO₄ (0.1 M) (Figure **S1c**).

Figure S1. Cyclic voltammograms of gem-difluorocyclopropanes 1a and 1z.

8. Characterization of products

Methyl 4-(3-fluoro-1-methoxy-1-oxobut-3-en-2-yl)benzoate (2a). $R_f = 0.6$ (PE: EA = 10:1). The reaction was conducted with General Procedure. Isolated yield: 40.8 mg, 81%. ¹H NMR (600 MHz, CDCl₃): δ 8.03 (d, J = 8.3 Hz, 2H), 7.45 (d, J = 8.3 Hz, 2H), 4.84 (dd,

 $J = 17.1, 3.5 \text{ Hz}, 1\text{H}, 4.56 \text{ (d, } J = 12.2 \text{ Hz}, 1\text{H}), 4.48 \text{ (dd, } J = 48.7, 3.4 \text{ Hz}, 1\text{H}), 3.91, 3.76. {}^{13}C{}^{1}\text{H}$ **NMR (151 MHz, CDCl₃):** δ 169.4, 166.6, 161.9 (d, J_{C-F} = 259.8 Hz), 139.0 (d, J_{C-F} = 3.1 Hz), 130.11, 130.07, 128.9, 94.3 (d, J_{C-F} = 18.5 Hz), 54.3 (d, J_{C-F} = 29.5 Hz), 52.9, 52.2. {}^{19}\text{F NMR (565 MHz, CDCl_3):} δ -97.2 ~ -97.3 (m, 1F). **HRMS (ESI):** calculated for C₁₃H₁₄FO₄ [M+H]⁺: 253.0871; Found: 253.0871.

3-fluoro-2-(4-(methoxycarbonyl)phenyl)but-3-enoic acid (2a-H). $R_f = 0.5$ (PE: EA = 3:1). The reaction was conducted with **General Procedure**. Isolated yield: 38.6 mg, 81%. ¹**H NMR (600 MHz, CDCl₃):** δ 8.04 (d, J = 8.2 Hz, 2H), 7.47 (d, J = 8.2 Hz, 2H), 4.87 (dd, J = 17.1, 3.5 Hz, 1H),

4.59 (d, J = 12.6 Hz, 1H), 4.48 (dd, J = 48.5, 3.4Hz, 1H), 3.92 (s, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 174.4, 166.7, 161.3 (d, J_{C-F} = 260.0 Hz), 138.4 (d, J_{C-F} = 2.0 Hz), 130.3 130.2, 129.0, 94.7 (d, J_{C-F} = 18.4 Hz), 54.4 (d, J_{C-F} = 29.5 Hz), 52.3 ¹⁹F NMR (565 MHz, CDCl₃): δ -97.4 ~ -97.5 (m, 1F). HRMS (ESI): calculated for C₁₂H₁₂FO₄ [M+H]⁺: 239.0714; Found: 239.0717.

2-(4-cyanophenyl)-3-fluorobut-3-enoic acid (2b). $R_f = 0.5$ (PE: EA = 3:1). The reaction was conducted with **General Procedure**. Isolated yield: 29.5 mg, 72%. ¹H NMR (600 MHz, CDCl₃): δ 7.68 (d, J = 8.0 Hz, 2H), 7.52 (d, J = 8.0 Hz, 1H), 4.90 (dd, J = 17.0, 3.5 Hz, 1H), 4.61 (d, J = 13.7 Hz, 1H), 4.53 (dd, J

=48.4, 3.4 Hz, 1H). ¹³C{¹H} NMR (151 MHz, CDCl₃): δ173.9, 160.6 (d, $J_{C-F} = 260.1$ Hz), 138.7, 132.6, 129.8, 118.2, 112.5, 95.1 (d, $J_{C-F} = 18.0$ Hz), 54.4 (d, $J_{C-F} = 29.7$ Hz). ¹⁹F NMR (565 MHz, CDCl₃): δ - 98.0 ~ -98.1 (m, 1F). HRMS (ESI): calculated for C₁₁H₉FNO₂ [M+H]⁺: 206.0612; Found: 206.0616.

Methyl 3-fluoro-2-(4-(methylsulfonyl)phenyl)but-3-enoate (2c). $R_f = 0.6$ (PE: EA = 8:1). The reaction was conducted with General Procedure. Isolated yield: 30.5 mg, 56%. ¹H NMR (600 MHz, CDCl₃): δ 7.95 (d, J = 8.2 Hz, 2H), 7.59 (d, J = 8.2 Hz, 2H), 4.87 (dd, J = 17.0, 3.6 Hz, 1H), 4.60 (d, J = 13.6 Hz, 1H), 4.51 (dd, J = 48.5, 3.5 Hz, 1H), 3.77 (s, 3H),

3.06 (s, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 169.0, 161.2 (d, J_{C-F} = 260.0 Hz), 140.4, 140.2, 129.9, 127.9, 94.6 (d, J_{C-F} = 18.3 Hz), 54.3 (d, J_{C-F} = 29.3 Hz), 53.1, 44.5. ¹⁹F NMR (565 MHz, CDCl₃): δ - 97.7 ~ -97.9 (m, 1F). HRMS (ESI): calculated for C₁₂H₁₄FO₄S [M+H]⁺: 273.0591; Found: 273.0591.

Methyl 3-fluoro-2-(4-(phenylcarbamoyl)phenyl)but-3-enoate (2d). $R_f = 0.5$ (PE: EA = 3:1). The reaction was conducted with General Procedure. Isolated yield: 33.2 mg, 53%. ¹H NMR (600 MHz, CDCl₃): δ 7.86 (d, J = 8.3 Hz, 2H), 7.63 (d, J = 7.8 Hz, 2H), 7.49 (d, J = 8.2 Hz, 2H), 7.37 (t, J = 7.9 Hz, 2H), 7.16 (t, J = 7.4 Hz, 1H), 4.86 (dd, J = 17.1,

3.5 Hz, 1H), 4.57 (d, J = 12.4 Hz, 1H), 4.48 (dd, J = 48.7, 3.4 Hz, 1H), 3.77 (s, 3H). ¹³C{¹H} NMR (151

MHz, CDCl₃): δ169.5, 165.3, 161.8 (d, $J_{C-F} = 259.8$ Hz), 137.9 (d, $J_{C-F} = 5.0$ Hz), 135.0, 129.2, 129.1, 127.6, 124.7, 120.3, 94.3 (d, $J_{C-F} = 18.2$ Hz), 54.3 (d, $J_{C-F} = 29.3$ Hz), 52.9. ¹⁹F NMR (565 MHz, CDCl₃): δ -97.3 ~ -97.4 (m, 1F). HRMS (ESI): calculated for C₁₈H₁₇FNO₃ [M+H]⁺: 314.1187; Found: 314.1188.

Methyl 2-(4-(sec-butylcarbamoyl)phenyl)-3-fluorobut-3-enoate (2e). $R_f = 0.5$ (PE: EA = 3:1). The reaction was conducted with General Procedure. Isolated yield: 31.1 mg, 53%. ¹H NMR (600 MHz, CDCl₃): δ 7.75 (d, J = 8.3 Hz, 2H), 7.42 (d, J = 8.2 Hz, 2H), 5.90 (d, J = 5.7 Hz, 1H), 4.83 (dd, J = 17.2, 3.5 Hz, 1H), 4.54 (d, J = 11.9 Hz, 1H), 4.41 (dd, J

= 48.7, 3.4 Hz, 1H), 4.13-4.10 (m, 1H), 3.75 (s, 3H), 1.59-1.54 (m, 2H), 1.22 (d, J = 6.6 Hz, 2H), 0.96 (t, J = 7.45 Hz, 3H). ¹³C{¹H} **NMR (151 MHz, CDCl₃):** δ 169.5, 166.4, 162.0 (d, J_{C-F} = 259.9 Hz), 137.3 (d, J_{C-F} = 2.9 Hz), 135.0, 129.0, 127.4, 94.2 (d, J_{C-F} = 18.5 Hz), 54.3 (d, J_{C-F} = 29.2 Hz), 52.8, 47.2, 29.8, 20.5, 10.4. ¹⁹F **NMR (565 MHz, CDCl₃):** δ -97.2 ~ -97.4 (m, 1F). **HRMS (ESI):** calculated for C₁₆H₂₁FNO₃ [M+H]⁺: 294.1500; Found: 294.1497.

Methyl 2-([1,1'-biphenyl]-4-yl)-3-fluorobut-3-enoate (2f). $R_f = 0.6$ (PE: EA = 10:1). The reaction was conducted with General Procedure. Isolated yield: 30.2 mg, 56%, however, minor unidentified compounds mixed with the target compounds. ¹H NMR (600 MHz, CDCl₃): δ 7.61-7.58 (m, 4H),

7.46-7.43 (m, 4H), 7.37-7.35 (m, 1H), 4.85 (dd, J = 17.2, 3.3 Hz, 1H), 4.55 (d, J = 11.5 Hz, 1H), 4.47 (ddd, J = 48.7, 3.7, 0.6 Hz, 1H), 3.78 (s, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 170.0, 162.6 (d, J_{C-F} = 259.2 Hz), 141.2, 140.5, 133.1 (d, J_{C-F} = 3.5 Hz), 129.2, 128.8, 127.6, 127.5, 127.1, 93.9 (d, J_{C-F} = 18.3 Hz), 54.7 (d, J_{C-F} = 29.7 Hz), 52.8. ¹⁹F NMR (565 MHz, CDCl₃): δ -97.0 ~ -97.2 (m, 1F). HRMS (ESI): calculated for C₁₇H₁₆FO₂ [M+H]⁺: 271.1129; Found: 271.1133.

