Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Hydrogen bonding network enabled Brønsted acid catalyzed Friedel-Crafts reactions: A green approach to access unsymmetrical diaryl- and triarylmethanes

Sanjay Singh, Sankalan Mondal, Nagaraju Vodnala, Chinmoy Kumar Hazra,*

Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.

Email: chinmoy@chemistry.iitd.ac.in

Table of contents	Pages
1. General Information	S2
2. Optimization studies	S2-S3
3. General procedure for synthesis of unsymmetrical triarylmethanes/	
diarylmethanes (GP1)	S 3
4. General procedure for Intra & inter-molecular Friedel-Crafts	
arylation (GP2)	S 3
5. Analytical data of synthesized unsymmetrical TRAMs (1-36)	S4-S12
6. Intra & inter-molecular Friedel-Crafts arylation products (37-42)	S12-S13
7. Applications (43-48)	S13-S15
8. Mechanistic studies - reaction profile and mechanism	S15-S19
9. Recycle and reusability of HFIP solvent	S19-S20
10. Copies of ¹ H, ¹³ C { ¹ H}, and ¹⁹ F-NMR spectra of products	S21-S70
11. Crystal data	S71-S72
12. Calculation of Green Metrics	S73-S76
13. Previous synthetic routes comparison of anti-breast cancer agent (43)	S76-S78
14. References	S 79

1. General Information:

All reagents and solvents were of pure analytical grade. Analytical thin-layer chromatography (TLC) was carried out using 0.2 mm commercial silica gel plates (silica gel 60, F254, EMD Chemical). The vials (Wheaton® Standard Scintillation Vials, 1 dram, 15x45 mm with PTFE lined cap attached) were purchased from DAIHAN and dried in an oven overnight. High-resolution mass spectra (HRMS) were recorded on a mass spectrometer using electrospray ionization-time of-flight (ESITOF) reflectron experiments. Aldehydes, pTSA•H₂O, and hexafluoroisopropanol were purchased from Sigma-Aldrich, TCI, (or) Alfa Aesar. All reactions were run in flame- (or) ovendried glassware under an atmosphere of N₂ gas with dry solvents unless otherwise stated. ¹H-NMR and ¹³C-NMR were recorded on 400 MHz, and 500 MHz spectrometers, using CDCl₃ (or) DMSO d_6 solution, the chemical shifts are reported as parts per million (ppm) referenced to residual protium (or) carbon of the solvents; CDCl₃ δ H (7.26 ppm) or DMSO-d₆ δ H (2.50 ppm) and CDCl₃ δ C (77.16 ppm) (or) DMSO- $d_6 \delta$ C (39.52 ppm). Coupling constants are reported in Hertz (Hz). Data for ¹H NMR spectra are reported as follows: chemical shift (ppm, referenced to protium; s = singlet, d = doublet, t = triplet, q = quartet, quin = quintet, sext = sextet, dd = doublet of doublets, td = triplet of doublets, ddd = doublet of doublets, m = multiplet, coupling constant(Hz), and integration).

2. Optimization studies:

Table S1: Optimization of reaction conditions.

H + H Catalyst (x mol%) + H HO + H OH							
E. no	Catalyst	Catalyst (X mol%)	Solvent	Yield (%)[a]			
1	BF ₃ •OEt ₂	10	CHCl ₃	70			
2	I_2	10	CHCl ₃	52			
3	(L)-Proline	10	CHCl ₃	NR			
4	TFA	10	CHCl ₃	48			
5	$pTSA \cdot H_2O$	10	CHCl ₃	81			
6	$pTSA \cdot H_2O$	5	CHCl ₃	78			
7	$pTSA \cdot H_2O$	5	-	30			
8	$pTSA \cdot H_2O$	5	H_2O	trace			
9	$pTSA \cdot H_2O$	5	MeOH	trace			
10	$pTSA \cdot H_2O$	5	Ethanol	trace			
11	$pTSA \bullet H_2O$	5	CF ₃ CH ₂ OH	72			
12	$pTSA \cdot H_2O$	5	HFIP	98%			
13	-	-	HFIP	trace			

Reaction Conditions: Formaldehyde (0.5 mmol), 2,6-dimethylphenol (2.1 equiv.) in 0.5 ml solvent at 25 °C for 12-14 h.

3. General procedure for synthesis of unsymmetrical triarylmethanes/diarylmethanes (GP1): To a 5 ml round bottom flask equipped with a magnetic stir bar was sequentially added the two different aryl nucleophiles (0.55 mmol, 1.1 equiv. each), aldehyde (0.5 mmol, 1.0 equiv.) and pTSA•H₂O (5 mol%, 4.75 mg), the in 0.5 ml HFIP solvent at room temperature (25 ^oC). Further the reaction mixture was stirred at room temperature for 10-12 h. The completion of the reaction was monitored by a TLC plate in 20% EtOAc in hexane. The solvent was removed under reduced pressure to get the crude product. Further, column chromatography was carried out over silica gel (100-200) mesh using mixture of hexane and ethyl acetate to purify the crude product. The product was characterized and identified by analysing spectral data (¹H, ¹³C, ¹⁹F-NMR, and HRMS).

4. General procedure for Intra & inter-molecular Friedel-Crafts arylation products (GP2): To a 5 ml round bottom flask equipped with a magnetic stir bar was sequentially added the aldehyde (0.5 mmol, 1.0 equiv.), pTSA•H₂O (5 mol%, 4.75 mg), the aryl nucleophiles (0.55 mmol, 1.1 equiv. each) in 0.5 ml HFIP solvent at room temperature (25 ^oC). Further the reaction mixture was stirred at room temperature for 10-12 h. The completion of the reaction was monitored by a TLC plate in 20% EtOAc in hexane. The solvent was removed under reduced pressure to get the crude product. Further, column chromatography was carried out over silica gel (100-200) mesh using mixture of hexane and ethyl acetate to purify the crude product. The product was characterized and identified by analyzing spectral data (¹H, ¹³C, ¹⁹F-NMR, and HRMS).

5. Analytical data of synthesized unsymmetrical TRAMs (1-36):

2,6-Dimethyl-4-(2,4,6-trimethoxybenzyl)phenol $(1)^1$ Prepared according to the general procedure (GP1); Yellow solid; m.p = 165 °C; 120.4 mg, 81%; ¹H NMR (400 MHz, CDCl₃) δ 6.87 (s, 2H), 6.20 (s, 2H), 4.46 (s, 1H), 3.85 (s, 5H), 3.83 (s, 6H), 2.21 (s, 6H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 159.3, 158.7, 149.8,

133.5, 128.3, 122.4, 110.6, 90.6, 55.6, 55.1, 27.2, 15.8.

4-(2,4,6-Trimethoxybenzyl)phenol (2) Prepared according to the general procedure (GP1);

Colourless liquid, 101.5mg, 74%; ¹**H NMR** (500 MHz, CDCl₃): δ 7.10 (d, 2H), 6.70 (d, 2H), 6.11 (s, 2H), 4.70 (s, 1H), 3.80 (s, 2H), 3.75 (s, 3H), 3.74 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ = 159.5, 158.8, 153.2, 134.5, 129.5,

114.8, 110.7, 90.7, 55.8, 55.4, 27.4; Calculated for **HRMS** (ESI): C₁₆H₁₈O₄Na [M+Na]⁺: 297.1097, Found: 297.1103.

2-Methyl-5-(2,4,6-trimethoxybenzyl)furan $(3)^2$ Prepared according to the general procedure (GP1); Sticky oil, 102.3 mg, 78%; ¹H NMR (500 MHz, CDCl₃) δ 6.17 (s, 1H), 6.11 (s, 1H), 5.79 (s, 1H), 5.63 (s, 1H), 3.89 (s, 2H), 3.83 (s, 3H), 3.80 (s, 6H), 2.25 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 159.9, 159.1, 153.8, 149.7,

107.4, 105.9, 105.0, 90.8, 55.9, 55.3, 21.6, 13.6.

1,3,5-Trimethoxy-2-(4-methoxybenzyl) benzene (4) Prepared according to the general procedure (GP1); White solid, 109.5 mg, 76%; ¹**H NMR** (500 MHz, CDCl₃) δ 7.07 (d, J = 8.6 Hz, 2H), 6.68 (d, J = 8.6 Hz, 2H), 6.06 (s, 2H), 3.78 (s, 2H), 3.72 (s, 3H), 3.71 (s, 6H), 3.67 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 159.6, 158.8,

157.4, 134.5, 129.3, 113.4, 110.7, 90.6, 55.7, 55.3, 55.2, 27.4; Calculated for HRMS (ESI): C₁₆H₁₈O₂Na [M+Na]⁺: 265.1199, Found: 265.1197.

2-(2,4-Dimethoxybenzyl)-1,3,5-trimethoxybenzene (5) Prepared according to the general

procedure (GP1); Colourless liquid, 114.5 mg, 72%; ¹H NMR (500 MHz, CDCl₃): δ 6.40 (d, 1H), 6.30 (d, 1H), 6.18 (dd, 1H), 6.08 (s, 2H), 3.72 (s, 2H), 3.70 (s, 6H), 3.64 (m, 9H); ${}^{13}C{}^{1}H$ NMR (125 MHz, CDCl₃) $\delta = 159.7, 159.4,$

158.6, 158.2, 127.9, 122.2, 108.9, 103.5, 98.2, 90.7, 55.8, 55.4, 55.3, 55.2, 21.5

4-Hydroxy-3-(2,4,6-trimethoxybenzyl)-2H-chromen-2-one (6) Prepared according to the

general procedure (GP1); Sticky oil, 152.3 mg, 89%; ¹H NMR (500 MHz, CDCl₃) δ 8.85 (s, 1H), 7.66 (d, J = 7.8 Hz, 1H), 7.35 (dd, J = 11.3, 4.1 Hz, 1H), 7.15 (d, J = 8.3 Hz, 1H), 7.09 (t, J = 7.6 Hz, 1H), 6.10 (s, 2H), 3.83 (d,

J = 3.1 Hz, 8H), 3.70 (s, 3H), 1.34 (s, 1H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 163.27, 160.68, 160.31, 158.08, 152.37, 131.23, 123.41, 123.04, 116.24, 116.12, 107.25, 104.06, 91.15, 56.07, 55.41, 16.85.

