SUPPORTING INFORMATION for

Engineering carbonyl reductase for one-pot chemobiocatalytic enantioselective synthesis of value-added \mathbf{N}-containing chiral alcohol from N -acetyl-D-glucosamine

Ya-Cheng Hao, ${ }^{a}$ Min-Hua Zong, ${ }^{\text {a }}$ Qi Chen, ${ }^{\text {b* }}$ Ning Lia*
${ }^{\text {a }}$ School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
${ }^{\mathrm{b}}$ State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China

* Corresponding author.

Dr. Q. Chen, E-mail: chenq@ecust.edu.cn
Dr. N. Li, E-mail: lining@scut.edu.cn

Biological and chemical materials

NAG (97\%), β-nicotinamide adenine dinucleotide (NADH, 98\%), 2-acetylfuran (99\%), 2acetylpyrazine (98%), 3-acetylpyridine (98%), acetophenone (98%), (R)-1-phenylethanol (98%), (R)-1-(4-methoxyphenyl)ethanol (95%), racemic 1-(4-chlorophenyl)ethanol (97\%), racemic 1-(4bromophenyl)ethanol (98%), racemic 1-(4-methoxyphenyl)ethanol (95%) and ethyl (R)-2-hydroxy-4-phenylbutyrate (98%) were purchased from Macklin Biochemical Co., Ltd. (Shanghai, China). 4^{\prime}-Chloroacetophenone (97%), 4'-bromoacetophenone (98%), racemic 1-phenylethanol (98%), 4'methoxyacetophenone (99%) and dimethyl sulfoxide (99%) were obtained from Aladdin Biochemical Technology Co., Ltd. (Shanghai, China). Ethyl 2-oxo-4-phenylbutyrate (95\%) was obtained from Tokyo Chemical Industry Co., Ltd. (Shanghai, China). (R)-1-(2-Furyl)ethanol (95\%) was obtained from Jizhi Biochemical Technology Co., Ltd. (Shanghai, China). Racemic 1-(3pyridyl)ethanol (98\%) was obtained from Titan Technology Co., Ltd. (Shanghai, China). Racemic 1-(2-pyrazinyl)ethanol (95%) was obtained from Bide Pharmatech Technology Co., Ltd. (Shanghai, China). Ethyl (S)-2-hydroxy-4-phenylbutyrate (98%) was obtained from Haohong Biomedicine Technology Co., Ltd. (Shanghai, China). Racemic 1-(2-furyl)ethanol was synthesized from the reduction of 2-acetylfuran by $\mathrm{NaBH}_{4} .^{.}$To a solution of 2-acetylfuran $(0.2 \mathrm{~g})$ in ethanol $(10 \mathrm{~mL})$, $\mathrm{NaBH}_{4}(0.04 \mathrm{~g})$ was slowly added at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 4 h and the solid was removed via filtration. Upon solvent evaporation, racemic product was afforded. DMA was provided by Tianjin Fuyu Fine Chemical Co., Ltd. (Tianjin, China). D-Glucose was bought from Tianjin Damao Chemical Reagent Co., Ltd. (Tianjin, China). Glycine was purchased from Sangon Biotech Co., Ltd. (Shanghai, China). Calcium chloride and sodium bicarbonate were obtained from Guangzhou Chemical Reagent Factory (Shanghai, China). Other
chemicals were from commercial sources and were of the highest purity available. The plasmids harboring $S c \mathrm{CR}$ (GenBank accession number NC003888.1) was kindly donated by Prof. Gao-Wei Zheng of East China University of Science and Technology.