Methyl 3-fluoro-2-(naphthalen-2-yl)but-3-enoate (2g). $R_f = 0.6$ (PE: EA = 10:1). The reaction was conducted with General Procedure. Isolated yield: 25.9 mg, 53%. ¹H NMR (600 MHz, CDCl₃): δ 7.87-7.83 (m, 4H), 7.52-7.49 (m, 3H), 4.86 (dd, J = 17.3, 3.4 Hz, 1H), 4.69 (d, J = 10.8 Hz, 1H), 4.45 (ddd,

 $J_{C-F} = 48.7, 3.6, 0.5 Hz, 1H), 3.78 (s, 3H). {}^{13}C{}^{1}H} NMR (151 MHz, CDCl_3): \delta 170.0, 162.7 (d, J_{C-F} = 259.8 Hz), 133.3, 133.0, 131.5 (d, J_{C-F} = 4.1 Hz), 128.6, 128.04, 127.99, 127.7, 126.5, 126.3, 94.1 (d, J_{C-F} = 18.5 Hz), 54.7 (d, J_{C-F} = 29.0 Hz), 52.8 {}^{19}F NMR (565 MHz, CDCl_3): \delta -96.7 ~ -96.8 (m, 1F). HRMS (ESI): calculated for <math>C_{15}H_{14}FO_2 [M+H]^+: 245.0972$; Found: 245.0974.

Methyl 3-fluoro-2-(naphthalen-1-yl)but-3-enoate (2h). $R_f = 0.6$ (PE: EA = 10:1). The reaction was conducted with **General Procedure**. Isolated yield: 20.0 mg, 41%. ¹H NMR (600 MHz, CDCl₃): δ 7.99 (d, J = 8.5 Hz, 1H), 7.90 (d, J = 8.0 Hz, 1H), 7.86 (d, J = 8.1 Hz, 1H), 7.58-7.47 (m, 4H), 5.30 (d, J = 10.3 Hz, 1H), 7.58-7.47 (m, 4H), 5.30 (d, J = 10.3 Hz, 1H), 7.58-7.47 (m, 4H), 5.30 (d, J = 10.3 Hz, 1H), 7.58-7.47 (m, 4H), 5.30 (d, J = 10.3 Hz, 1H), 7.58-7.47 (m, 4H), 5.30 (d, J = 10.3 Hz, 1H), 7.58-7.47 (m, 4H), 5.30 (d, J = 10.3 Hz, 1H), 7.58-7.47 (m, 4H), 5.30 (d, J = 10.3 Hz, 1H), 7.58-7.47 (m, 4H), 5.30 (d, J = 10.3 Hz, 1H), 7.58-7.47 (m, 4H), 5.30 (d, J = 10.3 Hz, 1H), 7.58-7.47 (m, 4H), 5.30 (d, J = 10.3 Hz, 1H), 7.58-7.47 (m, 4H), 5.30 (d, J = 10.3 Hz, 1H), 7.58-7.47 (m, 4H), 5.30 (d, J = 10.3 Hz, 1H), 7.58-7.47 (m, 4H), 5.30 (d, J = 10.3 Hz, 1H), 7.58-7.47 (m, 4H), 5.30 (d, J = 10.3 Hz, 1H), 7.58-7.47 (m, 4H), 5.30 (d, J = 10.3 Hz, 1H), 7.58-7.47 (m, 4H), 5.30 (d, J = 10.3 Hz, 1H), 7.58-7.47 (m, 4H), 5.30 (d, J = 10.3 Hz, 1H), 7.58-7.47 (m, 4H), 7.58-7.47 (m, 4H), 5.30 (d, J = 10.3 Hz, 1H), 7.58-7.47 (m, 4H), 7.58-7.58 (m, 5H), 7.58-7.

1H), 4.89-4.86 (m, 1H), 4.40-4.32 (m, 1H), 3.78 (s, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 170.0, 162.2 (d, J_{C-F} = 259.8 Hz), 134.0, 131.4, 130.2 (d, J_{C-F} = 4.0 Hz), 129.1, 129.0, 126.8, 126.3, 126.0, 125.5, 122.7, 94.7 (d, J_{C-F} = 18.8 Hz), 52.8, 50.8 (d, J_{C-F} = 29.2 Hz). ¹⁹F NMR (565 MHz, CDCl₃): δ -95.3 ~ -95.4 (m, 1F). HRMS (ESI): calculated for C₁₅H₁₄FO₂ [M+H]⁺: 245.0972; Found: 245.0975.

CN

COOH 2-(2-cyanophenyl)-3-fluorobut-3-enoic acid (2i). $R_f = 0.6$ (PE: EA = 10:1). The reaction was conducted with General Procedure. Isolated yield: 28.7 mg, 70%. ¹H NMR (600 MHz, CDCl₃): δ 7.71 (d, J = 7.7 Hz, 1H), 7.67-7.63 (m, 2H), 7.48-7.45 (m, 1H), 5.02 (d, J = 16.8 Hz, 1H), 4.91 (dd, J = 16.6, 3.7 Hz, 1H), 4.62 (dd, J =

47.9, 3.7 Hz, 1H). ${}^{13}C{}^{1H}$ NMR (151 MHz, CDCl₃): δ 173.1, 160.0 (d, J_{C-F} = 260.8 Hz), 137.3, 133.3, 133.2, 129.4, 128.8, 117.0, 113.3, 95.5 (d, J_{C-F} = 18.0 Hz), 52.4 (d, J_{C-F} = 28.8 Hz). ¹⁹F NMR (565 MHz, **CDCl₃**): δ -99.1 ~ -99.3 (m, 1F). **HRMS (ESI)**: calculated for C₁₁H₉FNO₂ [M+H]⁺: 206.0612; Found: 206.0616.

Methyl 2-(3-fluoro-1-methoxy-1-oxobut-3-en-2-yl)benzoate (2j). $R_f = 0.6$ (PE: EA = 10:1). The reaction was conducted with **General Procedure**. Isolated yield: 35.3 mg, 70% (mixture with a small amount of *E*-3j). ¹H NMR (600 MHz, CDCl₃): δ 8.02 (d, J = 8.1 Hz, 1H), 7.57-7.53 (m, 2H), 7.42-7.39 (m, 1H), 5.74 (d, J = 16.7

Hz, 1H), 4.86 (dd, J = 16.9, 3.3 Hz, 1H), 4.45 (dd, J = 48.7, 3.3 Hz, 1H), 3.90 (s, 3H), 3.76 (s, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 170.3, 167.4 162.3 (d, J_{C-F} = 260.7 Hz), 135.9, 132.6, 131.2, 129.7, 129.2, 128.0, 94.5 (d, J_{C-F} = 18.8 Hz), 52.7, 52.3, 51.2 (d, J_{C-F} = 28.5 Hz). ¹⁹F NMR (565 MHz, CDCl₃): δ -96.1 ~ -96.3 (m, 1F). **HRMS (ESI)**: calculated for C₁₃H₁₄FO₄ [M+H]⁺: 253.0871; Found: 253.0871.

Methyl 3-(3-fluoro-1-methoxy-1-oxobut-3-en-2-yl)benzoate (2k). R_f = 0.6 (PE: EA = 10:1). The reaction was conducted with General Procedure. Isolated yield: 23.2 mg, 46% (mixture with a small amount of E-3k). 1H NMR (600 MHz, CDCl₃): 8 8.03-8.01 (m, 2H), 7.59 (d, J

= 7.7 Hz, 1H), 7.46 (t, J = 7.7 Hz, 1H), 4.84 (dd, J = 17.2, 3.5 Hz, 1H), 4.56 (d, J = 12.3 Hz, 1H), 4.44 (dd, J = 48.7, 3.2 Hz, 1H), 3.92 (s, 3H), 3.76 (s, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 169.6, 166.6 162.0 (d, J_{C-F} = 259.9 Hz), 134.6 (d, J_{C-F} = 3.1 Hz), 133.2, 130.8, 130.0, 129.5, 129.0, 94.2 (d, J_{C-F} = 18.6 Hz), 54.3 (d, J_{C-F} = 29.1 Hz), 52.8, 52.3. ¹⁹F NMR (565 MHz, CDCl₃): δ -97.4 ~ -97.6 (m, 1F). HRMS (ESI): calculated for C₁₃H₁₄FO₄ [M+H]⁺: 253.0871; Found: 253.0873.

