SUPPORTING INFORMATION for

Engineering carbonyl reductase for one-pot chemobiocatalytic

enantioselective synthesis of value-added N-containing chiral alcohol

from N-acetyl-D-glucosamine

Ya-Cheng Hao,^a Min-Hua Zong,^a Qi Chen,^{b*} Ning Li^{a*}

^a School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China

^b State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China

* Corresponding author.

Dr. Q. Chen, E-mail: <u>chenq@ecust.edu.cn</u>

Dr. N. Li, E-mail: lining@scut.edu.cn

Biological and chemical materials

NAG (97%), β-nicotinamide adenine dinucleotide (NADH, 98%), 2-acetylfuran (99%), 2acetylpyrazine (98%), 3-acetylpyridine (98%), acetophenone (98%), (R)-1-phenylethanol (98%), (R)-1-(4-methoxyphenyl)ethanol (95%), racemic 1-(4-chlorophenyl)ethanol (97%), racemic 1-(4bromophenyl)ethanol (98%), racemic 1-(4-methoxyphenyl)ethanol (95%) and ethyl (R)-2-hydroxy-4-phenylbutyrate (98%) were purchased from Macklin Biochemical Co., Ltd. (Shanghai, China). 4'-Chloroacetophenone (97%), 4'-bromoacetophenone (98%), racemic 1-phenylethanol (98%), 4'methoxyacetophenone (99%) and dimethyl sulfoxide (99%) were obtained from Aladdin Biochemical Technology Co., Ltd. (Shanghai, China). Ethyl 2-oxo-4-phenylbutyrate (95%) was obtained from Tokyo Chemical Industry Co., Ltd. (Shanghai, China). (R)-1-(2-Furyl)ethanol (95%) was obtained from Jizhi Biochemical Technology Co., Ltd. (Shanghai, China). Racemic 1-(3pyridyl)ethanol (98%) was obtained from Titan Technology Co., Ltd. (Shanghai, China). Racemic 1-(2-pyrazinyl)ethanol (95%) was obtained from Bide Pharmatech Technology Co., Ltd. (Shanghai, China). Ethyl (S)-2-hydroxy-4-phenylbutyrate (98%) was obtained from Haohong Biomedicine Technology Co., Ltd. (Shanghai, China). Racemic 1-(2-furyl)ethanol was synthesized from the reduction of 2-acetylfuran by NaBH₄.¹ To a solution of 2-acetylfuran (0.2 g) in ethanol (10 mL), NaBH₄ (0.04 g) was slowly added at 0 °C. The reaction mixture was stirred at room temperature for 4 h and the solid was removed via filtration. Upon solvent evaporation, racemic product was afforded. DMA was provided by Tianjin Fuyu Fine Chemical Co., Ltd. (Tianjin, China). D-Glucose was bought from Tianjin Damao Chemical Reagent Co., Ltd. (Tianjin, China). Glycine was purchased from Sangon Biotech Co., Ltd. (Shanghai, China). Calcium chloride and sodium bicarbonate were obtained from Guangzhou Chemical Reagent Factory (Shanghai, China). Other chemicals were from commercial sources and were of the highest purity available. The plasmids harboring *Sc*CR (GenBank accession number NC003888.1) was kindly donated by Prof. Gao-Wei Zheng of East China University of Science and Technology.

Site-Directed Mutagenesis

Site-directed mutagenesis was carried out by polymerase chain reaction (PCR) using mutagenic primers (Table S4) and plasmid pET28a-*Sc*CR as the template according to the manufacturer's instructions of Q5 High-Fidelity DNA polymerase. The PCR conditions were as following: 98 °C and 2 min, (98 °C and 10 s, 72 °C and 15 s, 72 °C and 3 min 20 s) × 25 cycles, 72 °C and 5 min, 16 °C and 30 min. Two μ L NEB CutSmart Buffer and 2 μ L Dpn I were added in 3 μ L PCR reaction mixture and the digestion was carried out at 37 °C for more than 4 h. After Dpn I digestion, the PCR products (1 μ L) was transformed into 100 μ L of *E. coli* BL21 (DE3)-competent cells, and the transformants verified by DNA sequencing were incubated for protein expression.