Site-Directed Mutagenesis

Site-directed mutagenesis was carried out by polymerase chain reaction (PCR) using mutagenic primers (Table S4) and plasmid $\mathrm{pET} 28 \mathrm{a}-\mathrm{ScCR}$ as the template according to the manufacturer's instructions of Q5 High-Fidelity DNA polymerase. The PCR conditions were as following: $98{ }^{\circ} \mathrm{C}$ and 2 min , $\left(98^{\circ} \mathrm{C}\right.$ and $10 \mathrm{~s}, 72^{\circ} \mathrm{C}$ and $15 \mathrm{~s}, 72^{\circ} \mathrm{C}$ and 3 min 20 s$) \times 25$ cycles, $72{ }^{\circ} \mathrm{C}$ and 5 min , $16^{\circ} \mathrm{C}$ and 30 min . Two $\mu \mathrm{L}$ NEB CutSmart Buffer and $2 \mu \mathrm{~L}$ Dpn I were added in $3 \mu \mathrm{~L}$ PCR reaction mixture and the digestion was carried out at $37{ }^{\circ} \mathrm{C}$ for more than 4 h . After Dpn I digestion, the PCR products $(1 \mu \mathrm{~L})$ was transformed into $100 \mu \mathrm{~L}$ of E. coli BL21 (DE3)-competent cells, and the transformants verified by DNA sequencing were incubated for protein expression.

Enzyme Purification

The cells overexpressing the target enzyme were lysed by ultrasonication in an ice bath ($350 \mathrm{w} ; 15$ min, 3 second ON, 5 second OFF cycles), and the supernatant was collected by centrifugation (12 $000 \mathrm{rpm}, 20 \mathrm{~min}$) at $4^{\circ} \mathrm{C}$. Upon centrifugation, the sample was loaded onto a HisTrap HP column (GE Healthcare, USA) and subsequently eluted with elution buffer (0.4 M imidazole, 0.1 M sodium phosphate, $0.5 \mathrm{M} \mathrm{NaCl}, \mathrm{pH} 7.0$) at a flow rate of $4 \mathrm{~mL} / \mathrm{min}$. The target protein fraction was desalted on a HiTrap Desalting column (GE Healthcare, USA) with desalting buffer ($\mathrm{pH} 7.0,0.1 \mathrm{M}$ sodium phosphate buffer). Protein concentration was measured by the Bradford assay. ${ }^{2}$

Enzyme Assay

The enzyme activity was determined spectrophotometrically by measuring the changes in NADH at 340 nm under pH 7 and $30^{\circ} \mathrm{C}$ using a Shimadzu UV2550 spectrophotometer (Japan). The reaction was carried out in 0.4 mL phosphate buffer $(0.1 \mathrm{M}, \mathrm{pH} 7)$ containing an appropriate amount of enzyme, 1 mM 3 A 5 AF , and 0.2 mM NADH. One unit (U) was defined as the amount of enzyme that catalyzes the oxidation of $1 \mu \mathrm{~mol}$ of NADH per minute under the above reaction conditions. The protein concentration was measured with Bradford method, using bovine serum albumin as the standard.

Molecular docking and molecular dynamics (MD) simulation

Substrate 3A5AF was docked into the crystal structure of the WT ScCR (PDB ID: 5H5X) using Autodock. Homology modelling was performed to generate the initial structure of variant M3 in complex with 3A5AF using crystal structure of the WT enzyme as the template.
To get the mechanistic insights into the increased catalytic activity upon mutation, molecular dynamics simulations were performed. The modelling structures of the WT enzyme and variant M3 in complex with 3A5AF were used as the starting structures for the MD simulation, respectively. The protonation states of titratable residues were assigned on the basis of pKa values using $\mathrm{H}++$. The force field parameter for each system was built using Tleap module in Amber20. The Amber ff14SB force field was employed for the protein residues and the force field parameters for 3 A 5 AF were generated via antechamber package and Gaussian using B3LYP/6-31G* level of theory (Table S1). Each simulation system was solvated in a TIP3P water box and extended $10 \AA$ from the protein surface. Na^{+}ions were added to neutralize the total charge of each system.

NAMD was used for running all simulations. The particle-mesh Ewald method was used to compute the long-range electrostatic interactions, and the van der Waals interactions were treated with a switching function for smoothly turned off. Each system was minimized for 20,000 steps and then heated gradually from 0 K to 300 K in the NVT ensemble. The NPT ensemble was applied for the followed equilibration and production simulations. Finally, trajectories from 0-100 ns were gathered for data analysis. The Molecular Mechanics-Poisson Boltzmann Surface Area (MM/PBSA) approach was used to estimate the substrate binding affinity.