4-(2,4-Dimethoxybenzyl)-2,6-dimethylphenol (7) Prepared according to the general procedure

(GP1); Pale yellow liquid, 107.5 mg, 79%; ¹H NMR (500 MHz, CDCl₃) δ 6.82 (s, 1H), 6.81 (s, 2H), 6.45 (s, 2H), 4.47 (s, 1H), 3.83 (s, 3H), 3.82 (s, 3H), 3.75 (s, 2H), 2.20 (s, 6H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 156.5, 156.0, 150.1,

133.3, 132.2, 128.9, 122.7, 121.7, 117.9, 95.5, 56.1, 55.4, 34.0, 16.3, 15.1.

4-(4-Methoxybenzyl)-2,6-dimethylphenol (8) Prepared according to the general procedure (GP1); Yellow liquid, 93.3 mg, 77%; ¹H NMR (500 MHz, CDCl₃): δ 6.98 (d, 2H), 6.74 (d, 2H), 6.68 (s, 2H), 4.45 (s, 1H), 3.67 (m, 5H), 2.10 (s, 6H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 157.9, 150.5, 134.0, 133.2, 129.7,

129.0, 123.0, 113.9, 55.3, 40.2, 16.0.

4-Hydroxy-3-(4-hydroxy-3,5-dimethylbenzyl)-2H-chromen-2-one (9) Prepared according to the general procedure (GP1); Colourless liquid, 130.3 mg, 88%; δ ¹H NMR $(500 \text{ MHz}, \text{DMSO-d}_6) \delta 7.87 \text{ (d, } J = 7.9 \text{ Hz}, 1\text{H}), 7.58 - 7.51 \text{ (m, 1H)}, 7.29$ $(dd, J = 14.8, 7.8 \text{ Hz}, 2H), 6.72 (s, 2H), 3.64 (s, 2H), 2.02 (s, 6H); {}^{13}C{}^{1}H$

NMR (126 MHz, DMSO-d₆) & 170.3, 161.2, 152.1, 151.3, 132.4, 130.7, 128.3, 124.7, 124.5, 123.6, 116.7, 105.4, 85.8, 28.4, 16.7.

2,6-Di-tert-butyl-4-(4-methoxybenzyl)phenol (10) Prepared according to the general procedure

(GP1); Pale yellow solid; m.p = 122 °C; 122.4 mg, 79%; ¹H NMR (500 MHz, CDCl₃) δ 7.11 (d, J = 8.6 Hz, 2H), 6.97 (s, 2H), 6.82 (d, J = 8.7 Hz, 2H), 5.04 (s, 1H), 3.84 (s, 2H), 3.77 (s, 3H), 1.40 (s, 18H); ¹³C{¹H} NMR

(126 MHz, CDCl₃) δ 157.8, 152.0, 135.8, 134.0, 132.1, 129.8, 125.4, 113.8, 55.3, 41.0, 34.4, 30.4.

2,6-Dimethyl-4-(2,4,5-trimethoxybenzyl)phenol (11) Prepared according to the general procedure (GP1); Pale yellow liquid ; 114.9 mg, 76%; ¹H NMR (500 MHz, CDCl₃) δ 6.82 (s, 8H), 6.67 (s, 4H), 6.57 (s, 5H), 4.57 (s, 4H), 3.91 (s, 13H), 3.82 (s, 11H), 3.81 (s, 7H), 3.80 (s, 11H), 2.22 (s, 24H); ¹³C{¹H}

NMR (126 MHz, CDCl₃) δ 151.5, 150.3, 147.9, 143.0, 132.9, 128.8, 122.8, 121.8, 114.7, 98.1, 56.7, 56.6, 56.2, 34.3, 16.0.

5-Methoxy-3-((1-methyl-1*H***-indol-3-yl)methyl)-1***H***-indole (12)² Prepared according to the general procedure (GP1); Colourless liquid; 116.1 mg, 80%; ¹H NMR (500 MHz, CDCl₃): \delta 7.79 (s, 1H), 7.63 (d,** *J* **= 7.9 Hz, 1H), 7.29 (d,** *J* **= 8.1 Hz, 1H), 7.22 (dd,** *J* **= 9.3, 5.9 Hz, 2H), 7.08 (dd,** *J* **= 14.8, 7.7 Hz, 2H), 6.91 (s, 1H), 6.85 (d,** *J* **= 7.7 Hz, 1H), 6.76 (s, 1H), 4.19 (s, 2H), 3.81 (s, 3H), 3.69 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) \delta 153.9, 137.2, 131.6, 128.0, 127.9, 127.0, 123.1, 121.4, 119.3, 118.6, 115.6, 114.1, 112.1, 111.7, 109.1, 101.1, 56.0, 32.6, 21.1.**

2,6-Dimethyl-4-((**2-phenyl-3a,7a-dihydro-1***H***-indol-3-yl)methyl)phenol** (13)¹ Prepared

according to the general procedure (GP1); Colourless liquid; 115.3 mg, 70%; ¹H NMR (500 MHz, CDCl₃): δ 8.04 (s, 1H), 7.51 – 7.46 (m, 2H), 7.42 – 7.27 (m, 5H), 7.18 – 7.11 (m, 1H), 7.01 (t, 1H), 6.78 (m, 2H), 4.42 (s, 1H),

4.10 (s, 2H), 2.10 (s, 6H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 150, 136, 135, 133, 129, 128.9, 128.4, 127.9, 127.8, 123.1, 122.4, 119.9, 111.8, 110.9, 29.7, 16.1.

1-(4-Hydroxy-3,5-dimethylbenzyl)naphthalen-2-ol (14) Prepared according to the general procedure (GP1); Colourless oil; 104.4 mg, 75%; ¹H NMR (500 MHz, CDCl₃): δ 9.70 (s, 1H), 7.95 (s, 1H), 7.88 (d, 1H), 7.79 (d, 1H), 7.71 (d, 1H), 7.41 (t, 1H), 7.32 - 7.20 (m, 2H), 6.81 (s, 2H), 4.24 (s, 2H), 2.10 (s, 6H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 153.0, 151.5, 133.2, 132.1, 128.0, 128.8, 128.4, 128.1, 126.5,

124.1, 123.2, 122.0, 119.1, 118.1, 29.4, 17.0.

1-(4-Methoxybenzyl)naphthalen-2-ol (15) Prepared according to the general procedure (GP1); Pale yellow solid; m.p = $122 \degree C$; 95.04 mg, 72%; ¹H NMR (500 MHz, CDCl₃) δ 7.93 (d, J = 8.6 Hz, 1H), 7.80 (d, J = 8.2 Hz, 1H), 7.70 (d, J = 8.8 Hz, 1H), 7.47 - 7.43 (m, 1H), 7.36 - 7.32 (m, 1H), 7.15 - 7.12 (m, 2H), 6.83 - 6.75 (m, 2H), 5.12 (s, 1H), 4.39 (s, 2H), 3.75 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 158.0, 151.3, 133.7, 132.0, 131.9, 129.8, 129.5, 129.2, 128.6, 128.4, 126.7, 123.3, 123.2, 118.5, 118.0, 114.1, 55.3, 29.8.

2-(4-Hydroxy-3,5-dimethylbenzyl)-6-isopropyl-3-methylphenol (16) Prepared according to the

general procedure (GP1); Colourless liquid; 108.1 mg, 76%; ¹H NMR (500 MHz, CDCl₃) δ 7.02 (d, J = 7.8 Hz, 1H), 6.80 (d, J = 7.8 Hz, 1H), 6.77 (s, 2H), 4.78 (s, 1H), 4.54 (s, 1H), 3.91 (s, 2H), 3.20 – 3.09 (m, 1H), 2.30 (s, 3H), 2.17

(s, 6H), 1.22 (d, *J* = 6.9 Hz, 6H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 151.6, 150.8, 135.1, 132.5, 130.4, 128.2, 125.1, 123.8, 123.5, 122.4, 31.8, 27.0, 22.8, 20.0, 16.0.

2,6-Dimethyl-4-(2,4,6-trimethoxybenzyl)phenol (17) Prepared according to the general

procedure (GP1); Pale yellow liquid; 123.2 mg, 78%; (3:1); ¹**H NMR** (500 MHz, CDCl₃) δ 6.87 (s, 2H), 6.12 (s, 2H), 4.62 (q, *J* = 7.3 Hz, 1H), 3.78 (s, 3H), 3.70 (s, 6H), 2.17 (s,

6H), 1.59 (d, *J* = 7.3 Hz, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 159.2, 159.0, 149.6, 138.2, 127.6, 127.5, 122.7, 121.9, 116.1, 91.6, 55.8, 55.2, 32.3, 18.4, 16.1, 16.0.

5-Methoxy-3-(1-(1-methyl-1*H*-indol-3-yl)ethyl)-1*H*-indole (18)² Prepared according to the general procedure (GP1); Brown solid; m.p = 149 °C; 127.1 mg, 83%; ¹H NMR (400 MHz, CDCl₃) δ 7.64 (s, 1H), 7.50 (d, *J* = 7.9 Hz, 1H), 7.18 (d, *J* = 8.2 Hz, 1H), 7.14 – 7.08 (m, 2H), 6.97 – 6.92 (m, 2H), 6.78 (d, *J* = 1.4 Hz, 1H), 6.74 (dd, *J* = 8.7, 2.2 Hz, 1H), 6.66 (s, 1H), 4.53 (q, *J* = 7.0 Hz, 1H), 3.67 (s, 3H), 3.58 (s, 3H), 1.70 (d, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 153.7, 137.4, 131.9, 127.3,

126.1, 122.1, 121.6, 121.3, 120.1, 119.8, 118.5, 111.8, 111.7, 109. 101.9, 56.0, 32.6, 28.1, 21.9.