Enzyme Purification

The cells overexpressing the target enzyme were lysed by ultrasonication in an ice bath (350 w; 15 min, 3 second ON, 5 second OFF cycles), and the supernatant was collected by centrifugation (12 000 rpm, 20 min) at 4 °C. Upon centrifugation, the sample was loaded onto a HisTrap HP column (GE Healthcare, USA) and subsequently eluted with elution buffer (0.4 M imidazole, 0.1 M sodium phosphate, 0.5 M NaCl, pH 7.0) at a flow rate of 4 mL/min. The target protein fraction was desalted on a HiTrap Desalting column (GE Healthcare, USA) with desalting buffer (pH 7.0, 0.1 M sodium phosphate buffer). Protein concentration was measured by the Bradford assay.²

Enzyme Assay

The enzyme activity was determined spectrophotometrically by measuring the changes in NADH at 340 nm under pH 7 and 30 °C using a Shimadzu UV2550 spectrophotometer (Japan). The reaction was carried out in 0.4 mL phosphate buffer (0.1 M, pH 7) containing an appropriate amount of enzyme, 1 mM 3A5AF, and 0.2 mM NADH. One unit (U) was defined as the amount of enzyme that catalyzes the oxidation of 1 μ mol of NADH per minute under the above reaction conditions. The protein concentration was measured with Bradford method, using bovine serum albumin as the standard.

Molecular docking and molecular dynamics (MD) simulation

Substrate 3A5AF was docked into the crystal structure of the WT ScCR (PDB ID: 5H5X) using Autodock. Homology modelling was performed to generate the initial structure of variant M3 in complex with 3A5AF using crystal structure of the WT enzyme as the template.

To get the mechanistic insights into the increased catalytic activity upon mutation, molecular dynamics simulations were performed. The modelling structures of the WT enzyme and variant M3 in complex with 3A5AF were used as the starting structures for the MD simulation, respectively.

The protonation states of titratable residues were assigned on the basis of pKa values using H++.The force field parameter for each system was built using Tleap module in Amber20. The Amber ff14SB force field was employed for the protein residues and the force field parameters for 3A5AF were generated via antechamber package and Gaussian using B3LYP/6-31G* level of theory (Table S1). Each simulation system was solvated in a TIP3P water box and extended 10 Å from the protein surface. Na⁺ ions were added to neutralize the total charge of each system.

NAMD was used for running all simulations. The particle-mesh Ewald method was used to compute the long-range electrostatic interactions, and the van der Waals interactions were treated with a switching function for smoothly turned off. Each system was minimized for 20,000 steps and then heated gradually from 0 K to 300 K in the NVT ensemble. The NPT ensemble was applied for the followed equilibration and production simulations. Finally, trajectories from 0-100 ns were gathered for data analysis. The Molecular Mechanics-Poisson Boltzmann Surface Area (MM/PBSA) approach was used to estimate the substrate binding affinity.

Preparative-scale synthesis and characterization of (R)-3A5HEF

0.6 g NAG (452 mM), 0.6 g CaCl₂ and 0.6 g [Tyr]Cl were added into 2 mL DMA, and the dehydration reaction was performed at 160 °C for 10 min with stirring. Then, the reaction mixture was cooled, followed by 12-fold dilution using phosphate buffer (0.1 M, pH 7) and tuning pH to 7 by NaHCO₃. The final volume of reaction mixture was around 72 mL. Then, purified *Sc*CR M4 (0.8 mg/mL), NADH (0.2 mM), GDH CFE (0.05 mg/mL), D-glucose (40 mM) were supplemented and the enzymatic reaction was conducted at 30 °C and 150 r/min. After 48 h, the reaction mixture was boiled to inactivate enzymes, followed by filtering. The filtrate was subjected to extraction by ethyl acetate (72 mL) for 3 times. The organic phases were combined and evaporated, followed by silica column chromatography by petroleum ether/ethyl acetate (1:2, v/v; Rf = 0.2). 3A5HEF of 193 mg was obtained, which was characterized by NMR (Figure S8), and MS (Figure S9). HPLC (Figure S7) and NMR (Figure S8) analyses show the high purity of the obtained product. The specific rotation value of the obtained (*R*)-3A5HEF was dissolved in ethanol at the final concentration of around 1.9 mg/mL. The assay was performed at 589 nm and 25 °C in 1 dm polarimeter tube. The specific rotation of +6.9 was obtained, which is consistent with our previous results.³

Analytical methods

The reaction mixtures were analyzed on a Zorbax Eclipse XDB-C18 column (4.6 mm \times 250 mm, 5 μ m, Agilent, USA) by using a reversed phase HPLC (Waters, USA) equipped with a Waters 515 pump and a Waters 996 photodiode array detector. The detailed analysis conditions and the retention times were summarized in Table S3.