Preparative-scale synthesis and characterization of (R)-3A5HEF

0.6 g NAG (452 mM), $0.6 \mathrm{~g} \mathrm{CaCl}_{2}$ and $0.6 \mathrm{~g}[\mathrm{Tyr}] \mathrm{Cl}$ were added into 2 mL DMA, and the dehydration reaction was performed at $160{ }^{\circ} \mathrm{C}$ for 10 min with stirring. Then, the reaction mixture was cooled, followed by 12 -fold dilution using phosphate buffer $(0.1 \mathrm{M}, \mathrm{pH} 7)$ and tuning pH to 7 by NaHCO_{3}. The final volume of reaction mixture was around 72 mL . Then, purified Sc CR M4 (0.8 $\mathrm{mg} / \mathrm{mL})$, NADH (0.2 mM), GDH CFE ($0.05 \mathrm{mg} / \mathrm{mL}$), D-glucose (40 mM) were supplemented and the enzymatic reaction was conducted at $30^{\circ} \mathrm{C}$ and $150 \mathrm{r} / \mathrm{min}$. After 48 h , the reaction mixture was boiled to inactivate enzymes, followed by filtering. The filtrate was subjected to extraction by ethyl acetate (72 mL) for 3 times. The organic phases were combined and evaporated, followed by silica column chromatography by petroleum ether/ethyl acetate (1:2, v/v; $\mathrm{Rf}=0.2$). 3A5HEF of 193 mg was obtained, which was characterized by NMR (Figure S8), and MS (Figure S9). HPLC (Figure S7) and NMR (Figure S8) analyses show the high purity of the obtained product. The specific rotation value of the obtained (R)-3A5HEF was determined via an automatic polarimeter P810 (Hanon Instruments, Inc., China). (R)-3A5HEF was dissolved in ethanol at the final concentration of around $1.9 \mathrm{mg} / \mathrm{mL}$. The assay was performed at 589 nm and $25^{\circ} \mathrm{C}$ in 1 dm polarimeter tube. The specific rotation of +6.9 was obtained, which is consistent with our previous results. ${ }^{3}$

Analytical methods

The reaction mixtures were analyzed on a Zorbax Eclipse XDB-C18 column ($4.6 \mathrm{~mm} \times 250 \mathrm{~mm}, 5$ $\mu \mathrm{m}$, Agilent, USA) by using a reversed phase HPLC (Waters, USA) equipped with a Waters 515 pump and a Waters 996 photodiode array detector. The detailed analysis conditions and the retention times were summarized in Table S3.
Product e.e. values were determined by HPLC/GC (Agilent, USA) using chiral columns. The detailed conditions were listed as follows. The products were extracted from the reaction mixtures with $400 \mu \mathrm{~L}$ of ethyl acetate for determining e.e. values. The product absolute configurations were determined by comparing the retention times with those of the authentic standards and literature.

Figure S1. The results of $S c C R$ docking with 3A5AF and NADH

Figure S2. The relative activities of the variants in the form of CFE.

Figure S3. The kinetic studies of ScCR and its variants: (A) effect of 3A5AF concentrations on the ScCR activity; (B) effect of NADH concentrations on the ScCR activity; (C) effect of 3A5AF concentrations on the M3 activity; (D) effect of NADH concentrations on the M3 activity; (E) effect of 3A5AF concentrations on the M4 activity; (F) effect of NADH concentrations on the M4 activity. Reaction conditions: the designated concentration of 3A5AF, 0.2 mM NADH (or the designated concentration of NADH and 1 mM 3 A 5 AF), 0.4 mL phosphate buffer ($0.1 \mathrm{M}, \mathrm{pH}$
7), appropriate amount of purified enzyme, $30^{\circ} \mathrm{C}$.