5-Methoxy-3-(1-(1-methyl-1*H***-indol-3-yl)butyl)-1***H***-indole (19) Prepared according to the general procedure (GP1); Brown sticky liquid; 120.4 mg, 72%; ¹H NMR (500 MHz, CDCl₃) \delta 7.70 (s, 1H), 7.53 (d,** *J* **= 7.7 Hz, 1H), 7.22 – 7.14 (m, 2H), 7.11 (dd,** *J* **= 14.5, 8.1 Hz, 2H), 6.98 – 6.94 (m, 2H), 6.90 (s, 1H), 6.75 (s, 2H), 4.36 (t,** *J* **= 7.1 Hz, 1H), 3.69 (s, 3H), 3.62 (s, 3H), 2.10 (dd,** *J* **= 7.0, 3.6 Hz, 2H), 1.35 (dd, J = 7.0, 3.6 Hz, 3.0 Hz**

14.6, 7.1 Hz, 2H), 0.88 (t, *J* = 7.2 Hz, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 153.6, 137.3, 131.8, 127.7, 127.6, 126.2, 122.2, 121.3, 120.5, 119.7, 119.0, 118.4, 111.6, 111.6, 109.1, 102.0, 77.3, 77.0, 76.8, 56.0, 38.3, 33.6, 32.6, 21.4, 14.2.

2,6-Dimethyl-4-(2-phenyl-1-(2,4,6-trimethoxyphenyl)ethyl)phenol (21) Prepared according to

the general procedure (GP1); Pale yellow sticky oil; 147.2 mg, 75%; ¹H NMR (400 MHz, CDCl₃) δ 7.14 – 7.07 (m, 2H), 7.03 (d, J = 6.0 Hz, 3H), 6.96 (s, 2H), 6.05 (s, 2H), 4.85 (s, 1H), 4.42 (s, 1H), 3.73 (s, 3H), 3.57 (s, 6H), 3.54 (d, 1H), 3.36 (d, J = 12.7, 1H), 2.18 (s, 6H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ

159.3, 149.9, 142.2, 136.9, 129.0, 128.2, 128.0, 127.7, 125.3, 122.0, 113.9, 91.6, 55.9, 55.2, 40.4, 38.7, 16.1; Calculated for **HRMS** (ESI): C₂₅H₂₈O₄Na [M+Na]⁺: 415.1880, Found: 415.1871.

2-Methyl-5-(phenyl(2,4,6-trimethoxyphenyl)methyl)furan (22) Prepared according to the general procedure (GP1); Radish oil; 142.1 mg, 84%; ¹H NMR (400 MHz, CDCl₃) δ 7.17 (dd, J = 31.1, 4.1 Hz, 5H), 6.14 (s, 2H), 5.94 (s, 1H), 5.85 (s, 1H), 5.78 (s, 1H), 3.80 (s, 3H), 3.64 (s, 6H), 2.24 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 160.2, 159.1, 155.3, 150.0, 143.1, 128.4, 127.6, 125.6, 112.0, 107.3, 105.9, 91.6, 55.9, 55.3, 39.6,

13.7. Calculated for **HRMS** (ESI): C₂₁H₂₂O₄Na [M+Na]⁺: 361.1416, Found: 361.1426.

2,6-Dimethyl-4-(phenyl(2,4,5-trimethoxyphenyl)methyl)phenol (23) Prepared according to the

general procedure (GP1); Pale yellow oil; 145.7 mg, 77%; ¹**H NMR** (500 MHz, CDCl₃) δ 7.29 (dd, J = 9.3, 5.6 Hz, 2H), 7.21 (t, J = 7.3 Hz, 1H), 7.13 (d, J = 7.3 Hz, 2H), 6.73 (s, 2H), 6.58 (s, 1H), 6.51 (s, 1H), 5.79 (s, 1H), 4.66 (s, 1H), 3.92 (s, 3H), 3.72 (s, 3H), 3.69 (s, 3H), 2.20 (s, 6H); ¹³C{¹H} NMR (126 MHz,

CDCl₃) δ 151.46, 150.47, 148.11, 144.72, 142.79, 135.51, 129.46, 129.28, 128.07, 125.89, 124.93, 122.67, 114.99, 98.20, 56.95, 56.76, 56.12, 48.33, 16.06.

4-Hydroxy-3-((4-hydroxy-3,5-dimethylphenyl)(phenyl)methyl)-2*H*-chromen-2-one (24)

Prepared according to the general procedure (GP1); White solid; m.p = 170-172 °C; 162.9 mg, 88%; ¹H NMR (500 MHz, CDCl₃) δ ¹H NMR (500 MHz, CDCl₃) δ 7.74 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.56 – 7.51 (m, 1H), 7.37 (t, *J* = 7.3 Hz, 2H), 7.32 (dd, J = 7.8, 2.8 Hz, 2H), 7.28 – 7.26 (m, 2H), 6.84 (s, 2H), 6.50 (s, 1H), 5.82 (s, 1H), 4.83 (s, 1H), 2.19 (s, 6H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 163.3, 160.8, 152.6, 152.0, 140.2, 132.0, 131.3, 129.2, 128.9, 128.8, 127.6, 124.4, 123.9, 123.2, 116.5, 116.1, 107.9, 46.7, 16.10

4,4'-(Phenylmethylene)bis(2,6-dimethylphenol) (25) Prepared according to the general procedure (GP1); Pale yellow solid; m.p = 122 °C; 162.7 mg, 86%; ¹H NMR (400 MHz, CDCl₃) δ 7.22 – 7.08 (m, 5H), 6.83 (s, 2H), 6.15 (s, 2H), 5.92 (s, 1H), 4.43 (s, 1H), 3.79 (s, 3H), 3.58 (s, 6H), 2.17 (s, 6H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 160.1, 159.4, 150.3, 145.3, 135.4, 129.7, 129.1, 127.6, 125.3,

122.4, 114.4, 92.1, 56.0, 55.4, 44.6, 16.3. Calculated for **HRMS** (ESI): C₂₄H₂₇O₄ [M+H]⁺: 379.1904, Found: 379.1904.

2,6-Dimethyl-4-(pyridin-4-yl(2,4,6-trimethoxyphenyl)methyl)phenol (26) Prepared according to the general procedure (GP1); Sticky oil; m.p = $122 \degree$ C; 136.6 mg, 72%; ¹H NMR (500 MHz,

CDCl₃) δ 8.59 (d, J = 6.6 Hz, 2H), 7.79 (d, J = 8.1 Hz, 2H), 7.49 (d, J = 6.0 Hz, 2H), 7.12 (d, J = 7.9 Hz, 2H), 6.74 (s, 2H), 6.13 (s, 2H), 5.91 (s, 1H), 4.47 (s, 1H), 3.80 (s, 3H), 3.60 (s, 6H), 2.15 (s, 6H); ¹³C{¹H} NMR (126 MHz, CDCl₃) & 168.9, 161.2, 158.4, 152.1, 141.8, 140.2, 139.9, 129.2, 128.8, 126.0, 124.0, 109.8, 91.3,

55.5, 45.4, 21.3, 16.5. Calculated for **HRMS** (ESI): C₂₄H₂₇O₄ [M+H]⁺: 379.1904, Found: 379.1904.

2,6-Dimethyl-4-(pyridin-3-yl(2,4,6-trimethoxyphenyl)methyl)phenol (27) Prepared according

to the general procedure (GP1); Colourless liquid; 147.9 mg, 78%; ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta 8.41 \text{ (s, 1H)}, 8.38 \text{ (d, } J = 4.1 \text{ Hz}, 1\text{H}), 7.49 \text{ (d, } J = 7.9 \text$ Hz, 1H), 7.16 (dd, *J* = 7.8, 4.8 Hz, 1H), 6.81 (s, 2H), 6.17 (s, 2H), 5.94 (s, 1H), 3.83 (s, 3H), 3.72 (s, 1H), 3.64 (s, 6H), 2.20 (s, 6H); ¹³C{¹H} NMR (126 MHz,

CDCl₃) & 160.2, 158.9, 150.5, 150.2, 146.0, 141.8, 140.8, 139.4, 136.6, 133.4, 129.1, 122.5, 91.5, 55.6, 55.3, 42.1, 16.2; Calculated for **HRMS** (ESI): C₂₃H₂₆O₄Na [M+Na]⁺: 380.1856, Found: 380.1861.

2,6-Dimethyl-4-(pyridin-2-yl(2,4,6-trimethoxyphenyl)methyl)phenol (28) Prepared according

to the general procedure (GP1); Colourless sticky oil; 132.7 mg, 70%; ¹**H NMR** (500 MHz, CDCl₃) δ 8.52 (d, J = 4.1 Hz, 1H), 7.50 (t, J = 7.1 Hz, 1H), 7.28 (s, 1H), 7.02 (t, J = 8.9 Hz, 2H), 6.88 (s, 2H), 6.16 (s, 2H), 6.00 (s, 1H), 3.80 (s, 3H), 3.58 (s, 6H), 2.20 (s, 6H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ

165.6, 160.0, 158.9, 150.5, 148.3, 135.3, 133.6, 129.7, 123.1, 122.5, 120.0, 113.4, 91.7, 55.7, 55.3, 47.8, 16.2.

2,6-Dimethyl-4-((4-nitrophenyl)(2,4,6-trimethoxyphenyl)methyl)phenol (29) Prepared

according to the general procedure (GP1); Pale yellow solid; m.p = 157 °C; 184.2 mg, 87%; ¹H NMR (500 MHz, CDCl₃) δ : 8.03 (d, *J* = 8.8 Hz, 2H), 7.25 (d, *J* = 8.4 Hz, 2H), 6.82 (s, 2H), 6.15 (s, 2H), 5.95 (s, 1H), 3.81 (s, 3H), 3.60 (s, 6H), 2.18 (s, 6H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ ¹³C NMR (101 MHz, CDCl₃) δ 160.4, 158.7, 154.1, 150.5, 145.5, 133.2, 129.4, 129.2, 122.7, 122.6,

112.4, 91.5, 55.5, 55.3, 44.4, 16.2.