Product e.e. values were determined by HPLC/GC (Agilent, USA) using chiral columns. The detailed conditions were listed as follows. The products were extracted from the reaction mixtures with 400 μ L of ethyl acetate for determining e.e. values. The product absolute configurations were determined by comparing the retention times with those of the authentic standards and literature.

Figure S1. The results of ScCR docking with 3A5AF and NADH

Figure S2. The relative activities of the variants in the form of CFE.

Figure S3. The kinetic studies of ScCR and its variants: (A) effect of 3A5AF concentrations on the ScCR activity; (B) effect of NADH concentrations on the ScCR activity; (C) effect of 3A5AF concentrations on the M3 activity; (D) effect of NADH concentrations on the M3 activity; (E) effect of 3A5AF concentrations on the M4 activity; (F) effect of NADH concentrations on the M4 activity. Reaction conditions: the designated concentration of 3A5AF, 0.2 mM NADH (or the designated concentration of NADH and 1mM 3A5AF), 0.4 mL phosphate buffer (0.1 M, pH

7), appropriate amount of purified enzyme, 30 °C.

Figure S4. The root mean square deviation (RMSD) (a) and the root mean square fluctuation (RMSF) (b) of the WT enzyme and variant M3 in complex with 3A5AF.

(a) rarual charges								
Index	Name	Coordinate	Coordinate	Coordinate	Туре			Partial
		X	У	Z				charges
1	C1	-0.662	-0.719	0.014	сс	1	MOL	0.354479
2	C2	0.279	0.364	0.014	cc	1	MOL	-0.33328
3	C3	2.963	1.865	0.003	c3	1	MOL	-0.39645
4	C4	-4.309	0.225	-0.027	c3	1	MOL	-0.60954
5	C5	1.495	-0.217	0.001	cd	1	MOL	0.023855
6	H1	-2.536	-1.534	0.031	hn	1	MOL	0.377585
7	C6	0.078	-1.843	0.001	cd	1	MOL	-0.18052
8	C7	2.86	0.357	-0.006	с	1	MOL	0.69274
9	C8	-2.817	0.472	0.011	с	1	MOL	0.946671
10	01	-2.35	1.574	0.002	0	1	MOL	-0.63118
11	02	3.822	-0.349	-0.017	0	1	MOL	-0.5471
12	O3	1.383	-1.552	-0.007	os	1	MOL	-0.18062
13	N1	-2.06	-0.661	0.027	n	1	MOL	-0.77904
14	H2	0.047	1.404	0.022	ha	1	MOL	0.23434
15	H3	-0.181	-2.88	-0.004	h4	1	MOL	0.206524
16	H4	-4.817	1.123	0.294	hc	1	MOL	0.164419
17	Н5	-4.604	-0.605	0.606	hc	1	MOL	0.164419
18	H6	-4.611	0.001	-1.045	hc	1	MOL	0.164419
19	H7	4.007	2.142	-0.003	hc	1	MOL	0.10942
20	H8	2.485	2.276	0.886	hc	1	MOL	0.10942
21	H9	2.471	2.288	-0.867	hc	1	MOL	0.10942
	(b) Bond, angle and torsion parameters							

Table S1. Force field parameters for 3A5AF: (a) Partial charges (b) Bond, angle and torsion parameters.