Figure S4. The root mean square deviation (RMSD) (a) and the root mean square fluctuation (RMSF) (b) of the WT enzyme and variant M3 in complex with 3A5AF.

Table S1. Force field parameters for 3A5AF: (a) Partial charges (b) Bond, angle and torsion parameters.

(a) Partial charges

Index	Name	Coordinate \mathbf{x}	Coordinate \mathbf{y}	Coordinate \mathbf{z}	Type			Partial charges
1		C1	-0.662	-0.719	0.014	cc	1	MOL
2	C2	0.279	0.364	0.014	cc	1	MOL	-0.354479
3	C3	2.963	1.865	0.003	c3	1	MOL	-0.39645
4	C4	-4.309	0.225	-0.027	c3	1	MOL	-0.60954
5	C5	1.495	-0.217	0.001	cd	1	MOL	0.023855
6	H1	-2.536	-1.534	0.031	hn	1	MOL	0.377585
7	C6	0.078	-1.843	0.001	cd	1	MOL	-0.18052
8	C7	2.86	0.357	-0.006	c	1	MOL	0.69274
9	C8	-2.817	0.472	0.011	c	1	MOL	0.946671
10	O1	-2.35	1.574	0.002	o	1	MOL	-0.63118
11	O2	3.822	-0.349	-0.017	o	1	MOL	-0.5471
12	O3	1.383	-1.552	-0.007	os	1	MOL	-0.18062
13	N1	-2.06	-0.661	0.027	n	1	MOL	-0.77904
14	H2	0.047	1.404	0.022	ha	1	MOL	0.23434
15	H3	-0.181	-2.88	-0.004	h4	1	MOL	0.206524
16	H4	-4.817	1.123	0.294	hc	1	MOL	0.164419
17	H5	-4.604	-0.605	0.606	hc	1	MOL	0.164419
18	H6	-4.611	0.001	-1.045	hc	1	MOL	0.164419
19	H7	4.007	2.142	-0.003	hc	1	MOL	0.10942
20	H8	2.485	2.276	0.886	hc	1	MOL	0.10942
21	H9	2.471	2.288	-0.867	hc	1	MOL	0.10942

(b) Bond, angle and torsion parameters

DIHE

Table S2. Substrate binding energies of 3A5AF in the WT enzyme and variant M3 computed via MMPBSA method.

Energy (kcal/mol)	WT	M 3
$\Delta E_{\text {vdW }}$	-22.6 ± 2.2	-26.4 ± 3.3
$\Delta E_{\text {elec }}$	-1.1 ± 3.7	-10.1 ± 4.4
$\Delta E_{\mathrm{PB}, \text { elec }}$	12.5 ± 3.4	24.7 ± 5.4
$\Delta E_{\text {npolar }}$	-2.3 ± 0.1	-2.5 ± 0.1
$\Delta E_{\text {disper }}$	0 ± 0	0 ± 0
$\Delta G_{\text {bind }}$	-13.4 ± 2.5	-14.4 ± 4.2

Figure S5. Molecular docking of $S c \mathrm{CR}(\mathrm{A})$ and M3 variant (B) with 3A5AF and NADH

As shown in Figure S5, the substrate binding free energy of the M3 variant is equal to that of the parent $(-4.8 \mathrm{kcal} / \mathrm{mol})$, suggesting the slight effect of the mutation of the two sites S167/P168 on the K_{m} value. It is in good agreement with the kinetic studies (Table 1). Based on the analysis of the substrate binding mode and hydride transfer from NADH, both the parent and engineered enzymes could produce the (R)-product. Nevertheless, the distance between $\mathrm{C}_{\text {NADH }}$ and the C atom present in the carbonyl group of the substrate was decreased from $4.7 \AA$ to $4.0 \AA$ upon mutation (Figure S5), allowing for easier hydride transfer between substrate and NADH and thus improving the reaction rate. It is also consistent with the kinetic results.