Methyl 2-(3-cyanophenyl)-3-fluorobut-3-enoate (2l). $R_f = 0.6$ (PE: EA = 10:1). The reaction was conducted with General Procedure. Isolated yield: 27.5 mg, 63%. ¹H NMR (600 MHz, CDCl₃): δ 7.69 (s, 1H), 7.64-7.62 (m, 2H), 7.49 (t, J = 7.8 Hz, 1H), 4.87 (dd, J = 16.9, 3.5 Hz, 1H), 4.54-4.45 (m,

2H), 3.78 (s, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃): δ169.0, 161.2 (d, J_{C-F} = 260.1 Hz), 135.7, 133.3, 132.4, 131.9, 129.7, 118.3, 113.1, 94.5 (d, J_{C-F} = 18.4 Hz), 54.0 (d, J_{C-F} = 29.4 Hz), 53.1. ¹⁹F NMR (565 **MHz, CDCl₃**): δ -97.9 ~ -98.0 (m, 1F). **HRMS (ESI)**: calculated for C₁₂H₁₁FNO₂ [M+H]⁺: 220.0768; Found: 220.0766.

Me NC

COOH 2-(4-cyanophenyl)-3-fluoro-2-methylbut-3-enoic acid (2m). $R_f = 0.4$ (PE: EA = 2:1). The reaction was conducted with General Procedure. Isolated yield: 32.9 mg, 75%. ¹H NMR (600 MHz, CDCl₃): δ 7.67 (d, J = 8.5 Hz, 2H), 7.56 (d, J = 8.3 Hz, 2H), 4.93 (dd, J = 18.3, 3.8 Hz, 1H), 4.52 (dd, J = 49.1, 3.8 Hz,

1H), 1.84 (s, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 176.7, 164.8 (d, J_{C-F} = 261.4 Hz), 143.8, 132.3, 128.2, 118.3, 112.0, 94.1 (d, $J_{C-F} = 19.9 \text{ Hz}$), 55.3 (d, $J_{C-F} = 25.8 \text{ Hz}$), 22.6 (d, $J_{C-F} = 2.0 \text{ Hz}$). ¹⁹F NMR (565 MHz, CDCl₃): δ -98.2 (dd, J = 49.1, 18.3 Hz, 1F). HRMS (ESI): calculated for C₁₂H₁₁FNO₂ **COO**Me

Н

Me

NC Me H

COOMeMethyl (E)-2-(4-cyanophenyl)-3-fluoropent-3-enoate (2n). $R_f = 0.6$ (PE:FEA = 10:1). The reaction was conducted with General Procedure. Isolatedyield: 30.3 mg, 65%. ¹H NMR (600 MHz, CDCl₃): δ 7.65 (d, J = 8.2 Hz, 2H),7.47 (d, J = 8.2 Hz, 1H), 4.77 (dq, J = 36.3, 6.9 Hz, 1H), 4.50 (d, J = 15.8 Hz,

1H), 3.76 (s, 3H), 1.63 (dd, J = 6.6, 1.74 Hz, 3H). ¹³C{¹H} **NMR (151 MHz, CDCl₃):** δ 169.4, 154.8 (d, J_{C-F} = 255.5 Hz), 139.9, 132.5, 129.7, 118.5, 112.1, 105.0 (d, J_{C-F} = 14.5 Hz), 54.6 (d, J_{C-F} = 28.9 Hz), 52.9, 9.0 (d, J_{C-F} = 5.8 Hz). ¹⁹F **NMR (565 MHz, CDCl₃):** δ -113.2 (dd, J = 35.8, 15.1 Hz, 1F). **HRMS (ESI):** calculated for C₁₃H₁₃FNO₂ [M+H]⁺: 234.0925; Found: 234.0927.

Methyl (E)-4-(3-fluoro-1-methoxy-1-oxopent-3-en-2-yl)benzoate (20). $R_f = 0.6$ (PE: EA = 10:1). The reaction was conducted with General Procedure. Isolated yield: 36.2 mg, 68%. ¹H NMR (600 MHz, CDCl₃): $\delta 8.02$ (d, J = 8.3 Hz, 2H), 7.42 (d, J = 8.2 Hz, 1H), 4.70 (dq, J = 36.5, 6.9)

Hz, 1H), 4.51 (d, J = 14.4 Hz, 1H), 3.91 (s, 3H), 3.74 (s, 3H), 1.62-1.61 (m, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 169.9, 166.7 155.5 (d, J_{C-F} = 255.3 Hz), 139.6, 130.0, 129.9, 128.9, 104.6 (d, J_{C-F} = 14.6 Hz), 54.6 (d, J_{C-F} = 29.4 Hz), 52.8, 52.2, 9.0 (d, J_{C-F} = 6.3 Hz). ¹⁹F NMR (565 MHz, CDCl₃): δ -112.6 (dd, J = 36.5, 14.4 Hz, 1F). HRMS (ESI): calculated for C₁₄H₁₆FO₄ [M+H]⁺: 267.1027; Found: 267.1025.

MeO₂C

Methyl (E)-3-fluoro-2-(naphthalen-2-yl)pent-3-enoate (2p). $R_f = 0.6$ (PE: EA = 10:1). The reaction was conducted with **General Procedure**. Isolated yield: 21.7 mg, 42%. ¹H NMR (600 MHz, CDCl₃): δ 7.85-7.82 (m, 3H), 7.80 (s, 1H), 7.50-7.46 (m, 3H), 4.71 (dq, J = 36.7, 6.9 Hz, 1H), 4.64 (d, J = 12.7

Hz, 1H), 3.76 (s, 3H), 1.63 (dd, J = 6.8, 1.0 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 170.6, 156.3 (d, J_{C-F} = 255.2 Hz), 133.3, 132.9, 132.0 (d, J_{C-F} = 3.4Hz), 128.5, 128.0, 127.9, 127.7, 126.4, 126.35, 126.33, 104.4 (d, J_{C-F} = 14.7 Hz), 54.8 (d, J_{C-F} = 29.2 Hz), 52.7, 9.0 (d, J_{C-F} = 6.6 Hz). ¹⁹F NMR (565 MHz, CDCl₃): δ -112.0 (dd, J = 36.7, 14.4 Hz, 1F). HRMS (ESI): calculated for C₁₆H₁₆FO₂ [M+H]⁺: 259.1129; Found: 259.1126.

 $\begin{array}{c} \mbox{COOMe} & \mbox{Methyl (E)-4-(3-fluoro-1-methoxy-1-oxohept-3-en-2-yl)benzoate (2q).} \\ \mbox{F} & \mbox{F}_{f} = 0.6 \ (PE: \ EA = 10:1). \ The \ reaction \ was \ conducted \ with \ General \ Procedure. \ Isolated \ yield: \ 41.1 \ mg, \ 70\%. \ ^1H \ NMR \ (600 \ MHz, \ CDCl_3): \ \delta \ 8.02 \ (d, \ J = 8.3 \ Hz, \ 2H), \ 7.43 \ (d, \ J = 8.3 \ Hz, \ 2H), \ 4.67 \ (dt, \ J = 36.9, \ 7.6 \ Methyle \ Addet \ Ad$

Hz, 1H), 4.52 (d, J = 14.4 Hz, 1H), 3.91 (s, 3H), 3.75 (s, 3H), 2.08 (q, J = 7.2 Hz, 2H), 1.39-1.33 (m, 2H), 0.88 (t, J = 7.4 Hz, 3H). ${}^{13}C{}^{1}H$ NMR (151 MHz, CDCl₃): δ 170.0, 166.7, 155.0 (d, J_{C-F} = 255.4 Hz), 139.7 (d, J_{C-F} = 2.5 Hz), 130.0, 129.9, 128.9, 109.9 (d, J_{C-F} = 14.6 Hz), 54.6 (d, J_{C-F} = 29.8 Hz), 52.7, 52.2, 25.6 (d, J_{C-F} = 4.2 Hz), 22.3, 13.6. ${}^{19}F$ NMR (565 MHz, CDCl₃): δ -111.9 (dd, J = 36.9, 14.5 Hz, 1F). HRMS (ESI): calculated for C₁₆H₂₀FO₄ [M+H]⁺: 295.1340; Found: 295.1345.

(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((R)-6methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl 4-(3-fluoro-1methoxy-1-oxobut-3-en-2-yl)benzoate (2r). R_f= 0.5 (PE: EA = 4:1). The reaction was conducted with General Procedure. Isolated yield: 36.4 mg, 30%. ¹H NMR (600 MHz, CDCl₃): δ 8.04 (d, J = 8.3 Hz,

2H), 7.44 (d, J = 8.2 Hz, 2H), 5.42 (d, J = 4.1 Hz, 1H), 4.89-4.82 (m, 2H), 4.56 (d, J = 11.9 Hz, 1H), 4.42 (dd, J = 48.7, 3.3 Hz, 1H), 3.76 (s, 3H), 2.45 (d, J = 7.7 Hz, 2H), 2.04-1.69 (m, 6H), 1.61-1.08 (m, 18 H), 1.07 (s, 3H), 1.03-0.96 (m, 3H), 0.92 (d, J = 6.5 Hz, 2H), 0.87 (dd, J = 6.6, 2.6 Hz, 6H), 0.69 (s, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 169.4, 165.5, 161.9 (d, J_{C-F} = 259.8 Hz), 139.6, 138.8 (d, J_{C-F} = 2.1 Hz), 130.8, 130.0, 128.8, 122.9, 94.2 (d, J_{C-F} = 18.5 Hz), 74.8, 56.7, 56.1, 54.5 (d, J_{C-F} = 29.2 Hz), 52.9, 50.1, 42.3, 39.7, 39.5, 38.2, 37.0, 36.7, 36.2, 35.8, 31.94, 31.89, 28.2, 28.0, 27.9, 24.3, 23.8, 22.8, 22.6, 21.1, 19.4, 18.7, 11.9. ¹⁹F NMR (565 MHz, CDCl₃): δ -97.1~ -97.2 (m, 1F). HRMS (ESI): calculated for C₃₉H₅₆FO₄ [M+H]⁺: 607.4157; Found: 607.4153.