DIHE

Туре	N_{path}	$V_n/2$	γ	n	
		(kcal/mol)	(degrees)		
cc-cd-os-cd	2	2.100	180.000	2.000	same as X -c2-os-X , penalty score=232.0
c -cd-os-cd	2	2.100	180.000	2.000	same as X -c2-os-X, penalty score=232.0
h4-cd-os-cd	2	2.100	180.000	2.000	same as X -c2-os-X, penalty score=232.0

MPROPER

Туре	$V_n/2$	γ	n	
	(kcal/mol)	(degree)		
cc-cd-cc-n	1.1	180.0	2.0	Using the default value
cc-cd-cc-ha	1.1	180.0	2.0	Same as X -X -ca-ha, penalty score= 38.9 (use general term))
c -cc-cd-os	1.1	180.0	2.0	Using the default value
cc-h4-cd-os	1.1	180.0	2.0	Same as X -X -ca-ha, penalty score= 67.2 (use general term))
c3-cd-c -o	10.5	180.0	2.0	Using general improper torsional angle X-X-c-o, penalty score= 6.0)
c3-n -c -o	10.5	180.0	2.0	Using general improper torsional angle X-X-c-o, penalty score= 6.0)
c -cc-n -hn	1.1	180.0	2.0	Using general improper torsional angle X- X- n-hn, penalty score= 6.0)

Table S2. Substrate binding energies of 3A5AF in the WT enzyme and variant M3 computed via MM-PBSA method.

Energy (kcal/mol)	WT	M3
$\Delta E_{ m vdW}$	-22.6 ± 2.2	-26.4 ± 3.3
$\Delta E_{ m elec}$	-1.1 ± 3.7	-10.1 ± 4.4
$\Delta E_{ m PB, elec}$	12.5 ± 3.4	24.7 ± 5.4
$\Delta E_{ m npolar}$	$\textbf{-2.3}\pm0.1$	-2.5 ± 0.1
$\Delta E_{ m disper}$	0 ± 0	0 ± 0
$\Delta G_{ ext{bind}}$	-13.4 ± 2.5	-14.4 ± 4.2

Figure S5. Molecular docking of ScCR (A) and M3 variant (B) with 3A5AF and NADH

As shown in Figure S5, the substrate binding free energy of the M3 variant is equal to that of the parent (-4.8 kcal/mol), suggesting the slight effect of the mutation of the two sites S167/P168 on the K_m value. It is in good agreement with the kinetic studies (Table 1). Based on the analysis of the substrate binding mode and hydride transfer from NADH, both the parent and engineered enzymes could produce the (*R*)-product. Nevertheless, the distance between C_{NADH} and the C atom present in the carbonyl group of the substrate was decreased from 4.7 Å to 4.0 Å upon mutation (Figure S5), allowing for easier hydride transfer between substrate and NADH and thus improving the reaction rate. It is also consistent with the kinetic results.

Chamical	Residual activity (%)			
Chemical	M3 variant	M4 variant		
CaCl ₂	88	95		

Table S3. Effect of Ca²⁺ on the stability of the variants

Conditions: The enzyme was incubated in 0.1 M, pH 7 phosphate buffer containing 40 mM $CaCl_2$ at 30 °C for 4 h, the residual activity of the enzyme was determined by the standard assay.

	Component	<i>E</i> factor contribution (kg waste per kg product)
Chemical dehydration	CaCl ₂	3.1
	IL	3.1
	DMA	27.4
	Humin, et al.	1.8
Enzymatic reduction	buffer salt	4.8
	NADH	0.05
	enzymes	0.3
	glucose	2.7
Purification	petroleum ether	1243.5
	ethyl acetate	4737.8
Sum		6024.7

Table S4. Estimation of the waste generated in the preparative-scale synthesis

Entry	Substrate	WT enzyme	M3 vai	riant	M4 va	ariant
	-	Specific	Specific	Fold	Specific	Fold
		activity	activity	change	activity	change
		(mU/mg)	(mU/mg)		(mU/mg)	
1		54826	46225	0.8	48351	0.9
2		747	1945	2.6	3267	4.4
3	° ()	207	1075	5.2	2003	9.7
4	CI	872	20450	23.5	35453	40.7
5	Br	1269	19312	15.2	20658	16.3
6	MeO	1298	939	0.7	1846	1.4
7		12601	29368	2.3	31432	2.5
8	€°~~~°	17	64	3.8	58	3.4
9	₹	43	242	5.6	413	9.6
10	HO	49	94	1.9	51	1.0
11		23	87	3.8	191	8.3
12	ſ_SO	32	156	4.8	162	5.0
13	O N	1172	3911	3.3	3659	3.1

Table S5. The activities of ScCR and its mutants toward various carbonyl compounds

Reaction conditions: 1 mM substrate, 0.2 mM NADH, appropriate amount of purified enzyme, 0.4 mL phosphate buffer (0.1 M, pH 7), 30 $^{\circ}C_{\circ}$ n.a., no activity.