Table S3. Effect of Ca^{2+} on the stability of the variants

Chemical	Residual activity (\%)	
	M3 variant	M4 variant
CaCl_{2}	88	95

Conditions: The enzyme was incubated in $0.1 \mathrm{M}, \mathrm{pH} 7$ phosphate buffer containing $40 \mathrm{mM} \mathrm{CaCl}_{2}$ at $30^{\circ} \mathrm{C}$ for 4 h , the residual activity of the enzyme was determined by the standard assay.

Table S4. Estimation of the waste generated in the preparative-scale synthesis

	Component	E factor contribution (kg waste per kg product)
Chemical dehydration	CaCl_{2}	3.1
	IL	3.1
	DMA	27.4
Enzymatic reduction	Humin, et al.	1.8
	buffer salt	4.8
	NADH	0.05
	enzymes	0.3
	glucose	2.7
Purification	petroleum ether	1243.5
	ethyl acetate	4737.8
Sum		6024.7

Table S5. The activities of $S c \mathrm{CR}$ and its mutants toward various carbonyl compounds

Entry	Substrate	WT enzymeSpecificactivity$(\mathrm{mU} / \mathrm{mg})$	M3 variant		M4 variant	
			Specific activity (mU/mg)	Fold change	Specific activity ($\mathrm{mU} / \mathrm{mg}$)	Fold change
1		54826	46225	0.8	48351	0.9
2		747	1945	2.6	3267	4.4
3		207	1075	5.2	2003	9.7
4		872	20450	23.5	35453	40.7
5		1269	19312	15.2	20658	16.3
6		1298	939	0.7	1846	1.4
7		12601	29368	2.3	31432	2.5
8		17	64	3.8	58	3.4
9		43	242	5.6	413	9.6
10		49	94	1.9	51	1.0
11		23	87	3.8	191	8.3
12		32	156	4.8	162	5.0
13		1172	3911	3.3	3659	3.1

14

15

16

17

18

Reaction conditions: 1 mM substrate, 0.2 mM NADH, appropriate amount of purified enzyme, 0.4 mL phosphate buffer ($0.1 \mathrm{M}, \mathrm{pH} 7$), $30^{\circ} \mathrm{C}$ 。n.a., no activity.

Figure S6. Molecular docking of $S c \mathrm{CR}$ (A) and variant M4 (B) with 4'-chloroacetophenone and
NADH

Table S6. Detection wavelength and retention times of substrates and products

Substrates	HPLC methods	Wavelength and retention time	
		Substrates	Products
12	a	228 nm	210 nm
		11.1 min	7.7 min
1b	c	270 nm	214 nm
		8.7 min	7.9 min
1c	d	230 nm	210 nm
		13.1 min	9.4 min
1d	e	270 nm	265 nm
		16.2 min	9 min
1e	b	241 nm	210 nm
		6.1 min	4.7 min
1f	b	245 nm	222 nm
		9.7 min	7 min
1 g	b	247 nm	222 nm
		10.5 min	7.5 min
1h	b	270 nm	224 nm
		6.1 min	4.7 min
1 i	b	210 nm	210 nm
		13.3 min	8.3 min

a: acetonitrile $/ 0.41 \%\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ aqueous solution with $\mathrm{pH} 3.5(2 / 8, \mathrm{v} / \mathrm{v}), 0.6 \mathrm{~mL} / \mathrm{mim}$
b : acetonitrile $/ 0.02 \%$ phosphoric acid aqueous solution $(6 / 4, \mathrm{v} / \mathrm{v}), 0.6 \mathrm{~mL} / \mathrm{min}$
c: acetonitrile $/ 0.4 \%\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ aqueous solution with $\mathrm{pH} 3.5(4 / 6, \mathrm{v} / \mathrm{v}), 0.5 \mathrm{~mL} / \mathrm{min}$
d : acetonitrile $/ 20 \mathrm{mM}, \mathrm{pH} 7.5$ phosphate buffer (containing $0.1 \%(\mathrm{v} / \mathrm{v})$ triethylamine) $(2 / 8, \mathrm{v} / \mathrm{v})$, $0.6 \mathrm{~mL} / \mathrm{min}$
e: methanol/25 mM, pH 7 phosphate buffer (containing $0.1 \%(\mathrm{v} / \mathrm{v})$ triethylamine) ($1 / 9, \mathrm{v} / \mathrm{v}$), 1 $\mathrm{mL} / \mathrm{min}$