1.95-1.93 (m, 1H), 1.73 (d, J = 11.4 Hz, 2H), 1.57-1.53 (m, 2H), 1.14-1.08 (m, 2H), 0,93-0.90 (m, 7H), 0.80-0.78 (m, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 169.4, 165.6, 161.9 (dd, J_{C-F} = 259.9, 3.5 Hz), 138.8 (d, J_{C-F} = 2.5 Hz), 130.8, 130.1, 128.8, 94.2 (d, J_{C-F} = 19.3 Hz), 75.0, 54.5 (d, J_{C-F} = 29.6 Hz), 52.8, 47.3, 40.9, 34.3, 31.4, 26.5, 23.6, 22.0, 20.8, 16.5.¹⁹F NMR (565 MHz, CDCl₃): δ -97.1~ -97.3 (m, 1F). HRMS (ESI): calculated for $C_{22}H_{30}FO_4$ [M+H]⁺: 377.2123; Found: 377.2122.

Sec-butyl 2-(2-((4-(3-fluoro-1-methoxy-1-oxobut-3-en-2-yl)benzoyl)oxy)ethyl)piperidine-1-carboxylate(2t). $R_f = 0.5$ (PE: EA = 4:1). The reaction was conducted with General Procedure. Isolated yield: 62.9 mg, 70%. ¹H NMR (600 MHz, CDCl₃): δ 8.02 (d, J = 7.8 Hz, 2H), 7.43 (d, J = 7.8 Hz, 2H), 4.83 (dd, J = 17.1, 2.8 Hz, 1H), 4.72 (d, J = 5.7 Hz, 1H),

4.55 (d, J = 12.1 Hz, 1H), 4.41 (d, J = 48.7 Hz, 1H), 4.31 (d, J = 4.4 Hz, 1H), 4.08 (s, 1H), 3.75 (s, 3H), 2.85 (t, J = 12.0 Hz, 1H), 1.89-1.86 (m, 1H), 1.66-1.43 (m, 9H), 1.15 (d, J = 5.9 Hz, 3H), 0.85 (t, J = 7.0 Hz, 3H). ¹³C{¹H} **NMR (151 MHz, CDCl₃):** δ 169.4, 166.0, 161.9 (d, J_{C-F} = 259.9 Hz), 155.5 (d, J_{C-F} = 4.9 Hz), 139.0, 130.1, 128.8, 128.1, 94.2 (d, J_{C-F} = 18.3 Hz), 73.00, 72.97, 62.80, 62.76, 54.4 (d, J_{C-F} = 29.6 Hz), 52.9, 48.0, 39.0, 29.1, 28.9, 28.6, 25.5, 19.8, 19.1, 9.71, 9.68. ¹⁹F **NMR (565 MHz, CDCl₃):** δ -97.2~ -97.3 (m, 1F). **HRMS (ESI):** calculated for C₂₄H₃₃FNO₆ [M+H]⁺: 450.2286; Found: 450.2284.

(m, 2H), 4.13-4.07 (m, 2H), 3.76 (d, J = 1.9 Hz, 3H), 1.55 (s, 3H), 1.41 (s, 3H), 1.32 (s, 3H), 1.27 (s, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 169.3, 164.7, 161.7 (d, J_{C-F} = 261.8 Hz), 139.7, 130.2, 129.5, 129.1, 112.4, 109.4, 105.1, 94.3 (d, J_{C-F} = 18.2 Hz), 83.4, 79.9, 72.6, 67.3, 54.3 (d, J_{C-F} = 29.4 Hz), 52.9, 26.9, 26.7, 26.2, 25.2. ¹⁹F NMR (565 MHz, CDCl₃): δ -97.3~ -97.5 (m, 1F). HRMS (ESI): calculated for C₂₄H₃₀FO₉ [M+H]⁺: 481.1868; Found: 481.1866.

(3S,5S,8R,9S,10S,13S,14S)-10,13-dimethyl-17oxohexadecahydro-1H-cyclopenta[a]phenanthren-3-yl 4-(3-fluoro-1-methoxy-1-oxobut-3-en-2-yl)benzoate (2v). $R_f = 0.5$ (PE: EA = 5:1). The reaction was conducted with General Procedure. Isolated yield: 42.9 mg, 42% (mixture with a small amount of *E*-3v). ¹H NMR (600 MHz, CDCl₃): δ 8.02 (d, J = 8.3 Hz, 2H), 7.43 (d, J = 8.2 Hz, 2H), 4.96-4.91

(m, 1H), 4.83 (dd, J = 17.1, 3.4 Hz, 1H), 4.55 (d, J = 12 Hz, 1H), 4.42 (dd, J = 48.7, 3.4 Hz, 1H), 3.75 (s, 3H), 2.43 (dd, J = 19.3, 8.7 Hz, 1H), 2.10-2.02 (m, 1H), 1.95-1.91 (m, 2H), 1.81-1.47 (m, 9H), 1.38-1.25 (m, 6H), 1.10 (td, J = 13.6, 3.7 Hz, 1H), 1.03-0.97 (m, 1H), 0.89 (s, 3H), 0.86 (s, 3H), 0.75 (td, J = 10.9, 3.8 Hz, 1H). $^{13}C{^{1}H}$ NMR (151 MHz, CDCl₃): δ 169.4 (d, J_{C-F} = 2.1 Hz), 165.6, 161.9 (d, J_{C-F} = 259.8 Hz), 138.8 (d, J_{C-F} = 3.0 Hz), 130.8, 130.0, 128.8, 94.2 (d, J_{C-F} = 18.5 Hz), 74.3, 54.4 (d, J_{C-F} = 31.7 Hz), 52.9, 51.4, 47.8, 44.7, 36.7, 35.8, 35.7, 35.1, 34.0, 31.5, 30.8, 28.3, 27.5, 21.8, 20.5, 13.8, 12.3. ¹⁹F NMR (565 MHz, CDCl₃): δ -97.1~ -97.3 (m, 1F). HRMS (ESI): calculated for C₃₁H₄₀FO₅ [M+H]⁺: 511.2854; Found: 511.2850.

(7R,11R,E)-3,7,11,15-tetramethylhexadec-2-en-1-yl 4-(3-fluoro-1-methoxy-1-oxobut-3-en-2-yl)benzoate (2w). $R_f = 0.5$ (PE: EA = 5:1). The reaction was conducted with

General Procedure. Isolated yield: 46.5 mg, 45% (mixture with a small amount of *E*-3w). ¹H NMR (600 MHz, CDCl₃): δ 8.04 (d, J = 8.3 Hz, 2H), 7.44 (d, J = 8.2 Hz, 2H), 5.45 (t, J = 5.9 Hz, 1H), 4.85-4.82 (m, 3H), 4.55 (d, J = 11.9 Hz, 1H), 4.42 (dd, J = 48.7, 3.4 Hz, 1H), 3.75 (s, 3H), 2.04-2.01(m, 2H), 1.75 (s, 3H), 1.54-1.50 (m, 1H), 1.47-1.04 (m, 18H), 0.87-0.83 (m, 12H). ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 169.4 (d, J_{C-F} = 2.0 Hz), 166.1, 161.9 (d, J_{C-F} = 260.0 Hz), 143.1, 138.8 (d, J_{C-F} = 3.0 Hz), 130.5, 130.1, 128.8, 118.0, 94.2 (d, J_{C-F} = 18.1 Hz), 62.0, 54.5 (d, J_{C-F} = 29.7 Hz), 52.8, 39.9, 39.4, 37.42, 37.36, 37.3, 36.6, 32.8, 32.7, 28.0, 25.0, 24.8, 24.5, 22.7, 22.6, 19.8, 19.7, 16.5.¹⁹F NMR (565 MHz, CDCl₃): δ -97.1~ -97.2 (m, 1F). HRMS (ESI): calculated for C₃₂H₅₀FO₄ [M+H]⁺: 517.3688; Found: 517.3687.

(R)-2,5,7,8-tetramethyl-2-((4R,8R)-4,8,12-trimethyltridecyl)chroman-6-yl 4-(3-fluoro-1-methoxy-1-oxobut-3-en-2-yl)benzoate (2x). $R_f = 0.5$ (PE: EA = 5:1). The reaction was conducted with

General Procedure. Isolated yield: 57.2 mg, 44%. ¹**H NMR (600 MHz, CDCl₃):** δ 8.26 (d, J = 8.2 Hz, 2H), 7.54 (d, J = 8.1 Hz, 2H), 4.88 (dd, J = 17.2, 3.5 Hz, 1H), 4.62 (d, J = 12.4 Hz, 1H), 4.51 (dd, J = 48.5, 3.3 Hz, 1H), 3.80 (s, 3H), 2.63 (t, J = 6.6 Hz, 2H), 2.13 (s, 3H), 2.06 (s, 3 H), 2.02 (s, 3H), 1.86-1.76 (m, 2H), 1.62-1.09 (m, 24 H), 0.88-0.86 (m, 12H). ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 169.4 (d, J_{C-F} = 2.3 Hz), 164.7, 161.8 (d, J_{C-F} = 260.1 Hz),149.6, 140.6, 139.6, 130.7, 129.6, 129.1, 126.9, 125.1, 123.2, 117.5, 94.3 (d, J_{C-F} = 18.1 Hz), 75.1, 54.5 (d, J_{C-F} = 29.2 Hz), 52.9, 39.4, 37.6, 37.5, 37.4, 37.3, 32.8, 32.7, 28.0, 24.9, 24.8, 24.5, 22.8, 22.7, 21.1, 20.7, 19.8, 19.72, 19.70, 19.6, 13.1, 12.2, 11.9. ¹⁹F NMR (565 MHz, CDCl₃): δ -97.2~ -97.3 (m, 1F). HRMS (ESI): calculated for C₄₁H₆₀FO₅ [M+H]⁺: 651.4419; Found: 651.4415.