2-Methyl-5-((4-(trifluoromethyl)phenyl)(2,4,6-trimethoxyphenyl)methyl)furan (30) Prepared

according to the general procedure (GP1); Colourless sticky oil; 154.4 mg, 76%; ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 8.2 Hz, 2H), 7.33 (d, *J* = 8.2 Hz, 2H), 6.18 (s, 2H), 6.02 (s, 1H), 5.91 (s, 1H), 5.85 (s, 1H), 3.84 (s, 3H), 3.68 (s, 6H), 2.29 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ ¹³C NMR (101 MHz, CDCl₃) δ 160.45, 158.97, 153.91, 150.28, 147.49, 147.47, 128.60, 124.52, 124.48,

124.44, 124.41, 110.97, 107.86, 106.04, 91.48, 55.74, 55.27, 39.38, 13.65; ¹⁹**F NMR** (471 MHz, CDCl₃) δ -63.1.

4-((4-Hydroxy-3,5-dimethylphenyl)(2,4,6-trimethoxyphenyl)methyl)benzonitrile (31)

Prepared according to the general procedure (GP1); Pale yellow sticky liquid; 169.4 mg, 84%; ¹**H NMR** (500 MHz, CDCl₃) δ 7.46 (d, *J* = 7.2 Hz, 2H), 7.20 (d, *J* = 7.7 Hz, 2H), 6.80 (s, 2H), 6.14 (s, 2H), 5.91 (s, 1H), 4.58 (s, 1H), 3.80 (s, 3H), 3.59 (s, 6H), 2.18 (s, 6H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 160.4,

159.0, 151.8, 150.6, 133.4, 131.3, 129.5, 122.6, 119.7, 112.7, 108.6, 91.7, 55.7, 55.4, 44.8, 16.2.

4-((4-Hydroxy-3,5-dimethylphenyl)(2,4,6-trimethoxyphenyl)methyl)benzaldehyde (32)

Prepared according to the general procedure (GP1); Pale yellow oil; 164.6 mg, 81%; ¹**H NMR** (500 MHz, CDCl₃) δ 9.94 (s, 1H), 7.70 (d, J = 8.2 Hz, 2H), 7.27 (d, *J* = 8.1 Hz, 2H), 6.83 (s, 2H), 6.15 (s, 2H), 5.95 (s, 1H), 4.60 (s, 1H), 3.81 (s, 3H), 3.59 (s, 6H), 2.19 (s, 6H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 193.3, 161.1,

159.8, 154.5, 151.4, 134.6, 130.4, 130.2, 130.0, 123.3, 113.9, 92.5, 56.5, 56.2, 45.7, 17.0.

3-((4-Hydroxy-3,5-dimethylphenyl)(2,4,6-trimethoxyphenyl)methyl)benzaldehyde (33)

Prepared according to the general procedure (GP1); Pale yellow solid; m.p =139 - 140 °C; 152.4 mg, 75%; ¹H NMR (400 MHz, CDCl₃) δ 9.92 (s, 1H), 7.65 (s, 2H), 7.42 (d, J = 7.8 Hz, 1H), 7.35 (t, J = 7.6 Hz, 1H), 6.81 (s, 2H), 6.15 (s, 2H), 5.98 (s, 1H), 4.48 (s, 1H), 3.81 (s, 3H), 3.60 (s, 6H), 2.18 (s, 6H); ¹³C{¹H}

NMR (101 MHz, CDCl₃) δ 194.0, 161.1, 159.9, 151.3, 147.6, 136.8, 136.2, 135.0, 131.7, 130.3, 128.9, 127.2, 123.2, 114.0, 92.6, 56.6, 56.2, 45.1, 17.0.

4-((3,5-Dichlorophenyl)(2,4,6-trimethoxyphenyl)methyl)-2,6-dimethylphenol (34) Prepared

according to the general procedure (GP1); Pale yellow sticky solid; 187.8 mg, 84%; ¹**H NMR** (500 MHz, CDCl₃) δ 7.15 (s, 1H), 7.04 (s, 2H), 6.83 (s, 2H), 6.18 (s, 2H), 5.86 (s, 1H), 4.55 (s, 1H), 3.85 (s, 3H), 3.66 (s, 6H), 2.22 (s, 6H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 160.3, 158.9, 150.5, 149.3, 133.8, 133.4, 129.4, 127.4, 125.2, 122.4,

112.5, 91.7, 55.7, 55.3, 44.1, 16.1.

2-((2,6-Dichlorophenyl)(2,4,6-trimethoxyphenyl)methyl)-5-methylfuran (35)Prepared according to the general procedure (GP1); Colourless sticky oil; 177.2 mg, 87%; ¹**H** NMR (500 MHz, CDCl₃) δ 7.21 (d, *J* = 8.0 Hz, 2H), 7.01 (t, *J* = 8.0 Hz, 1H), 6.23 (s, 1H), 6.12 (s, 2H), 5.82 (d, J = 1.7 Hz, 1H), 5.53 (d, J = 1.7 Hz, 1H), 3.80(s, 3H), 3.63 (s, 6H), 2.27 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 160.6,

158.9, 153.1, 150.5, 146.9, 133.9, 127.0, 125.8, 110.3, 108.2, 106.1, 91.4, 55.7, 55.3, 39.0, 13.7.

2,6-Dimethyl-4-((perfluorophenyl)(2,4,6-trimethoxyphenyl)methyl)phenol (36) Prepared

according to the general procedure (GP1); Sticky oil; mixed 90% (2:1); ¹H NMR (500 MHz, CDCl₃) δ 6.83 (s, 2H), 6.74 (s, 2H), 6.24 (s, 1H), 6.22 (s, 2H), 4.72 (s, 1H), 3.88 (s, 3H), 3.73 (s, 6H), 2.22 (s, 6H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 160.7, 160.6, 159.2, 159.1, 151.2, 150.6, 128.7, 127.9, 123.1, 122.5, 91.2, 91.1, 55.7, 55.7, 55.3, 55.3, 16.1, 16.0, 15.9.

6. Intra & inter-molecular Friedel-Crafts arylation products (37-42):

2-Methyl-9-(2,4,6-trimethoxyphenyl)naphtho[2,3-b]furan (37) Prepared according to the

general procedure (**GP1**); Sticky solid; 135.7 mg, 78%; ¹**H NMR** (500 MHz, CDCl₃) δ 7.94 – 7.79 (m, 2H), 7.56 (d, *J* = 8.5 Hz, 1H), 7.39 – 7.31 (m, 1H), 7.27 (ddd, *J* = 8.1, 6.7, 1.2 Hz, 1H), 6.45 (s, 1H), 6.34 (s, 2H), 3.90 (s, 3H), 3.59 (s, 6H), 2.40 (s, 3H); ¹³C{¹H} **NMR** (126 MHz, CDCl₃) δ 161.6, 159.6, 158.0, 152.5,

130.7, 130.2, 130.0, 128.1, 125.8, 123.8, 123.3, 116.9, 112.2, 104.8, 102.3, 91.2, 77.3, 77.1, 76.8, 56.0, 55.4, 14.6; Calculated for **HRMS** (ESI): C₂₂H₂₀O₄Na [M+Na]⁺: 371.1253, Found: 371.1242.

4-(9*H*-fluoren-9-yl)-2,6-dimethylphenol (38) Prepared according to the general procedure (GP2); Sticky solid; Yellow sticky liquid; 124.5 mg, 87%; ¹H NMR (500 MHz, CDCl₃) δ 7.70 (d, *J* = 7.6 Hz, 2H), 7.28 (t, *J* = 7.4 Hz, 2H), 7.23 (d, *J* = 7.4 Hz, 2H), 7.16 (t, *J* = 7.3 Hz, 2H), 6.60 (s, 2H), 4.82 (s, 1H), 4.44 (s, 1H), 2.07 (s, 6H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 151.1, 148.4, 140.9, 133.0, 128.4, 127.3, 127.2, 125.3, 122.2, 110.8, 52.8, 16.0

123.2, 119.8, 53.8, 16.0.

4-(2-Fluoro-9*H*-fluoren-9-yl)-2,6-dimethylphenol (39)^{xx} Prepared according to the general procedure (GP2); Pale yellow sticky oil; 98.9 mg, 65%; ¹H NMR (400 MHz, CDCl₃) δ 7.73 – 7.63 (m, 2H), 7.31 (t, *J* = 7.6 Hz, 1H), 7.18 (s, 1H), 7.17 – 7.10 (m, 2H), 7.01 (td, *J* = 8.5, 1.9 Hz, 1H), 6.94 (s, 1H), 6.89 – 6.80 (m, 1H), 6.59 (s, 1H), 5.38 (s, 1H), 2.58 (s, 3H), 2.22 (s, 3H); ¹⁹F NMR (471 MHz, CDCl₃) δ = -

75.6.

4-(2-Methoxy-9H-fluoren-9-yl)-2,6-dimethylphenol (40) Prepared according to the general

procedure (**GP2**); Colourless sticky oil; 143.9 mg, 91%; ¹**H NMR** (400 MHz, CDCl₃) δ 7.64 – 7.58 (m, 2H), 7.26 (t, *J* = 7.4 Hz, 1H), 7.19 (d, *J* = 6.3 Hz, 1H), 7.10 (t, *J* = 7.4 Hz, 1H), 6.85 (dd, *J* = 8.3, 2.3 Hz, 1H), 6.78 (d, *J* = 1.9 Hz, 1H), 6.62 (s, 2H), 4.79 (s, 1H), 4.42 (s, 1H), 3.72 (s, 3H), 2.10 (s, 6H); ¹³C{¹H} NMR

(126 MHz, CDCl₃) δ 159.6, 151.1, 150.2, 148.0, 140.8, 133.9, 133.0, 128.4, 127.1, 126.1, 125.1, 123.2, 120.5, 119.0, 113.4, 110.7, 55.5, 53.8, 16.0.

4-(11*H*-Benzo[a]fluoren-11-yl)-2,6-dimethylphenol (41) Prepared according to the general procedure (GP2); Pale yellow sticky liquid; 137.9 mg, 82%; ¹H NMR (500 MHz, CDCl₃) δ 7.96 (dt, *J* = 15.8, 8.2 Hz, 3H), 7.86 (d, *J* = 7.5 Hz, 1H), 7.78 (s, 1H), 7.40 (ddd, *J* = 20.4, 9.9, 4.3 Hz, 4H), 7.32 – 7.24 (m, 1H), 6.75 (s, 2H), 5.24 (s, 1H), 4.54 (s, 1H), 2.16 (s, 6H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 151.0, 149.7,

143.0, 140.8, 139.1, 133.5, 133.0, 130.6, 128.9, 128.7, 128.1, 127.0, 127.0, 126.3, 125.1, 124.9, 124.8, 123.4, 119.5, 118.5, 53.5, 16.0.