Figure S6. Molecular docking of *Sc*CR (A) and variant M4 (B) with 4'-chloroacetophenone and NADH

Substrates	HPLC methods	Wavelength and retention time	
		Substrates	Products
1a	a	228 nm	210 nm
		11.1 min	7.7 min
1b	c	270 nm	214 nm
		8.7 min	7.9 min
1c	d	230 nm	210 nm
		13.1 min	9.4 min
1d	e	270 nm	265 nm
		16.2 min	9 min
1e	b	241 nm	210 nm
		6.1 min	4.7 min
1f	b	245 nm	222 nm
		9.7 min	7 min
1g	b	247 nm	222 nm
		10.5 min	7.5 min
1h	b	270 nm	224 nm
		6.1 min	4.7 min
1i	b	210 nm	210 nm
		13.3 min	8.3 min

Table S6. Detection wavelength and retention times of substrates and products

a: acetonitrile/0.41% (NH₄)₂SO₄ aqueous solution with pH 3.5 (2/8, v/v), 0.6 mL/mim

b: acetonitrile/0.02% phosphoric acid aqueous solution (6/4, v/v), 0.6 mL/min

c: acetonitrile /0.4% (NH₄)₂SO₄ aqueous solution with pH 3.5 (4/6, v/v), 0.5 mL/min

d: acetonitrile/20 mM, pH 7.5 phosphate buffer (containing 0.1% (v/v) triethylamine) (2/8, v/v), 0.6 mL/min

e: methanol/25 mM, pH 7 phosphate buffer (containing 0.1% (v/v) triethylamine) (1/9, v/v), 1 mL/min

Mutation site		Primer sequence (5'-3')
L207A	F	gctCTCAAGACCATGGACGAGGCCGCCTACAA
	R	TCCATGGTCTTGAGagcGGGGGGTGTCGATGAAGCC
G105V	F	AACAACGCCgtaATCGGCGGCCCCAGCGCCCC
	R	CCGATtacGGCGTTGTTGACGGCGAGGTCCAG
I158Y	F	AACGTCGCCTCCtatCTCGGCTCGGTCGGCTTC
	R	AGataGGAGGCGACGTTCACGATCGAGCCGCC
P200A	F	TgctGGCTTCATCGACACCCCCCTGCTCAAGA
	R	TGTCGATGAAGCCagcACCGACCGCGTTGATCCG
G105H	F	AACAACGCCcatATCGGCGGCCCCAGCGCCCC