Table S7. Primers for mutants

Mutation site	Primer sequence (5’-3’)	
L207A	F	gctCTCAAGACCATGGACGAGGCCGCCTACAA
	R	TCCATGGTCTTGAGagcGGGGGTGTCGATGAAGCC
G105V	F	AACAACGCCgtaATCGGCGGCCCCAGCGCCCC
	R	CCGATtacGGCGTTGTTGACGGCGAGGTCCAG
I158Y	F	AACGTCGCCTCCtatCTCGGCTCGGTCGGCTTC
	R	AGataGGAGGCGACGTTCACGATCGAGCCGCC
P200A	F	TgctGGCTTCATCGACACCCCCCTGCTCAAGA
	R	TGTCGATGAAGCCagcACCGACCGCGTTGATCCG
G105H	F	AACAACGCCcatATCGGCGGCCCCAGCGCCCC
		S11

	R	CCGATatgGGCGTTGTTGACGGCGAGGTCCAG
F202I	F	TCCGGGCattATCGACACCCCCCTGCTCAAGA
	R	TGTCGATaatGCCCGGACCGACCGCGTTGATC
L208R	F	CCCCTGagaAAGACCATGGACGAGGCCGCCTA
	R	ATGGTCTTtctCAGGGGGGTGTCGATGAAGCC
I203W	F	TCCGGGCTTCtggGACACCCCCCTGCTCAAGA
	R	TGTCccaGAAGCCCGGACCGACCGCGTTGATC
L159P	F	TCCATCccaGGCTCGGTCGGCTTCGCCGGCTC
	R	ACCGAGCCtggGATGGAGGCGACGTTCACGAT
S167W	F	GGCtggCCCGCCTACGTCGCCGCCAAGCACGG
	R	ACGTAGGCGGGccaGCCGGCGAAGCCGACCGA
S167H	F	GGCcatCCCGCCTACGTCGCCGCCAAGCACGG
	R	ACGTAGGCGGGatgGCCGGCGAAGCCGACCGA
S167E	F	GGCgaaCCCGCCTACGTCGCCGCCAAGCACGG
	R	ACGTAGGCGGGttcGCCGGCGAAGCCGACCGA
S167T	F	GGCaccCCCGCCTACGTCGCCGCCAAGCACGG
	R	ACGTAGGCGGGggtGCCGGCGAAGCCGACCGA
S167V	F	GGCgtaCCCGCCTACGTCGCCGCCAAGCACGG
	R	ACGTAGGCGGGtacGCCGGCGAAGCCGACCGA
S167G	F	GGCggtCCCGCCTACGTCGCCGCCAAGCACGG
	R	ACGTAGGCGGGaccGCCGGCGAAGCCGACCGA
S167N	F	GGCaatCCCGCCTACGTCGCCGCCAAGCACGG
	R	ACGTAGGCGGGattGCCGGCGAAGCCGACCGA
S167I	F	GGCattCCCGCCTACGTCGCCGCCAAGCACGG
	R	ACGTAGGCGGGaatGCCGGCGAAGCCGACCGA
S167P	F	GGCccgCCCGCCTACGTCGCCGCCAAGCACGG
	R	ACGTAGGCGGGcggGCCGGCGAAGCCGACCGA
S167D	F	GGCgatCCCGCCTACGTCGCCGCCAAGCACGG
	R	ACGTAGGCGGGatcGCCGGCGAAGCCGACCGA
S167C	F	GGCtgtCCCGCCTACGTCGCCGCCAAGCACGG
	R	ACGTAGGCGGGacaGCCGGCGAAGCCGACCGA
S167F	F	GGCtttCCCGCCTACGTCGCCGCCAAGCACGG
	R	ACGTAGGCGGGaaaGCCGGCGAAGCCGACCGA
S167M	F	GGCatgCCCGCCTACGTCGCCGCCAAGCACGG
	R	ACGTAGGCGGGcatGCCGGCGAAGCCGACCGA
S167R	F	GGCagaCCCGCCTACGTCGCCGCCAAGCACGG
	R	ACGTAGGCGGGtttGCCGGCGAAGCCGACCGA
S167Q	F	GGCcagCCCGCCTACGTCGCCGCCAAGCACGG
	R	ACGTAGGCGGGctgGCCGGCGAAGCCGACCGA
S167L	F	GGCctgCCCGCCTACGTCGCCGCCAAGCACGG
	R	ACGTAGGCGGGcagGCCGGCGAAGCCGACCGA
S167K	F	GGCaaaCCCGCCTACGTCGCCGCCAAGCACGG
	R	ACGTAGGCGGGtttGCCGGCGAAGCCGACCGA
S167Y	F	GGCtatCCCGCCTACGTCGCCGCCAAGCACGG