2-Methoxy-9-(2,4,6-trimethoxyphenyl)-9H-fluorene (42) Prepared according to the general

procedure (**GP2**); Colourless sticky liquid; 159.4 mg, 88%; ¹**H NMR** (500 MHz, DMSO-d₆) δ 7.76 (t, *J* = 7.4 Hz, 2H), 7.27 (t, *J* = 7.4 Hz, 1H), 7.11 (t, *J* = 7.3 Hz, 1H), 7.04 (d, *J* = 7.4 Hz, 1H), 6.90 (dd, *J* = 8.2, 2.1 Hz, 1H), 6.62 (d, *J* = 1.1 Hz, 1H), 6.42 (d, *J* = 2.0 Hz, 1H), 6.05 (d, *J* = 1.9 Hz, 1H), 5.41 (s, 1H), 3.96 (s, 3H),

3.77 (s, 3H), 3.72 (s, 3H), 2.95 (s, 3H); ¹³C{¹H} NMR (126 MHz, DMSO-d₆) δ 160.4, 159.8, 159.4, 159.4, 150.6, 148., 140.9, 126.6, 125.9, 123.5, 119.3, 112.7, 109.5, 109.2, 93.0, 91.7, 56.9, 55.9, 55.7, 55.6, 43.7.

7. Applications (43-47):

Total synthesis of phenantharene based anti-breast cancer agent (44)

4-((4-Methoxyphenyl)(phenanthren-9-yl)methyl)phenol $(43)^2$ To a 5 ml round bottom flask equipped with a magnetic stir bar was sequentially added the phenanthrene-9-carbaldehyde (0.5

mmol, 1.0 equiv.), $pTSA \cdot H_2O$ (5.0 mol%, 4.75 mg), followed by the addition of phenol (0.55 mmol, 1.1 equiv.) and anisole (0.55 mmol, 1.1 equiv.) aryl nucleophiles together in 0.5 ml HFIP solvent at room temperature (25 °C). Further the reaction mixture was stirred at room temperature for 12 h. The

completion of the reaction was monitored by a TLC plate in 30% EtOAc in hexane. The solvent was removed under reduced pressure to get the crude product. Further, column chromatography

was carried out over silica gel (100-200) mesh using mixture of hexane and ethyl acetate to purify the crude product to afford the **43** as pale-yellow oil; 148.3 mg, 76%; ¹**H NMR** (500 MHz, CDCl₃) δ 8.66 (d, *J* = 8.2 Hz, 2H), 8.00 (d, *J* = 8.3 Hz, 1H), 7.61 – 7.41 (m, 5H), 7.15 (s, 1H), 7.08 – 7.01 (m, 4H), 6.82 (d, *J* = 8.6 Hz, 2H), 6.79 (d, *J* = 8.7 Hz, 2H), 6.14 (s, 1H), 4.10 (d, 1H), 3.81 (s, 3H).

2-(4-((4-Methoxyphenyl)(phenanthren-9-yl)methyl)phenoxy)-N,N-dimethylethan-1-amine

(44)² The above-obtained product 43 (100.0 mg, 0.25 mmol) was mixed with 2-chloro-N,N-

dimethylethan-1-amine hydrochloride (0.51 mmol, 2.0 equiv.), K_2CO_3 (1.0 mmol, 4.0 equiv.) in acetone (3 mL). The reaction mixture was refluxed for 5-6 h and then acetone was removed under reduced pressure. Water (6-7 mL) was added and the aqueous layer was extracted with ethyl acetate (3×10 mL). The

combined organic layers were dried over Na₂SO₄, filtered and concentrated under reduced pressure to afford the desired *anti-breast*-cancer agent (**44**) Waxy oil; 100.2 mg, 87%; ¹**H** NMR (500 MHz, CDCl₃) δ 8.73 (dd, J = 30.5, 8.1 Hz, 2H), 8.06 (d, J = 8.0 Hz, 1H), 7.70 (d, J = 7.7 Hz, 1H), 7.63 (t, J = 7.4 Hz, 2H), 7.54 (dd, J = 15.6, 7.8 Hz, 2H), 7.23 (t, J = 7.1 Hz, 1H), 7.17 (s, 1H), 7.11 (d, J = 7.8 Hz, 2H), 6.93 (d, J = 8.0 Hz, 1H), 6.84 (d, J = 7.8 Hz, 4H), 6.58 (s, 1H), 4.00 (d, J = 4.8 Hz, 2H), 3.81 (s, 3H), 2.44 (d, J = 2.9 Hz, 2H), 2.08 (s, 6H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 159.0, 156.2, 138.9, 135.1, 133.0, 131.6, 131.4, 130.8, 130.7, 130.5, 129.8, 128.6, 127.7, 127.6, 126.6, 126.5, 126.2, 126.0, 125.2, 122.9, 122.4, 120.6, 113.7, 112.0, 67.0, 58.1, 55.2, 45.8, 45.6.

2-Methyl-5-(phenyl(2,4,5-trimethoxyphenyl)methyl)furan (45) Prepared according to the

general procedure (**GP1**); Pale yellow sticky oil; 135.3 mg, 80%; ¹**H NMR** (500 MHz, CDCl₃) δ 7.27 – 7.22 (m, 2H), 7.20 (d, *J* = 7.0 Hz, 1H), 7.15 (d, *J* = 7.6 Hz, 2H), 6.60 (s, 1H), 6.53 (s, 1H), 5.85 (s, 1H), 5.77 (s, 1H), 5.72 (d, *J* = 2.5 Hz, 1H), 3.87 (s, 3H), 3.73 (s, 3H), 3.71 (s, 3H), 2.24 (s, 3H); ¹³C{¹H}

NMR (126 MHz, CDCl₃) δ 155.08, 151.24, 151.20, 148.47, 142.98, 142.34, 128.60, 128.16, 126.31, 122.31, 114.05, 108.84, 105.84, 98.09, 56.84, 56.67, 56.14, 43.10, 13.67.

2-Methyl-5-((4-nitrophenyl)(2,4,5-trimethoxyphenyl)methyl)furan (46) Prepared according to

the general procedure (**GP1**); Pale yellow sticky oil; 164.8 mg, 86%; ¹**H NMR** (500 MHz, CDCl₃) δ 8.14 (d, J = 8.7 Hz, 2H), 7.33 (d, J = 8.6 Hz, 2H), 6.58 (d, J = 18.6 Hz, 2H), 5.92 (d, J = 2.0 Hz, 1H), 5.85 (s, 1H), 5.80 (d, J = 2.9 Hz, 1H), 3.91 (s, 3H), 3.75 (d, J = 5.2 Hz, 6H), 2.28 (s, 3H); ¹³C{¹H} (126 MHz, CDCl₃) δ 153.17, 151.90, 151.14, 150.22, 149.08, 143.12, 129.38, 123.46, 120.52, 113.77, 109.44, 106.10, 97.75, 56.77, 56.51, 56.15, 43.21, 13.63.

(1*R*,2*S*,5*R*)-2-isopropyl-5-methylcyclohexyl-4-(4-hydroxy-2-oxo-2*H*-chromen-3-yl)(4hydroxy-3,5-dimethylphenyl)methyl)benzoate (47) Prepared according to the general procedure

(GP1); Colourless sticky oil; 78.7 mg, 71%; ¹**H NMR** (500 MHz, CDCl₃) δ 8.06 (d, *J* = 8.1 Hz, 20H), 7.77 (d, *J* = 7.8 Hz, 10H), 7.57 (s, 11H), 7.38 (d, *J* = 8.0 Hz, 20H), 7.34 (d, *J* = 8.3 Hz, 10H), 7.33 – 7.26 (m, 15H), 6.84 (s, 19H), 5.88 (s, 9H), 4.95 (d, *J* = 4.1 Hz, 18H), 2.22 (s, 60H), 2.15 (d, *J* = 12.0 Hz, 12H), 1.98 (d, *J* = 6.8 Hz, 12H), 1.75 (d,

J = 11.2 Hz, 24H), 1.57 (d, J = 9.6 Hz, 24H), 1.13 (dd, J = 19.4, 11.0 Hz, 25H), 0.97 – 0.87 (m, 82H), 0.81 (d, J = 6.7 Hz, 31H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 166.0, 163.2, 160.9, 152.9, 152.0, 144.9, 131.8, 130.6, 129.7, 128.8, 124.6, 124.0, 123.2, 116.8, 115.5, 107.6, 75.3, 47.3, 46.5, 40.8, 34.5, 31.4, 29.8, 26.7, 23.5, 21.8, 20.8, 16.5, 16.1, 14.0; Calculated for HRMS (ESI): C₃₅H3₈O₆Na [M+Na]⁺: 577.2566, Found: 577.2558.

4-Allyl-2-methoxyphenyl-4-((2,4,5-trimethoxyphenyl)(2,4,6-

trimethoxyphenyl)methyl)benzoate (48) Prepared according to the general procedure (GP1);

Pale yellow sticky oil; 100.8 mg, 82%; ¹**H NMR** (500 MHz, CDCl₃) δ 8.08 (d, *J* = 8.3 Hz, 2H), 7.18 (d, *J* = 8.2 Hz, 2H), 7.05 (d, *J* = 8.0 Hz, 1H), 6.88 – 6.71 (m, 2H), 6.56 (s, 2H), 6.44 (s, 2H), 6.13 (s, 1H), 6.06 – 5.88 (m, 1H), 5.19 – 4.97 (m, 2H), 3.90 (s, 6H),

3.80 (s, 3H), 3.68 (s, 6H), 3.66 (s, 6H), 3.40 (d, *J* = 6.7 Hz, 2H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 161.10, 151.62, 151.18, 150.86, 150.30, 149.61, 148.37, 142.79, 138.96, 138.26, 137.14, 131.23, 130.08, 129.11, 127.77, 127.04, 123.34, 122.71, 120.78, 116.13, 114.57, 112.88, 98.22, 58.30, 56.85, 56.77, 56.75, 56.11, 55.92, 42.90, 40.13.