Methyl4-(2-fluoro-4-methoxy-4-oxobut-1-en-1-yl)benzoate (3a). $R_f = 0.6$ (PE: EA = 10:1). The reaction wasconducted with General Procedure. Isolated yield: 37.8 mg,

75%. ¹H NMR (600 MHz, CDCl₃): *E*-3a: δ 8.01 (d, J = 8.3 Hz, 2H), 7.31 (d, J = 8.2 Hz, 2H), 6.46 (d, J = 19.8 Hz, 1H), 3.91 (s, 3H), 3.79 (s, 3H), 3.45 (d, J = 22.7 Hz, 2H); *Z*-3a: δ 7.99 (d, J = 8.4 Hz, 2H), 7.54 (d, J = 8.4 Hz, 2H), 5.72 (d, J = 37.4 Hz, 1H), 3.91 (s, 3H), 3.77 (s, 3H), 3.40 (d, J = 19.1 Hz, 2H). ¹³C{¹H} NMR (151 MHz, CDCl₃): *E*-3a: δ 168.7 (d, J_{C-F} = 3.5 Hz), 166.7, 155.8 (d, J_{C-F} = 255.2 Hz), 138.0 (d, J_{C-F} = 12 Hz), 129.9, 129.1, 128.4 (d, J_{C-F} = 2.6 Hz), 111.3 (d, J_{C-F} = 27.1 Hz), 52.6, 52.2, 35.7 (d, J = 29.3 Hz); *Z*-3a: δ 168.7, 166.8, 154.8 (d, J_{C-F} = 269.0 Hz), 130.2, 129.7, 128.5, 128.4, 109.3 (d, J_{C-F} = 7.3 Hz), 52.5, 52.1, 39.2 (d, J_{C-F} = 29.1 Hz). ¹⁹F NMR (565 MHz, CDCl₃): *E*-3a: δ -93.9 ~ -94.0 (m, 1F); *Z*-3a: δ -97.0 ~ -97.2 (m, 1F). HRMS (ESI): *E*-3a: calculated for C₁₃H₁₄FO₄ [M+H]⁺: 253.0871; Found: 253.0867; *Z*-3a: calculated for C₁₃H₁₄FO₄ [M+H]⁺: 253.0875.

NC F

Methyl 4-(4-cyanophenyl)-3-fluorobut-3-enoate (3b). $R_f = 0.6$ (PE: EA = 10:1). The reaction was conducted with General Procedure. Isolated yield: 29.4 mg, 67%. ¹H NMR (600 MHz,

CDCl₃): *E*-3b: δ 7.64 (d, J = 8.3 Hz, 2H), 7.36 (d, J = 8.1 Hz, 2H), 6.45 (d, J = 19.4 Hz, 1H), 3.79 (s, 3H), 3.43 (d, J = 22.9 Hz, 2H); *Z*-3b: δ 7.60 (d, J = 8.5 Hz, 2H), 7.56 (d, J = 8.5 Hz, 2H), 5.71 (d, J = 36.8 Hz, 1H), 3.77 (s, 3H), 3.41 (d, J = 19.1 Hz, 2H). ¹³C{¹H} **NMR (151 MHz, CDCl₃):** *E*-3b: δ 168.4, 156.4 (d, J_{C-F} = 256.6 Hz), 138.1 (d, J_{C-F} = 13.4 Hz), 132.5, 129.0 (d, J_{C-F} = 2.2 Hz), 118.6, 111.2, 110.9 (d, J_{C-F} = 27.8 Hz), 52.8, 35.7 (d, J_{C-F} = 29.1 Hz); *Z*-3b: δ 168.4, 162.6, 155.8 (d, J_{C-F} = 271.1 Hz), 137.4, 132.2, 129.0 (d, J = 7.9 Hz), 108.7 (d, J_{C-F} = 6.8 Hz), 52.6, 39.1 (d, J_{C-F} = 28.8 Hz). ¹⁹F **NMR (565 MHz, CDCl₃):** *E*-3b: δ -91.8 ~ -92.0 (m, 1F); *Z*-3b: δ -95.3 ~ -95.5 (m, 1F). **HRMS (ESI):** *E*-3b: calculated for C₁₂H₁₁FO₄ [M+H]⁺: 220.0768; Found: 220.0772; *Z*-3b: calculated for C₁₂H₁₁FNO₂ [M+H]⁺: 220.0768; Found: 220.0776; *Z*-3b: calculated for C₁₂H₁₁FNO₂ [M+H]⁺: 220.0768; Found: 220.0772; *Z*-3b: calculated for C₁₂H₁₁FNO₂ [M+H]⁺: 220.0768; Found: 220.0768; Found: 220.0772; *Z*-3b: calculated for C₁₂H₁₁FNO₂ [M+H]⁺: 220.0768; Found: 22

Methyl 3-fluoro-4-(4-(phenylcarbamoyl)phenyl)but-3enoate (3d). $R_f = 0.6$ (PE: EA = 10:1). The reaction was conducted with General Procedure. Isolated yield: 26.9 mg, 43%. **Z-3d** contain unidentified compounds. ¹**H** NMR (600 MHz, CDCl₃): *E*-3d: δ 7.85 (d, J = 8.2 Hz, 2H), 7.64 (d, J = 7.9 Hz, 2H), 7.39-7.35 (m, 4H), 7.16 (t, J = 7.4 Hz), 6.48 (d, J = 19.7 Hz), 3.80 (s, 3H), 3.46 (d, J = 22.9 Hz, 2H); **Z-3d:** δ 7.83 (d, J = 8.4 Hz, 2H), 7.64 (d, J = 8.3 Hz, 2H), 7.58 (d, J = 8.3 Hz, 1H), 7.38-7.35 (m, 3H), 7.15 (t, J = 7.4 Hz, 1H), 5.73 (d, J = 37.4 Hz, 1H), 3.78 (s, 3H), 3.68 (d, J = 8.5 Hz, 2H), 3.41 (d, J = 19.1 Hz, 2H). ¹³C{¹H} NMR (151 MHz, CDCl₃): *E*-3d: δ 168.7, 165.1, 155.8 (d, J_{C-F} = 255.1 Hz), 137.8, 137.0 (d, J_{C-F} = 13.2 Hz), 133.8, 129.1, 128.8 (d, J_{C-F} = 2.3 Hz), 127.4, 124.7, 120.2, 111.2 (d, J_{C-F} = 27.3 Hz), 52.7, 35.7 (d, J_{C-F} = 29.8 Hz); **Z-3d:** δ 168.7, 165.2, 154.7 (d, J_{C-F} = 271.0 Hz), 137.9, 136.4, 133.5, 129.1, 128.9 (d, J_{C-F} = 7.6 Hz), 127.6, 124.7, 120.2, 109.1 (d, J_{C-F} = 7.5 Hz), 52.60, 39.2 (d, J_{C-F} = 29.0 Hz).¹⁹F NMR (565 MHz, CDCl₃): *E*-3d: δ -94.1 (q, J = 21.7 Hz, 1F); ⁹F NMR (376 MHz, CDCl₃): *Z*-3d: $-97.4 \sim -97.6$ (m, 1F). HRMS (ESI): *E*-3d: calculated for C₁₈H₁₇FNO₃ [M+H]⁺: 314.1187; Found: 314.1190; **Z-3d:** calculated for C₁₈H₁₇FNO₃ [M+H]⁺: 314.1187; Found: 314.1190; **Z-3d:** calculated for C₁₈H₁₇FNO₃ [M+H]⁺: 314.1187; Found: 314.1191.