Table S7. Primers for mutants

	R	CCGATatgGGCGTTGTTGACGGCGAGGTCCAG
F202I	F	TCCGGGCattATCGACACCCCCTGCTCAAGA
	R	TGTCGATaatGCCCGGACCGACCGCGTTGATC
L208R	F	CCCCTGagaAAGACCATGGACGAGGCCGCCTA
	R	ATGGTCTTtctCAGGGGGGGTGTCGATGAAGCC
I203W	F	TCCGGGCTTCtggGACACCCCCCTGCTCAAGA
	R	TGTCccaGAAGCCCGGACCGACCGCGTTGATC
L159P	F	TCCATCccaGGCTCGGTCGGCTTCGCCGGCTC
	R	ACCGAGCCtggGATGGAGGCGACGTTCACGAT
S167W	F	GGCtggCCCGCCTACGTCGCCGCCAAGCACGG
	R	ACGTAGGCGGGccaGCCGGCGAAGCCGACCGA
S167H	F	GGCcatCCCGCCTACGTCGCCGCCAAGCACGG
	R	ACGTAGGCGGGatgGCCGGCGAAGCCGACCGA
S167E	F	GGCgaaCCCGCCTACGTCGCCGCCAAGCACGG
	R	ACGTAGGCGGGttcGCCGGCGAAGCCGACCGA
S167T	F	GGCaccCCCGCCTACGTCGCCGCCAAGCACGG
	R	ACGTAGGCGGGggtGCCGGCGAAGCCGACCGA
S167V	F	GGCgtaCCCGCCTACGTCGCCGCCAAGCACGG
	R	ACGTAGGCGGGtacGCCGGCGAAGCCGACCGA
S167G	F	GGCggtCCCGCCTACGTCGCCGCCAAGCACGG
	R	ACGTAGGCGGGaccGCCGGCGAAGCCGACCGA
S167N	F	GGCaatCCCGCCTACGTCGCCGCCAAGCACGG
	R	ACGTAGGCGGGattGCCGGCGAAGCCGACCGA
S167I	F	GGCattCCCGCCTACGTCGCCGCCAAGCACGG
	R	ACGTAGGCGGGaatGCCGGCGAAGCCGACCGA
S167P	F	GGCccgCCCGCCTACGTCGCCGCCAAGCACGG
	R	ACGTAGGCGGGcggGCCGGCGAAGCCGACCGA
S167D	F	GGCgatCCCGCCTACGTCGCCGCCAAGCACGG
	R	ACGTAGGCGGGatcGCCGGCGAAGCCGACCGA
S167C	F	GGCtgtCCCGCCTACGTCGCCGCCAAGCACGG
	R	ACGTAGGCGGGacaGCCGGCGAAGCCGACCGA
S167F	F	GGCtttCCCGCCTACGTCGCCGCCAAGCACGG
	R	ACGTAGGCGGGaaaGCCGGCGAAGCCGACCGA
S167M	F	GGCatgCCCGCCTACGTCGCCGCCAAGCACGG
	R	ACGTAGGCGGGcatGCCGGCGAAGCCGACCGA
S167R	F	GGCagaCCCGCCTACGTCGCCGCCAAGCACGG
	R	ACGTAGGCGGGtctGCCGGCGAAGCCGACCGA
S167Q	F	GGCcagCCCGCCTACGTCGCCGCCAAGCACGG
	R	ACGTAGGCGGGctgGCCGGCGAAGCCGACCGA
S167L	F	GGCctgCCCGCCTACGTCGCCGCCAAGCACGG
	R	ACGTAGGCGGGcagGCCGGCGAAGCCGACCGA
S167K	F	GGCaaaCCCGCCTACGTCGCCGCCAAGCACGG
	R	ACGTAGGCGGGtttGCCGGCGAAGCCGACCGA
S167Y	F	GGCtatCCCGCCTACGTCGCCGCCAAGCACGG

	R	ACGTAGGCGGGataGCCGGCGAAGCCGACCGA
S167A	F	GGCgctCCCGCCTACGTCGCCGCCAAGCACGG
	R	ACGTAGGCGGGagcGCCGGCGAAGCCGACCGA
I158V	F	ACGTCGCCTCCgtaCTCGGCTCGGTCGGCTTC
	R	AGtacGGAGGCGACGTTCACGATCGAGCCGCC
S167F/P168S	F	TCGGTCGGCTTCGCCGGCTTCTCTGCCTACGTCGCC
	R	GGCGACGTAGGCAGAGAAGCCGGCGAAGCCGACCGA
S167Y/P168S	F	TCGGTCGGCTTCGCCGGCTACTCTGCCTACGTCGCC
	R	GGCGACGTAGGCAGAGTAGCCGGCGAAGCCGACCGA
I158V/S167F/P168S	F	CGGCttttcaGCCTACGTCGCCGCCAAGCACGG
	R	ACGTAGGCtgaaaaGCCGGCGAAGCCGACCGAG
I158V/S167Y/P168S	F	CGGCtattcaGCCTACGTCGCCGCCAAGCACGG
	R	ACGTAGGCtgaataGCCGGCGAAGCCGACCGAG

Figure S7. HPLC chromatogram of (R)-3A5HEF obtained in the preparative-scale synthesis

Figure S8. ¹H (A) and ¹³C NMR (B) spectra of (R)-3A5HEF obtained in the preparative-scale synthesis.

Figure S9. UPLC-MS spectra of (R)-3A5HEF (M, 169.07) obtained in the preparative-scale synthesis.

Determining product ee values

HPLC Conditions. Column: Chiralcel OJ-H, Daicel Chemical Industries, Ltd., Eluent: Hexanes/isopropanol (86/14); Flow rate: 0.7 mL/min; Detection: UV 210 nm.

HPLC Conditions: Column: Chiralcel OJ-H, Daicel Chemical Industries, Ltd., Eluent: Hexanes/isopropanol (98/2); Flow rate: 1.0 mL/min; Detection: UV 210 nm. (*R*)-**2b** = 15.0 min; (*S*)-**2b** = 13.9 min. The product absolute configurations were determined by comparing the retention times with those of the authentic standards.