8. Mechanistic studies - reaction profile and mechanism

¹H NMR titration Studies with PhCHO and HFIP with gradual addition of *p*TSA•H₂O

In a NMR tube, HFIP (0.5 mmol., 52 μ L) was added in CDCl₃ and **NMR-1** was recorded. In NMR tubes (2-8) benzaldehyde (0.5 mmol , 51 μ L) was dissolved in HFIP (1equiv., 53 μ L) and stock solutions (2-8) were prepared. In these stock solutions subsequently, *p*TSA•H₂O was added incrementally (5 to 100 mol%) and recorded the respective NMR.

In 2^{nd} NMR tube having stock solution of PhCHO and HFIP (0.5 mmol each) 5 mol% *p*TSA.H₂O (4.8 mg), 0.4 ml of CDCl₃ was added and **NMR 2** was recorded immediately.

In 3rd NMR tube having stock solution of PhCHO and HFIP (0.5 mmol each) 10 mol% pTSA•H₂O (9.5 mg), 0.4 ml of CDCl₃ was added and **NMR 3** was recorded immediately.

In 4th NMR tube having stock solution of PhCHO and HFIP (0.5 mmol each) 20 mol% pTSA.H₂O (19.0 mg), 0.4 ml of CDCl₃ was added and **NMR 4** was recorded immediately.

In 5th NMR tube having stock solution of PhCHO and HFIP (0.5 mmol each) 30 mol% pTSA.H₂O (28.5 mg), 0.4 ml of CDCl₃ was added and **NMR 5** was recorded immediately.

In 6th NMR tube having stock solution of PhCHO and HFIP (0.5 mmol each) 40 mol% pTSA.H₂O (38.1 mg), 0.4 ml of CDCl₃ was added and **NMR 6** was recorded immediately.

In 7th NMR tube having stock solution of PhCHO and HFIP (0.5 mmol each) 50 mol% pTSA.H₂O (47.6 mg), 0.4 ml of CDCl₃ was added and **NMR 7** was recorded immediately.

In 8th NMR tube having stock solution of PhCHO and HFIP (0.5 mmol each) 100 mol% pTSA.H₂O (95 mg), 0.4 ml of CDCl₃ was added and **NMR 8** was recorded immediately.

Figure 1 Real time NMR studies showing the activation of the *p*TSA•H₂O with HFIP.

¹³C NMR study of the mixture of *p*-toluenesulphonic acid and HFIP^{3,4}

For the acidity calculation of the mixture of $pTSA \cdot H_2O$ and HFIP we used the mesityl oxide method as reported by Farcasiu and co-workers and also by Song and co-workers.

The determination of the acid strength H_0 is based on the protonation equilibrium shown below wherein the presence of strong acid the oxygen atom of the ketone (mesityl oxide) is protonated thereby causing a relative shift in the 13C NMR spectra before and after addition of the proton.

In a NMR tube, mesityl oxide (0.5 mmol., 57.2 μ L) was added in 0.5 ml CD₃OD and **NMR -1** was recorded. In NMR tube (2-5) mesityl oxide (0.5 mmol., 57.2 μ L) and *p*TSA•H₂O (50 mol%; 0.25mmol; 47.6 mg) was added and a stock solution was prepared in CD₃OD. In NMR tubes (3-5) to the stock solution, HFIP (50 mol%, 100 mol% and 300 mol%) were added and respective NMR (3-5) were recorded.

In 2nd NMR tube having stock solution of mesityl oxide (0.5 mmol., 57.2 μ L), *p*TSA•H₂O (50 mol%; 0.25mmol; 47.5mg), 0.4 ml of CD₃OD was added and **NMR 2** was recorded immediately.

In 3rd NMR tube having stock solution of mesityl oxide (0.5 mmol., 57.2 μ L), *p*TSA•H₂O (50 mol%; 0.25mmol; 47.5mg), HFIP (50 mol%, 27.0 μ L), 0.4 ml of CD₃OD was added and **NMR 3** was recorded immediately.

In 4th NMR tube having stock solution of mesityl oxide (0.5 mmol., 57.2 μ L), *p*TSA•H₂O (50 mol%; 0.25mmol; 47.5mg), HFIP (100 mol%, 53.0 μ L) ,~0.4 ml of CD₃OD was added and **NMR 4** was recorded immediately.

In 5th NMR tube having stock solution of mesityl oxide (0.5 mmol., 57.2 μ L), *p*TSA•H₂O (50 mol%; 0.25mmol; 47.5mg), HFIP (300 mol%, 160 μ L), ~0.35 ml of CD₃OD was added and **NMR** 5 was recorded immediately.

	C=O (in ppm)	C_{β} (in ppm)	C_{α} (in ppm)	$\Delta \delta = C_{\beta} - C_{\alpha}$ (in ppm)
Set-1 {mesityl oxide (0.5	201.00	157.17	124.99	32.18
mmol., 57.2 μ L) + 0.5 ml				
CD ₃ OD}				
Set-2 {mesityl oxide (0.5	201.11, 201.06	157.12	124.94	32.18
mmol., 57.2 μL) +				
<i>p</i> TSA.H ₂ O (50 mol%;				
0.25 mmol; 47.6 mg) + 0.4 ml				
CD ₃ OD}				
Set-3 {mesityl oxide (0.5	201.32,	157.32	124.94	32.62
mmol., 57.2 μL) +	201.27		124.70	
<i>p</i> TSA.H ₂ O (50 mol%;				
0.25mmol; 47.6 mg) + HFIP				
(50 mol%, 27.0 µL)+ 0.4 ml				
CD ₃ OD}				
Set-4 {mesityl oxide (0.5	201.37	157.42	124.67	32.75
mmol., 57.2 μL) +				
<i>p</i> TSA.H ₂ O (50 mol%;				
0.25mmol; 47.6 mg) + HFIP				

(100 mol% 53.0 µL) + 0.4 ml				
CD ₃ OD}				
Set-5 {mesityl oxide (0.5	202.16	158.30	124.51	33.79
mmol., 57.2 μL) +				
<i>p</i> TSA.H ₂ O (50 mol%;				
0.25mmol; 47.6 mg) + HFIP				
(300 mol%, 160 µL)+ 0.35				
ml CD ₃ OD}				

Figure 2A pKa comparison of pTSA•H₂O in two different fluoroalcohol solvents (a) HFIP and (b) TFE using mesityl oxide as the probe.

Figure 2B Exp-1 ¹³**C-NMR** of pure mesityl oxide (0.5 mmol); **Exp-2** ¹³**C-NMR** mesityl oxide (0.5 mmol) + pTSA•H₂O (0.25 mmol); **Exp-3** ¹³**C-NMR** mesityl oxide (0.5 mmol) + pTSA•H₂O (0.25 mmol) + HFIP (0.25 mmol); **Exp-4** ¹³**C-NMR** mesityl oxide (0.5 mmol) + pTSA•H₂O (0.25 mmol) + HFIP (0.5 mmol); **Exp-5** ¹³**C-NMR** mesityl oxide (0.5 mmol) + pTSA•H₂O (0.25 mmol) + HFIP (0.5 mmol); **Exp-5** ¹³**C-NMR** mesityl oxide (0.5 mmol) + pTSA•H₂O (0.25 mmol) + HFIP (0.5 mmol); **Exp-5** ¹³**C-NMR** mesityl oxide (0.5 mmol) + pTSA•H₂O (0.25 mmol) + HFIP (1.5 mmol); in CD₃OD.

$$\begin{array}{c} & & & & & \\ &$$

9. Recycle and reusability of HFIP solvent⁵

Initial reaction:

To a 50 ml round bottom flask added 1,3,5-trimethoxybenzene (1.1 equvi., 21 mmol) and 2,6dimethylphenol (1.1 equvi., 21 mmol) and paraformaldehyde (0.60 g, 20 mmol, 1.0 equiv.) and pTSA•H₂O (5 mol%) in 20 ml of HFIP. The resultant mixture was stirred at room temperature for 12 h. The HFIP solvent was recovered by distillation directly from the reaction pot (60–70 °C) (18.0 mL, 90%). The remaining product was purified by column chromatography using EtOAc/hexanes (20:80) to afforded **1** (4.5g, 75%) as a white solid. 2nd reaction, using recovered HFIP solvent. To a solution of 1,3,5-trimethoxybenzene (1.1 equiv., 11 mmol) and 2,6-dimethylphenol (1.1 equvi., 11 mmol) and paraformaldehyde (0.30 g, 10 mmol, 1.0 equiv.), pTSA•H₂O (5 mol%) in HFIP (10.0 mL) solvent obtained by distillation from previous reaction was added. The resultant mixture was stirred at room temperature for 12 h. Further, HFIP solvent was recovered by distillation as discussed in initial reaction (9.0 mL, 90%). The remaining product was purified by column chromatography using teOAc/hexanes (20:80) to afforded **1** (2.3 g, 77%) as a white solid.

3rd reaction, using 2-times recovered HFIP solvent

To a solution of 1,3,5-trimethoxybenzene (1.1 equiv., 5.5 mmol) and 2,6-dimethylphenol (1.1 equiv., 5.5 mmol) and paraformaldehyde (0.150 g, 5 mmol, 1.0 equiv.), pTSA•H₂O (5 mol%) in HFIP (5.0 mL) solvent obtained by distillation from previous reaction was added. The resultant mixture was stirred at room temperature for 12 h. HFIP solvent was recovered by distillation as discussed in initial reaction (4.0 mL, 80%). The remaining product was purified by column chromatography using EtOAc/hexanes (20:80) to afforded **1** (1.2 g, 80%) as a white solid.