(PE: EA =20:1). The reaction was conducted with **General Procedure**. Isolated yield: 15.5 mg, 31%. ¹**H NMR (600 MHz, CDCl₃):** *E*-y/2y: δ 7.38 (d, J = 6.6 Hz, 2H), 7.37 (d, J = 6.5 Hz, 2H), 7.29 (d, J = 8.3 Hz, 2H), 7.17 (d, J = 8.2 Hz, 2H), 6.42 (d, J = 20.3 Hz, 1H) (*E*-3y), 6.42 (d, J = 20.3 Hz, 1H), 4.80 (dd, J = 17.2, 3.2 Hz, 1H) (2y), 4.48 (d, J = 11.5 Hz, 1H) (2y), 4.41 (dd, J = 49.0, 3.2 Hz, 1H) (2y), 3.78 (s, 3H), 3.72 (s, 3H), 3.48 (d, J = 22.7 Hz, 2H) (*E*-3y), 1.32 (s, 18H); *Z*-3y: δ 7.43 (d, J = 8.4 Hz, 2H), 7.35 (d, J = 8.4 Hz, 2H), 5.63 (d, J = 38.6 Hz, 1H), 3.75 (s, 9H), 3.37 (d, J = 19.2 Hz, 2H). ¹³C{¹H} **NMR (151 MHz, CDCl₃):** *E*-3y/2y: δ 170.2, 169.2 (d, J_{C-F} = 3.3 Hz), 162.9 (d, J_{C-F} = 259.5 Hz), 154.4 (d, J_{C-F} = 26.1 Hz), 93.7 (d, J_{C-F} = 18.5 Hz), 54.1 (d, J_{C-F} = 29.4 Hz), 52.6 (d, J_{C-F} = 21.8 Hz), 35.7, 35.5, 34.6, 31.29, 31.28; *Z*-3y: δ 169.1, 152.6 (d, J_{C-F} = 264.5 Hz), 150.5, 130.1, 128.3 (d, J_{C-F} = 7.4 Hz), 109.5 (d, J_{C-F} = 7.8 Hz), 52.4, 39.2 (d, J_{C-F} = 29.5 Hz), 34.6, 31.2. ¹⁹F **NMR (565 MHz, CDCl₃):** *E*-3y/2y: -98.1~ -98.3 (m, 1F), -97.0~ -97.2 (m, 1F); *Z*-3y: δ -101.9~ -102.0 (m, 1F). **HRMS (ESI):** *E*-3y/2y: calculated for C₁₅H₂₀FO₂ [M+H]⁺: 251.1442; Found: 251.1440.

Methyl 3-fluoro-2-(p-tolyl)but-3-enoate compound with methyl 3-fluoro-4-(ptolyl)but-3-enoate (3z/2z = 2/1). $R_f = 0.6$ (PE: EA =20:1). The reaction was

conducted with **General Procedure**. Isolated yield: 13.7 mg, 33%. ¹H NMR (600 MHz, CDCl₃): *E*-**3**z/2z: δ 7.17 (d, J = 8.4 Hz, 2H), 7.10 (d, J = 7.9 Hz, 2H), 7.08 (d, J = 8.1 Hz, 2H), 7.05 (d, J = 8.0 Hz, 2H), 6.34 (d, J = 20.3 Hz, 1H) (*E*-3z), δ 4.72 (dd, J = 17.3, 3.2 Hz, 1H) (2z), 4.39 (d, J = 11.0 Hz, 1H) (2z), 4.32 (dd, J = 49.0, 3.0 Hz, 1H) (2z), 3.70 (s, 3H), 3.67 (s, 3H), 3.38 (d, J = 22.6 Hz, 2H) (*E*-3z), 2.27 (s, 3H), 2.27 (s, 3H); *Z*-3z: δ 7.38 (d, J = 8.0 Hz, 2H), 7.14 (d, J = 7.9 Hz, 2H), 5.62 (d, J = 38.2 Hz, 1H), 3.76 (s, 3H), 3.36 (d, J = 19.2 Hz, 2H), 2.34 (s, 3H). ¹³C NMR (151 MHz, CDCl₃): *E*-3z/2z: δ 170.2,169.2 (d, J_{C-F} = 3.4 Hz), 162.9 (d, J_{C-F} = 259.8 Hz), 154.3 (d, J_{C-F} = 250.7 Hz), 138.0, 137.2, 131.1 (d, J_{C-F} = 3.6 Hz), 130.3, 130.2, 129.5, 129.4, 128.6, 128.3 (d, J_{C-F} = 2.1 Hz), 111.7, 111.5, 93.7 (d, J_{C-F} = 18.5 Hz), 54.2 (d, J_{C-F} = 28.9 Hz), 52.6 (d, J_{C-F} = 23.2 Hz), 35.7, 35. 5, 21.2, 21.1. ¹³C{¹H} NMR (101

MHz, CDCl₃): Z-3z: δ 169.2, 152.5 (d, J_{C-F} = 264.7 Hz), 137.2, 130.0, 129.2, 128.5 (d, J_{C-F} = 7.3 Hz), 100.7 (d, J_{C-F} = 7.8 Hz), 52.4, 39.2 (d, J_{C-F} = 29.6 Hz), 21.2. ¹⁹F **NMR (565 MHz, CDCl₃):** *E*-3z/2z: - 98.4 ~ -98.5 (m, 1F), -97.0~ -97.1 (m, 1F). ¹⁹F **NMR (376 MHz, CDCl₃):** *Z*-3z: -101.9 ~ -102.2 (m, 1F). **HRMS (ESI):** *E*-3z/2z: calculated for C₁₂H₁₄FO₂ [M+H]⁺: 209.0972; Found: 209.0975.

Methyl (Z)-3-fluoro-4-phenylpent-3-enoate (3aa). $R_f = 0.6$ (PE: EA = 20:1). The reaction was conducted with **General Procedure**. I Isolated yield: 13.3 mg, 32%. ¹H NMR (600 MHz, CDCl₃): δ 7.39-7.33 (m, 4H), 7.26-7.24 (m, 1H), 3.76 (s, 3H), 2.46 (d, J = 22.1 Hz, 2H), 1.99 (d, J = 3.0

Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 169.3 (d, J_{C-F} = 3.1 Hz), 148.3 (d, J_{C-F} = 249.9 Hz), 137.6, 128.1 (d, J_{C-F} = 4.2 Hz), 128.1, 127.1, 115.9 (d, J_{C-F} = 12.2 Hz), 52.4, 35.9 (d, J_{C-F} = 32.0 Hz), 17.5 (d, J_{C-F} = 3.5 Hz). ¹⁹F NMR (565 MHz, CDCl₃): -104.8 (t, J = 22.2 Hz, 1F). HRMS (ESI): calculated for C₁₂H₁₄FO₂ [M+H]⁺ : 209.0972; Found: 209.0972.

Methyl (Z)-4-(4-cyanophenyl)-3-fluoropent-3-enoate (3m). R_f = 0.6 (PE: EA =10:1). The reaction was conducted with General Procedure. Isolated yield: 19.1 mg, 41%. ¹H NMR (600 MHz, CDCl₃): δ 7.63 (d, J = 8.3 Hz, 2H), 7.49 (d, J = 8.1 Hz, 2H), 3.77 (s,

3H), 3.47 (d, J = 22.2 Hz, 2H), 2.00 (d, J = 3.0 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 168.7 (d, J_{C-F} = 3.1 Hz), 150.1 (d, J_{C-F} = 254.5 Hz), 142.3, 131.9, 128.9 (d, J_{C-F} = 4.7 Hz), 118.9, 114.7 (d, J_{C-F} = 11.3 Hz), 110.7, 52.5, 35.9 (d, J_{C-F} = 31.4 Hz), 17.0 (d, J_{C-F} = 3.4 Hz). ¹⁹F NMR (565 MHz, CDCl₃) : - 101.3 (t, J = 22.5 Hz, 1F). HRMS (ESI): calculated for C₁₃H₁₃FNO₂ [M+H]⁺: 234.0925; Found: 234.0923.

(1R,2R,5R)-2-isopropyl-5-methylcyclohexyl 4-(2-fluoro-4-methoxy-4-oxobut-1-en-1-yl)benzoate. (3ab). $R_f = 0.5$ (PE: EA = 20:1). The reaction was conducted with General Procedure. Isolated yield: 32.4 mg, 60%. ¹H NMR (600 MHz, CDCl₃): δ 7.37-7.23 (m, 10H), 3.75 (s, 3H), 1.92 (s,

3H), 3.38 (d, J = 22.2 Hz, 2H). ¹³C{¹H} **NMR (151 MHz, CDCl₃):** δ 169.4, 150.7 (d, J_{C-F} = 259.2 Hz), 138.2 (d, J_{C-F} = 7.0 Hz), 136.7, 130.1 (d, J_{C-F} = 3.0 Hz), 129.6 (d, J_{C-F} = 5.3 Hz), 128.6, 128.0, 127.8, 127.4, 123.9 (d, J_{C-F} = 13.2 Hz), 52.4, 37.1 (d, J_{C-F} = 25.4 Hz).¹⁹F **NMR (565 MHz, CDCl₃):** δ -104.5 ~ -104.6 (m, 1F). **HRMS (ESI):** calculated for C₁₇H₁₆FO₂ [M+H]⁺: 271.1129; Found: 271.1130.