HPLC Conditions: Column: Chiralcel OB-H, Daicel Chemical Industries, Ltd., Eluent: Hexanes/isopropanol (90/10); Flow rate: 1.0 mL/min; Detection: UV 254 nm. (*R*)-2c = 10.6 min; (*S*)-2c = 6.3 min. The product absolute configurations were determined by comparing the retention times with those of the authentic standards and literature.⁴

HPLC Conditions: Column: Chiralcel OB-H, Daicel Chemical Industries, Ltd., Eluent: Hexanes/isopropanol (92/8); Flow rate: 1.0 mL/min; Detection: UV 254 nm. (*R*)-2d = 7.6 min; (*S*)-2d = 6.6 min. The product absolute configurations were determined by comparing the retention times with those of the authentic standards and literature.⁴

GC conditions: Column: HP Chiral 10B, Agilent Technoligies, Co., Ltd. Temperature conditions: initial temperature 100 °C, 2 °C/min to 126 °C, holding 2 min; injector 250 °C, detector 250 °C; and 0.8 mL/min N₂ flow. The injection volume was 1.0 uL with a split ratio of 2:1. (*R*)-2e = 12.7 min; (*S*)-2e = 13.0 min. The product absolute configurations were determined by comparing the retention times with those of the authentic standards.

GC conditions: Column: HP Chiral 10B, Agilent Technoligies, Co., Ltd. Temperature conditions: initial temperature 130 °C, 2 °C/min to 150 °C; injector 250 °C, detector 250 °C; and 1.5 mL/min N₂ flow. The injection volume was 1.0 uL with a split ratio of 30:1. (*R*)-**2f** = 9.0 min; (*S*)-**2f** =9.2 min. The product absolute configurations were determined by comparing the retention times with those of the authentic standards and literature.⁵

GC conditions: Column: HP Chiral 10B, Agilent Technoligies, Co., Ltd. Temperature conditions: initial temperature 150 °C, holding 17 min; injector 250 °C, detector 250 °C; and 0.8 mL/min N₂ flow. The injection volume was 1.0 uL with a split ratio of 2:1. (*R*)-**2g** = 15.3 min; (*S*)-**2g** = 15.7 min. The product absolute configurations were determined by comparing the retention times with those of the authentic standards and literature.⁵

2.5

GC conditions: Column: HP Chiral 10B, Agilent Technoligies, Co., Ltd. Temperature conditions: initial temperature 110 °C, 2 °C/min to 150 °C, holding 4 min; injector 250 °C, detector 250 °C; and 0.8 mL/min N₂ flow. The injection volume was 1.0 uL with a split ratio of 2:1. (*R*)-**2h** = 21.4 min; (*S*)-**2h** = 21.6 min. The product absolute configurations were determined by comparing the retention times with those of the authentic standards.

17.5

20

22.5 min

7.5

5

10

12.5

15

GC conditions: Column: CP-Chiralsil-DEX-CB, Agilent Technoligies, Co., Ltd. Temperature conditions: initial temperature 140 °C, 2 °C/min to 170 °C, holding 1 min; injector 250 °C, detector 250 °C; and 2.5 mL/min N₂ flow. The injection volume was 1.0 uL with a split ratio of 2:1. (*R*)-2i = 13.4 min; (*S*)-2i = 13.6 min. The product absolute configurations were determined by comparing the retention times with those of the authentic standards.

References

- 1. L. C. Dias, S. B. Shimokomaki and R. T. Shiota, *Journal of the Brazilian Chemical Society*, 2005, **16**, 482-489.
- 2. M. M. Bradford, Anal. Biochem., 1976, 72, 248-254.
- 3. Y.-C. Hao, M.-H. Zong, Z.-L. Wang and N. Li, Bioresour. Bioprocess., 2021, 8, 80.
- M. Pal, G. Srivastava, L. S. Moon and R. S. Jolly, *Bioresource technology*, 2012, 118, 306-314.
- P. Wei, Z.-W. Guo, X.-L. Wu, S. Liang, X.-Y. Ou, P. Xu, M.-H. Zong, J.-G. Yang and W.-Y. Lou, *Molecular Catalysis*, 2019, 479, 110613.