10. Copies of ¹H, ¹³C {¹H} and ¹⁹F-NMR spectra of products

2,6-Dimethyl-4-(2,4,6-trimethoxybenzyl)phenol (1)

¹H (400 MHz) and ¹³C{¹H} (126 MHz) NMR spectra of **1** in CDCl₃

4-(2,4,6-Trimethoxybenzyl)phenol (2)

 1H (500 MHz) and $^{13}C\{^1H\}$ (126 MHz) NMR spectra of $\bm{2}$ in CDCl $_3$

2-Methyl-5-(2,4,6-trimethoxybenzyl)furan (3)

 ^1H (500 MHz) and $^{13}\text{C}\{^1\text{H}\}$ (101 MHz) NMR spectra of $\boldsymbol{3}$ in CDCl_3

1,3,5-Trimethoxy-2-(4-methoxybenzyl) benzene (4)

 1H (500 MHz) and $^{13}C\{^1H\}$ (121 MHz) NMR spectra of $\bm{4}$ in CDCl_3

2-(2,4-Dimethoxybenzyl)-1,3,5-trimethoxybenzene (5)

 1H (500 MHz) and $^{13}C\{^1H\}$ (126 MHz) NMR spectra of $\bm{5}$ in CDCl_3

4-Hydroxy-3-(2,4,6-trimethoxybenzyl)-2H-chromen-2-one (6) 1 H (500 MHz) and 13 C{ 1 H} (126 MHz) NMR spectra of **6** in CDCl₃

4-(2,4-Dimethoxybenzyl)-2,6-dimethylphenol (7) $^1\rm H$ (500 MHz) and $^{13}\rm C\{^1\rm H\}$ (126 MHz) NMR spectra of 7 in CDCl₃

4-(4-Methoxybenzyl)-2,6-dimethylphenol (8) $^1\rm H$ (500 MHz) and $^{13}\rm C\{^1\rm H\}$ (126 MHz) NMR spectra of 8 in CDCl₃

4-Hydroxy-3-(4-hydroxy-3,5-dimethylbenzyl)-2H-chromen-2-one (9)

 1H (500 MHz) and $^{13}C\{^1H\}$ (126 MHz) NMR spectra of $\bm{9}$ in DMSO-d_6

2,6-Di-tert-butyl-4-(4-methoxybenzyl)phenol (10)

 1H (500 MHz) and $^{13}C\{^1H\}$ (126 MHz) NMR spectra of 10 in CDCl $_3$

2,6-Dimethyl-4-(2,4,5-trimethoxybenzyl)phenol (11)

 1H (500 MHz) and $^{13}C\{^1H\}$ (126 MHz) NMR spectra of 11 in CDCl_3

5-Methoxy-3-((1-methyl-1*H*-indol-3-yl)methyl)-1*H*-indole (12)

 1H (500 MHz) and $^{13}C\{^1H\}$ (126 MHz) NMR spectra of 12 in CDCl $_3$

2,6-Dimethyl-4-((2-phenyl-3a,7a-dihydro-1*H*-indol-3-yl)methyl)phenol (13) 1 H (500 MHz) and 13 C{ 1 H} (126 MHz) NMR spectra of 13 in CDCl₃

1-(4-Hydroxy-3,5-dimethylbenzyl)naphthalen-2-ol (14) $^{1}\rm H$ (500 MHz) and $^{13}\rm C\{^1\rm H\}$ (126 MHz) NMR spectra of 14 in DMSO-d_6

1-(4-Methoxybenzyl)naphthalen-2-ol (15)

 1H (500 MHz) and $^{13}C\{^1H\}$ (126 MHz) NMR spectra of 15 in CDCl $_3$

2-(4-Hydroxy-3,5-dimethylbenzyl)-6-isopropyl-3-methylphenol (16)

 ^1H (500 MHz) and $^{13}\text{C}\{^1\text{H}\}$ (126 MHz) NMR spectra of 16 in CDCl_3

2,6-Dimethyl-4-(2,4,6-trimethoxybenzyl)phenol (17)

 ^1H (500 MHz) and $^{13}\text{C}\{^1\text{H}\}$ (126 MHz) NMR spectra of 17 in CDCl₃

5-Methoxy-3-(1-(1-methyl-1*H*-indol-3-yl)ethyl)-1*H*-indole (18)

 ^1H (400 MHz) and $^{13}\text{C}\{^1\text{H}\}$ (101 MHz) NMR spectra of 18 in CDCl3

5-Methoxy-3-(1-(1-methyl-1*H*-indol-3-yl)butyl)-1*H*-indole (19)

 ^1H (500 MHz) and $^{13}\text{C}\{^1\text{H}\}$ (126 MHz) NMR spectra of 19 in CDCl₃

2,6-Dimethyl-4-(1-(2,4,6-trimethoxyphenyl)butyl)phenol (20)

 ^1H (500 MHz) and $^{13}\text{C}\{^1\text{H}\}$ (126 MHz) NMR spectra of **20** in CDCl₃

2,6-Dimethyl-4-(2-phenyl-1-(2,4,6-trimethoxyphenyl)ethyl)phenol (21)

 1H (400 MHz) and $^{13}C\{^1H\}$ (126 MHz) NMR spectra of 21 in CDCl $_3$

2-Methyl-5-(phenyl(2,4,6-trimethoxyphenyl)methyl)furan (22)

 ^1H (400 MHz) and $^{13}\text{C}\{^1\text{H}\}$ (101 MHz) NMR spectra of 22 in CDCl_3

2,6-Dimethyl-4-(phenyl(2,4,5-trimethoxyphenyl)methyl)phenol (23)

 1H (500 MHz) and $^{13}C\{^1H\}$ (126 MHz) NMR spectra of ${\bf 23}$ in CDCl $_3$

4-Hydroxy-3-((4-hydroxy-3,5-dimethylphenyl)(phenyl)methyl)-2H-chromen-2-one (24) ¹H (500 MHz) and ¹³C{¹H} (126 MHz) NMR spectra of **24** in CDCl₃

4,4'-(Phenylmethylene)bis(2,6-dimethylphenol) (25)

 ^1H (400 MHz) and $^{13}\text{C}\{^1\text{H}\}$ (126 MHz) NMR spectra of **25** in CDCl₃

2,6-Dimethyl-4-(pyridin-4-yl(2,4,6-trimethoxyphenyl)methyl)phenol (26)

 1 H (500 MHz) and 13 C{ 1 H} (126 MHz) NMR spectra of **26** in CDCl₃

2,6-dimethyl-4-(pyridin-3-yl(2,4,6-trimethoxyphenyl)methyl)phenol (27)

 1H (500 MHz) and $^{13}C\{^1H\}$ (126 MHz) NMR spectra of 27 in CDCl₃

2,6-dimethyl-4-(pyridin-2-yl(2,4,6-trimethoxyphenyl)methyl)phenol (28)

 1 H (500 MHz) and 13 C{ 1 H} (126 MHz) NMR spectra of **28** in CDCl₃

2,6-Dimethyl-4-((4-nitrophenyl)(2,4,6-trimethoxyphenyl)methyl)phenol (29)

 ^1H (500 MHz) and $^{13}\text{C}\{^1\text{H}\}$ (101 MHz) NMR spectra of **29** in CDCl₃

$\label{eq:2-Methyl-5-((4-(trifluoromethyl)phenyl)(2,4,6-trimethoxyphenyl)methyl) fur an (30)$

 ^1H (400 MHz), $^{13}\text{C}\{^1\text{H}\}$ (101 MHz) and ^{19}F NMR spectra of **30** in CDCl₃

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220

$\label{eq:constraint} 4-((4-Hydroxy-3,5-dimethylphenyl)(2,4,6-trimethoxyphenyl)methyl) benzonitrile~(31)$

 1H (500 MHz) and $^{13}C\{^1H\}$ (101 MHz) spectra of $\boldsymbol{31}$ in CDCl $_3$

$\label{eq:2.1} 4-((4-Hydroxy-3,5-dimethylphenyl)(2,4,6-trimethoxyphenyl) methyl) benzaldehyde~(32)$

 1 H (500 MHz) and 13 C{ 1 H} (101 MHz) spectra of **32** in CDCl₃

4-((3,5-Dichlorophenyl)(2,4,6-trimethoxyphenyl)methyl)-2,6-dimethylphenol (34) ¹H (500 MHz) and ¹³C{¹H} (101 MHz) spectra of 34 in CDCl₃

2-((2,6-Dichlorophenyl)(2,4,6-trimethoxyphenyl)methyl)-5-methylfuran (35)

 ^1H (500 MHz) and $^{13}\text{C}\{^1\text{H}\}$ (101 MHz) spectra of 35 in CDCl₃

2, 6-Dimethyl-4-((perfluorophenyl)(2, 4, 6-trimethoxyphenyl) methyl) phenol~(36)

 1H (500 MHz) and $^{13}C\{^1H\}$ (126 MHz) spectra of $\bf 36$ in CDCl_3

2-Methyl-9-(2,4,6-trimethoxyphenyl)naphtho[2,3-b]furan (37)

 1H (500 MHz) and $^{13}C\{^1H\}$ (126 MHz) spectra of $\boldsymbol{37}$ in CDCl $_3$

4-(9H-fluoren-9-yl)-2,6-dimethylphenol (38)

 1 H (500 MHz) and 13 C{ 1 H} (126 MHz) spectra of **38** in CDCl₃

4-(2-Fluoro-9H-fluoren-9-yl)-2,6-dimethylphenol (39)

 1 H (400 MHz) and 19 F (471 MHz) spectra of **39** in CDCl₃

4-(2-Methoxy-9H-fluoren-9-yl)-2,6-dimethylphenol (40)

 1H (400 MHz) and $^{13}C\{^1H\}$ (126 MHz) spectra of 40 in CDCl_3

4-(11*H*-Benzo[a]fluoren-11-yl)-2,6-dimethylphenol (41)

 1 H (500 MHz) and 13 C{ 1 H} (126 MHz) spectra of **41** in CDCl₃

2-Methoxy-9-(2,4,6-trimethoxyphenyl)-9*H*-fluorene (42)

 1H (500 MHz) and $^{13}C\{^1H\}$ (126 MHz) spectra of 42 in DMSO-d_6

4-((4-Methoxyphenyl)(phenanthren-9-yl)methyl)phenol (43)