(1R,2R,5R)-2-isopropyl-5-methylcyclohexyl4-(2-fluoro-4-methoxy-4-oxobut-1-en-1-yl)benzoate(3s). R_f = 0.5 (PE: EA = 8:1). The reaction was conducted withGeneral Procedure. Isolated yield: 30.8 mg, 41%. ¹HNMR (600 MHz, CDCl₃): *E*-3s: δ 8.01 (d, J = 8.2 Hz, 2H), 7.31 (d, J = 8.2 Hz, 2H), 6.47 (d, J = 19.8 Hz, 1H), 4.92 (td, J = 10.9, 4.4 Hz, 1H), 3.79 (s, 3H), 3.45 (s, J = 10.9, 4.4 Hz, 1H), 3.79 (s, 3H), 3.45 (s, J = 10.9, 4.4 Hz, 1H), 3.79 (s, J = 10.9, 4.4 Hz, 1H),

22.8 Hz, 2H), 2.12 (d, J = 11.8 Hz, 1H), 1.96-1.93 (m, 1H), 1.73 (d, J = 11.6 Hz, 2H), 1.58-1.52 (m, 2H), 1.16-1.06 (m, 2H), 0.92 (t, J = 6.7 Hz, 7H), 0.79 (d, J = 6.9 Hz, 3H); **Z-3s:** δ 7.99 (d, J = 8.3 Hz, 2H), 7.54 (d, J = 8.3 Hz, 2H), 5.72 (d, J = 37.4 Hz, 1H), 4.92 (td, J = 10.8, 4.4 Hz, 1H), 3.77 (s, 3H), 3.40 (d, J = 19.0 Hz, 2H), 2.12 (d, J = 12.0 Hz, 1H), 1.97-1.94 (m, 1H), 1.73 (d, J = 11.5 Hz, 2H), 1.59-1.53 (m,

2H), 1.14-1.07 (m, 2H), 0.92 (t, J = 8.1 Hz, 7H), 0.79 (d, J = 6.9 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃): *E*-3s: δ 168.7, 165.7, 155.7 (d, J_{C-F} = 255.2 Hz), 137.8 (d, J_{C-F} = 12.5 Hz), 129.9, 128.32, 128.30, 111.4 (d, J_{C-F} = 27.1 Hz), 78.0, 52.6, 47.3, 41.0, 35.7 (d, J_{C-F} = 29.6 Hz), 34.3, 31.5, 26.5, 23.6, 22.0, 20.8, 16.5. *Z*-3s: δ 168.7, 165.8, 154.6 (d, J_{C-F} = 269.4 Hz), 137.2, 129.7, 128.42, 128.37, 109.3 (d, J_{C-F} = 7.0 Hz), 74.9, 52.5, 47.3, 41.0, 39.2 (d, J_{C-F} = 29.0 Hz), 34.3, 31.5, 26.5, 23.7, 22.0, 20.8, 16.6. ¹⁹F NMR (565 MHz, CDCl₃): *E*-3s: δ -94.1 ~ -94.3 (m, 1F); *Z*-3s: δ -97.3 ~ -97.5 (m, 1F). HRMS (ESI): *E*-3s: calculated for C₂₂H₃₀FO₄ [M+H]⁺: 377.2123; Found: 377.2125; *Z*-3s: calculated for C₂₂H₃₀FO₄ [M+H]⁺: 377.2123; Found: 377.2123; Foun

 $(38,55,8R,98,108,138,148)-10,13- \\dimethyl-17-oxohexadecahydro-1H- \\cyclopenta[a]phenanthren-3-yl 4-(2- \\fluoro-4-methoxy-4-oxobut-1-en-1- \\yl)benzoate (3v). R_{\rm f} = 0.5 (PE: EA = 8:1). \\The reaction was conducted with General$

Procedure. Isolated yield: 44.9 mg, 44%. ¹H NMR (600 MHz, CDCl₃): *E*-3v: δ 8.00 (d, J = 8.3 Hz, 2H), 7.29 (d, J = 8.2 Hz, 2H), 6.46 (d, J = 19.8 Hz, 1H), 4.96-4.91 (m, 1H), 3.78 (s, 3H), 3.45 (d, J = 22.8 Hz, 2H), 2.44 (dd, J = 19.4, 8.8 Hz, 1H), 2.09-2.03 (m, 1H), 1.96-1.91 (m, 2H), 1.82-1.1.47 (m, 9H), 1.37-1.25 (m, 6H), 1.11 (td, J = 13.6, 3.7 Hz, 1H), 1.06-0.98 (m, 1H), 0.90 (s, 3H), 0.87 (s, 3H), 0.75 (td, J = 10.8, 3.9 Hz, 1H); Z-3v: δ 7.97 (d, J = 8.4 Hz, 2H), 7.53 (d, J = 8.4 Hz, 1H), 5.71 (d, J = 37.4 Hz. 1H), 4.96-4.90 (m, 1H), 3.77 (s, 3H), 3.40 (d, J = 19.0 Hz, 2H), 2.43 (dd, J = 19.3, 8.52 Hz, 1H), 2.10-2.04 (m, 1H), 1.96-1.91 (m, 2H), 1.81-1.48 (m, 9H), 1.36-1.1.25 (m, 6H), 1.11 (td, J = 13.6, 3.6 Hz, 1H), 1.04-0.97 (m, 1H), 0.90 (s, 3H), 0.86 (s, 3H), 0.75 (td, J = 11.2, 3.8 Hz, 1H). ¹³C{¹H} NMR (101 MHz, **CDCl₃**): *E*-3v: δ 168.7, 165.7, 155.7 (d, J_{C-F} = 255.1 Hz), 137.8 (d, J_{C-F} = 12.9 Hz), 129.9, 129.8, 128.3 $(d, J_{C-F} = 2.6 \text{ Hz}, 111.4 (d, J_{C-F} = 26.9 \text{ Hz}), 74.2, 54.3, 52.6, 51.4, 47.8, 44.7, 36.8, 35.8 (d, J_{C-F} = 14.6 \text{ Hz}), 74.2, 54.3, 52.6, 51.4, 47.8, 44.7, 36.8, 35.8 (d, J_{C-F} = 14.6 \text{ Hz}), 74.2, 54.3, 52.6, 51.4, 47.8, 44.7, 36.8, 35.8 (d, J_{C-F} = 14.6 \text{ Hz}), 74.2, 54.3, 52.6, 51.4, 47.8, 54.7, 56.8, 55.8 (d, J_{C-F} = 14.6 \text{ Hz}), 74.2, 54.3, 52.6, 51.4, 47.8, 54.7, 56.8, 55.8 (d, J_{C-F} = 14.6 \text{ Hz}), 74.2, 54.3, 52.6, 51.4, 51.8, 5$ Hz), 35.1, 34.1, 31.5, 30.8, 28.3, 27.5, 21.8, 20.5, 13.8, 12.3. ¹³C NMR (151 MHz, CDCl₃): Z-3v: δ 168.7, 165.8, 154.6 (d, J_{C-F} = 269.3 Hz), 137.2, 129.7, 128.4, 128.3, 109.3 (d, J_{C-F} = 7.4 Hz), 74.1, 54.3, 52.5, 51.4, 47.8, 44.7, 39.2 (d, $J_{C-F} = 29.3$ Hz), 36.8, 35.9, 35.7, 35.1, 34.1, 31.5, 30.8, 28.3, 27.5, 21.8, 36.8, 35.9, 35.7, 35.1, 34.1, 31.5, 30.8, 28.3, 27.5, 21.8, 36.8, 35.9, 35.7, 35.1, 34.1, 31.5, 30.8, 28.3, 27.5, 21.8, 36.8, 35.9, 35.7, 35.1, 34.1, 31.5, 30.8, 28.3, 27.5, 21.8, 36.8, 35.9, 35.7, 35.1, 34.1, 31.5, 30.8, 28.3, 27.5, 21.8, 36.8, 35.9, 35.7, 35.1, 34.1, 31.5, 30.8, 28.3, 27.5, 21.8, 36.8, 35.9, 35.7, 35.1, 34.1, 31.5, 30.8, 28.3, 27.5, 21.8, 35.9, 35.8, 35.9, 35.7, 35.1, 34.1, 31.5, 30.8, 28.3, 27.5, 21.8, 36.8, 35.9, 35.7, 35.1, 34.1, 31.5, 30.8, 28.3, 27.5, 21.8, 35.9, 35.8, 35.9, 35.7, 35.1, 34.1, 31.5, 30.8, 28.3, 27.5, 21.8, 35.9, 35.8, 35.9, 320.5, 13.8, 12.3. ¹⁹F NMR (565 Mz, CDCl₃): *E*-3t: δ -94.1 ~ -94.2 (m, 1F); *Z*-3v: δ -97.2 ~ -97.4 (m, 1F). HRMS (ESI): *E*-3v: calculated for $C_{31}H_{40}FO_5$ [M+H]⁺: 511.2854; Found: 511.2856; *Z*-3v: calculated for C₃₁H₄₀FO₅ [M+H]⁺: 511.2854; Found: 511.2856.