¹H (500 MHz) spectra of **43** in CDCl₃

2-(4-((4-Methoxyphenyl)(phenanthren-9-yl)methyl)phenoxy)-N,N-dimethylethan-1-amine (44) ¹H (500 MHz) and ¹³C (126 MHz) spectra of **44** in CDCl₃

2-Methyl-5-(phenyl(2,4,5-trimethoxyphenyl)methyl)furan (45)

 ^1H (500 MHz) and ^{13}C (126 MHz) spectra of 45 in CDCl_3

2-Methyl-5-((4-nitrophenyl)(2,4,5-trimethoxyphenyl)methyl)furan (46)

 ^1H (500 MHz) and ^{13}C (126 MHz) spectra of 46 in CDCl_3

$(1R,2S,5R)\-2\-isopropyl-5\-methylcyclohexyl\ 4\-(4\-hydroxy\-2\-oxo\-2H\-chromen\-3\-yl)(4\-hydroxy\-3,5\-dimethylphenyl)methyl) benzoate\ (47)$

 ^1H (500 MHz) and ^{13}C (126 MHz) spectra of 47 in CDCl₃

4-Allyl-2-methoxyphenyl 4-((2,4,5-trimethoxyphenyl)(2,4,6-trimethoxyphenyl)methyl)benzoate (48)

 ^1H (500 MHz) and ^{13}C (126 MHz) spectra of 48 in CDCl_3

11. Crystal data

2,6-Dimethyl-4-(2,4,6-trimethoxybenzyl)phenol (1, see Scheme 2, manuscript)

1
_

Compound number	1
CCDC number	CCDC 2190324
Empirical formula	C ₁₈ H ₂₂ O ₄
Formula weight	302.373
Temperature, K	273.15
Crystal system	monoclinic
Space group	<i>P2</i> _{1/n}
<i>a</i> , b, c Å	7.0243(6), 20.5740(16), 11.0931(9)
α, β, γ (°)	90, 91.591(4), 90
V (Å ³)	1602.5(2)

2,6-Dimethyl-4-((perfluorophenyl)(2,4,6-trimethoxyphenyl)methyl)phenol (36, see Scheme

2, manuscript)

36

Compound number	36
CCDC number	CCDC 2190321
Empirical formula	$C_{24}H_{20}O_4F_5$
Formula weight	467.40
Temperature, K	293.15
Crystal system	triclinic
Space group	P-1
<i>a</i> , b, c Å	8.3761(5), 8.4007(5), 16.0336(9)
α, β, γ (°)	98.767(2), 99.704(2), 91.221(2)
V (Å ³)	1097.79(11)

12. Calculation of Green Metrics^{6,7}

For compound 6 (when considering solvent)

Atom Economy = 100*{Molecular weight of the desired product}/ (Molecular weight of the starting materials)

Atom efficiency= {% yield of the desired product} *{% atom economy} / {100}

Reaction Mass efficiency= {Mass of the desired product}/ {Mass of all reactants} *100

E factor = {Total mass of waste}/ {mass of product} *100

Compoun	F. wt. of Starting	F. wt of	Amount of Starting	Amount	Amoun	% yield
d	Material	Product	Used	of	t of	
				product	Catalys	
				obtained	t used	
6	{30+162.1+168.2} =	342.3	5*(30)+5.5*(162.1	1.52g	47.5	89%
	360.3		+168.2)=1.97 g		mg	

Amount of solvent taken = 5 ml= (1.6*5) g = 8 g

Amount of solvent recovered = 4 ml= (1.6*4) g= **6.4 g**

Amount of solvent waste = (5-4) ml = 1 ml= (1.6*1) g = **1.6 g**

%Atom economy = 100*(342.3/360.3) = **95%**

%Atom efficiency = (89*95)/100 = **84.5%**

(Note: Since solvent and catalyst do not contribute to the mass of the product or the intermediate we have ignored the mass of the solvent and the catalyst in calculating the reaction mass efficiency)⁶

%Reaction mass efficiency = (Mass of the product/Total mass of the reagents) *100

= (1.52/1.97) *100 = **77.1%**

E factor calculation = {(Total mass of waste)/ (mass of product)} *100

= $[\{5^*(30) + 5.5^*(162.1+168.2) + 47.5+8000\}$ - $\{1523.2+87.1+84.1+6400\}/(1523.2)]$ =**1.26 kg** waste per 1 kg of product.

When solvent not considered

Com	Amount of	Amount	Waste =	E factor=Amount of	Atom	Reaction Mass Efficiency	
pou	Starting	of the	Amount of	waste/Amount of	economy=	= {Mass of the	
nd	Material	product	pdt -	product (solvent	{M.wt of the	product/Total mass of	
Nu	+5 mol%		Amount of	recovered hence	product/	the reagents} *100	
mbe	pTSA		starting	not considered as	M.wt of the	{solvent & catalyst do	
r			material	waste)	Starting	not contribute to the	
					material} *100	mass of the product or	
						the intermediate &	
---	---------------	-------	---------	-------------------------	---------------	-----------------------	--
						hence not considered}	
6	{0.5(30) +	152.3	49.1 mg	49.1/152.3= 0.32	{342.3/360.3}	{152.3/196.7} *100 =	
	0.55(162.1 +	mg			* 100	0.774 * 100	
	168.2) + 4.7}				= 95%	= 77.4%	
	mg =						
	201.4 mg						

Process Mass Intensity Calculation for compound 6:

Amount of Formaldehyde used = 150 mg (5 mmol)

Amount of 1,3,5-Trimethoxy benzene used = 925.1 mg (5.5 mmol)

Amount of 4-Hydroxy coumarin used = 891.55 mg (5.5 mmol)

% yield of the product = 89%

Solvent used:

1,1,1,3,3,3-Hexafluoroisopropanol = 5 ml (density 1.6 g/ml) = (1.6*5) g = 8000 mg

Catalyst used:

Para-toluene sulphonic acid monohydrate = 5 mol% = 47.5 mg

Amount of Product obtained = 1523 mg

Process Mass Intensity = (Mass of all materials used)/Mass of product obtained

Process Mass Intensity = (925.1+891.55+150+47.5+8000)/1523 = 10,014.15/1523 = 6.57 mg/mg of the product = 6.57 kg/kg of the product.

However, we have efficiently recovered 4 ml (out of 5 ml) of the used solvent 1,1,1,3,3,3-hexafluoroisopropanol.

So, when considering solvent recovery

Process Mass Intensity = (925.1+891.55+150+47.5+1600)/1523 =

2.37 mg/mg of the product =2.37 kg/kg of the product.

(Note: For the calculation of E factor, the amount of solvent as well as the silica used in column chromatography was not considered.)⁷

Comp	F.wt. of	F.wt. of	Amount of Starting	Amount	Amount	% yield
ound	Starting	Product	Used	of product	of	
	Material			obtained	Catalyst	
					used	
43	{206.2+108.1 +94.1} = 408.4	390.5	0.5(206.2) + 0.55(108.1+94.1) mg = 214.3 mg	148.3 mg	4.7 mg	76%

Calculation of Green Metrics for anti-breast cancer agent compound 43 (with solvent)

%Atom economy = 100*(390.5/408.4) = **95.6%**

%Atom efficiency = (76*95.6)/100 = **72.7%**

Note: Since solvent and catalyst do not contribute to the mass of the product or the intermediate we have ignored the mass of the solvent and the catalyst in calculating the reaction mass efficiency)⁶

% Reaction mass efficiency = (Mass of the product/Total mass of the reagents) *100

= (148.3/214.3) *100 = **69.2%**

E-factor calculation = {(Total mass of waste)/ (mass of product)} *100

 $= [\{(0.5*206.2) + 0.55(108.1+94.1) + 4.7 + (0.5*1.6*1000)\} - \{(148.3+13.2+10.1 + (0.4*1.6*1000)\}/148.3] =$ **1.4 kg waste per 1 kg of product.**

Process Mass Intensity Calculation for compound 43:

Amount of Anthraldehyde used = 103.1 mg (0.5 mmol)

Amount of Anisole used = 59.4 mg (0.55 mmol)

Amount of Phenol used = 51.7 mg (0.55 mmol)

yield of the product = 148.3 mg (76 %)

Solvent used:

1,1,1,3,3,3-Hexafluoroisopropanol = 0.5 ml (density 1.6 g/ml) = (1.6*0.5) g = 800 mg

Catalyst used:

Para-toluene sulphonic acid monohydrate = 5 mol% = 4.75 mg

Amount of Product obtained = 148.3 mg

Process Mass Intensity = (Mass of all materials used)/Mass of product obtained

Process Mass Intensity (when solvent recovered not considered) = (103.1+59.4+51.7+4.75+800)/148.3 = (1018.95/148.3) = 6.87 mg/mg of the product = 6.87 kg/kg of the product.

Note: For the calculation of E factor, the amount of solvent as well as the silica used in column chromatography was not considered.⁷

13. Previous synthetic routes comparison of anti-breast cancer agent (43)

14. References:

- 1. N. Vodnala, S. Singh and C. K Hazra, J. Org. Chem., 2022, 87, 10044–10053.
- 2. S. Singh, R. Mahato, P. Sharma, N. Yadav, N. Vodnala and C. K. Hazra, *Chem. -Eur. J.*, 2022, **28**, 10.1002/chem.202104545.
- 3. D. Frcaiu, A. Ghenciu and G. Miller, J. Catal., 1992, 134, 118–125.
- 4. W. Wang, X. Yang, R. Dai, Z. Yan, J. Wei, X. Dou, X. Qiu, H. Zhang, C. Wang, Y. Liu, S. Song and N. Jiao, *J. Am. Chem. Soc.*, 2022, **144**, 13415–13425.
- 5. R. H. Vekariya and J. Aubé, Org. Lett., 2016, 18, 3534–3537.
- 6. C. Jiménez-González, D. J. C. Constable and C. S. Ponder, *Chem. Soc. Rev.*, 2012, **41**, 1485-1498.
- 7. P. P. Sen, V. J. Roy and S. S. Roy, J. Org. Chem., 2022, 87, 9551-9564.