(3a8,58,6R,6a8)-5-((R)-2,2-dimethyl-1,3-dioxolan-4yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6yl 4-(2-fluoro-4-methoxy-4-oxobut-1-en-1-

yl)benzoate (3u). $R_f = 0.5$ (PE: EA = 8:1). The reaction was conducted with General Procedure. Isolated yield: 20.2 mg, 21%. ¹H NMR (600 MHz, CDCl₃): *E*-3u: δ 8.00 (d, J = 8.2 Hz, 2H), 7.33 (d, J = 8.2 Hz, 2H), 6.47 (d, J = 19.7 Hz, 1H), 5.94 (d, J = 3.6 Hz, 1H), 5.49 (d, J

= 2.6 Hz, 1H), 4.62 (d, J = 3.6 Hz, 1H), 4.37-4.31 (m, 2H), 4.13-4.07 (m, 2H), 3.80 (s, 3H), 3.45 (d, J = 22.8 Hz, 2H), 1.56 (s, 3H), 1.41 (s, 3H), 1.32 (s, 3H), 1.27 (s, 3H); **Z-3u:** δ 7.97 (d, J = 8.4 Hz, 2H), 7.56 (d, J = 8.4 Hz, 2H), 5.95 (d, J = 3.6 Hz, 1H), 5.73 (d, J = 37.2 Hz, 1H), 5.49 (d, J = 2.8 Hz, 1H), 4.63 (d, J = 3.6 Hz, 1H), 4.37-4.31 (m, 2H), 4.13-4.07 (m, 2H), 3.77 (s, 3H), 3.41 (d, J = 19.0 Hz, 2H), 1.55 (s, 3H), 1.55 (s, 3H), 1.55 (s, 3H), 3.41 (d, J = 19.0 Hz, 2H), 1.55 (s, 3H), 3.41 (d, J = 19.0 Hz, 2H), 1.55 (s, 3H), 3.41 (d, J = 19.0 Hz, 2H), 3.51 (s, 3H), 3.41 (s, J = 19.0 Hz, 2H), 3.51 (s, 3H), 3.41 (s, J = 19.0 Hz, 2H), 3.51 (s, 3H), 3.41 (s, J = 19.0 Hz, 2H), 3.51 (s, J = 3.6 Hz, 1H), 4.37-4.31 (s, J = 3.6 Hz, 1H), 3.77 (s, J = 3.6 Hz, 1H), 3.51 (s, J = 3.6

3H), 1.41 (s, 3H), 1.32 (s, 3H), 1.26 (s, 3H). ¹³C NMR (151 MHz, CDCl₃): *E*-3u: δ 168.6, 164.8, 156.0 (d, J_{C-F} = 255.9 Hz), 138.7, 130.1, 128.5 (d, J_{C-F} = 2.1 Hz), 112.4, 111.2 (d, J_{C-F} = 26.9 Hz), 109.4, 105.1, 83.4, 79.9, 72.6, 67.3, 52.7, 38.7 (d, J_{C-F} = 29.6 Hz), 26.9, 26.7, 26.2, 25.3; ¹³C{¹H} NMR (101 MHz, CDCl₃): *Z*-3u: δ 168.6, 164.9, 155.1 (d, J_{C-F} = 269.5 Hz), 138.0 (d, J_{C-F} = 3.1 Hz), 129.9, 128.6 (d, J_{C-F} = 7.5 Hz), 112.4, 109.4, 109.1 (d, J_{C-F} = 7.2 Hz), 105.2, 83.4, 80.0, 72.6, 67.3, 52.6, 39.2 (d, J_{C-F} = 29.0 Hz), 26.8, 26.7, 26.2, 25.2. ¹⁹F NMR (565 MHz, CDCl₃): *E*-3u: δ -93.1 ~ -93.2 (m, 1F), *Z*-3u: δ -96.5 (m, 1F). HRMS (ESI): *E*-3u: calculated for C₂₄H₃₀FO₉ [M+H]⁺: 481.1868; Found: 481.1865; *Z*-3u: calculated for C₂₄H₃₀FO₉ [M+H]⁺: 481.1868.

(7R,11R,E)-3,7,11,15tetramethylhexadec-2-en-1-yl 4-(2-fluoro-4methoxy-4-oxobut-1-en-

1-yl)benzoate (3w). $R_f = 0.5$ (PE: EA = 8:1). The reaction was conducted with **General Procedure**. Isolated yield: 44.4 mg, 43%. ¹H NMR (600 MHz, CDCl₃): *E*-3w: δ 8.02 (d, J = 8.2 Hz, 2H), 7.30 (d, J = 8.2 Hz, 2H), 6.46 (d, J = 19.8 Hz, 1H), 5.45 (t, J = 6.6 Hz, 1H), 4.83 (d, J = 7.1 Hz, 1H), 3.78 (s, 3H), 3.45 (d, J = 22.8 Hz, 2H), 2.03 (q, J = 6.6 Hz, 2H), 1.75 (s, 3H), 1.54-1.50 (m, 1H), 1.49-1.02 (m, 18H), 0.87-0.83 (m, 12H); **Z**-3w: δ 7.99 (d, J = 8.4 Hz, 2H), 7.53 (d, J = 8.3 Hz, 2H), 5.71 (d, J = 37.4 Hz, 1H), 5.46 (t, J = 6.9 Hz, 1H), 4.83 (d, J = 7.1 Hz, 2H), 3.77 (s, 3H), 3.40 (d, J = 19.0 Hz, 2H), 2.05-2.01 (m, 2H), 1.75 (s, 3H), 1.54-1.48 (m, 1H), 1.45-1.04 (m, 18H), 0.86-0.83 (m, 12H). ¹³C NMR (101 MHz, CDCl₃): *E*-3w: δ 168.7, 166.2, 155.7 (d, J_{C-F} = 254.9 Hz), 143.0, 137.8 (d, J_{C-F} = 12.7 Hz), 130.0, 128.3 (d, J = 2.6 Hz), 118.0, 111.4 (d, J_{C-F} = 27.0 Hz), 62.0, 52.6, 37.43, 37.36, 37.3, 36.6, 35.7 (d, J_{C-F} = 29.7 Hz), 32.8, 32.7, 29.7, 28.0, 25.1, 24.8, 24.5, 22.7, 22.6, 19.8, 19.7, 16.5. ¹³C{¹H} NMR (151 MHz, CDCl₃): *Z*-3w: δ 168.7, 166.4, 154.7 (d, J_{C-F} = 269.0 Hz), 142.9, 137.3, 130.1, 129.8, 128.9, 128.4 (d, JC-F = 7.5 Hz), 118.1, 109.3 (d, J = 7.1Hz), 61.9, 52.5, 39.9, 39.4, 39.1, 37.42, 37.37, 37.3, 36.6, 32.8, 32.7, 28.0, 25.0, 24.8, 24.5, 22.7, 22.6, 19.8, 19.7, 16.5. ¹³C{¹H} NMR (151 MHz, CDCl₃): *E*-3w: δ -97.2 ~ -97.3 (m, 1F). HRMS (ESI): *E*-3u: calculated for C₃₂H₅₀FO4 [M+H]⁺: 517.3688; Found: 517.3688.

9. References

- [1] Z. Fu, J. Zhu, S. Guo, A. Lin, Chem. Commun. 2021, 57, 1262–1265.
- [2] J. Xu, E.-A. Ahmed, B. Xiao, Q.-Q. Lu, Y.-L. Wang, C.-G. Yu, Y. Fu, Angew. Chem. Int. Ed. 2015, 54, 8231–8235.
- [3] Ni, J.; Nishonov, B.; Pardaev, A.; Zhang, A. J. Org. Chem. 2019, 84, 13646-13654.
- [4] L. Lv, C.-J. Li, Angew. Chem. Int. Ed. 2021, 60, 13098-13104
- [5] P. S. Nosik, S. V. Ryabukhin, O. O. Grygorenko, D. M. Volochnyuk, Adv. Synth. Catal. 2018, 360, 4104–4114.
- [6] B. Xiong, X. Chen, J. Liu, X. Zhang, Y. Xia, Z. Lian, ACS Catal. 2021, 11, 11960–11965.
- [7] C.-T. Li, X. Yan, Z.-Y. Tang, Tetrahedron Lett. 2016, 57, 5624–5627.
- [8] L.-L. Liao, Z.-H. Wang, K.-G. Cao, G.-Q. Sun, W. Zhang, C.-K. Ran, Y. Li, L. Chen, G.-M. Cao, D.-G. Yu, J. Am. Chem. Soc. 2022, 144, 2062–2068.
- [9] Y. Wang, S. Tang, G. Yang, S. Wang, D. Ma, Y. Qiu, Angew. Chem. Int. Ed. 2022, doi: 10.1002/anie.202207746.

-132.111 -132.133 -132.379 -132.403 -137.403 -137.146 -137.394

-136.806 -137.078 -137.078 -137.103 -137.872 -137.898 -138.145 -138.173

-97.182 -97.204 -97.214 -97.231 -97.298 -97.298

-97.96 -97.98 -98.01 -98.01 -98.07 -98.07

NC F

-97 299 -97 304 -97 304 -97 321 -97 333 -97 386 -97 414 427

S-56

-95.293 -95.311 -95.322 -95.341 -95.397 -95.397

-97.877 -97.904 -97.931 -97.962 -97.969 -98.016

S-66

S-68

-111.935 -111.961 -112.000 -112.025

-97.103 -97.124 -97.154 -97.154 -97.159 -97.219 -97.219

-97.142 -97.163 -97.193 -97.193 -97.228 -97.258

-97.024 -97.059 -97.091 -97.124

-95.326 -95.358 -95.358 -95.424 -95.429

-97.406 -97.457 -97.556 -97.556

S-112

11. 2D 1H-1H NOESY experiment

Methyl (Z)-3-fluoro-4-phenylpent-3-enoate (3ad).

Methyl (Z)-4-(4-cyanophenyl)-3-fluoropent-3-enoate (3m).

Methyl (E)-4-(3-fluoro-1-methoxy-1-oxobut-2-en-2-yl)benzoate (4).