	R	ACGTAGGCGGGataGCCGGCGAAGCCGACCGA
S167A	F	GGCgctCCCGCCTACGTCGCCGCCAAGCACGG
	R	ACGTAGGCGGGagcGCCGGCGAAGCCGACCGA
I158V	F	ACGTCGCCTCCgtaCTCGGCTCGGTCGGCTTC
	R	AGtacGGAGGCGACGTTCACGATCGAGCCGCC
S167F/P168S	F	TCGGTCGGCTTCGCCGGCTTCTCTGCCTACGTCGCC
	R	GGCGACGTAGGCAGAGAAGCCGGCGAAGCCGACCGA
S167Y/P168S	F	TCGGTCGGCTTCGCCGGCTACTCTGCCTACGTCGCC
	R	GGCGACGTAGGCAGAGTAGCCGGCGAAGCCGACCGA
I158V/S167F/P168S	F	CGGCttttcaGCCTACGTCGCCGCCAAGCACGG
	R	ACGTAGGCtgaaaaGCCGGCGAAGCCGACCGAG
I158V/S167Y/P168S	F	CGGCtattcaGCCTACGTCGCCGCCAAGCACGG
	R	ACGTAGGCtgaataGCCGGCGAAGCCGACCGAG

Figure S7. HPLC chromatogram of (R)-3A5HEF obtained in the preparative-scale synthesis

Figure $\mathrm{S} 8 .{ }^{1} \mathrm{H}(\mathrm{A})$ and ${ }^{13} \mathrm{C}$ NMR (B) spectra of $(R)-3$ A5HEF obtained in the preparative-scale synthesis.

Figure S9. UPLC-MS spectra of (R)-3A5HEF (M, 169.07) obtained in the preparative-scale synthesis.

Determining product ee values

$$
(R)-\mathbf{2} \mathbf{a}
$$

HPLC Conditions. Column: Chiralcel OJ-H, Daicel Chemical Industries, Ltd., Eluent: Hexanes/isopropanol (86/14); Flow rate: $0.7 \mathrm{~mL} / \mathrm{min}$; Detection: UV 210 nm .

(R)-2b

HPLC Conditions: Column: Chiralcel OJ-H, Daicel Chemical Industries, Ltd., Eluent: Hexanes/isopropanol (98/2); Flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; Detection: UV $210 \mathrm{~nm} .(R)-\mathbf{2 b}=15.0 \mathrm{~min}$; $(S) \mathbf{- 2 b}=13.9 \mathrm{~min}$. The product absolute configurations were determined by comparing the retention times with those of the authentic standards.

(R)-2c

HPLC Conditions: Column: Chiralcel OB-H, Daicel Chemical Industries, Ltd., Eluent: Hexanes/isopropanol (90/10); Flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; Detection: UV $254 \mathrm{~nm} .(R)-\mathbf{2 c}=10.6 \mathrm{~min}$; $(S)-\mathbf{2 c}=6.3 \mathrm{~min}$. The product absolute configurations were determined by comparing the retention times with those of the authentic standards and literature. ${ }^{4}$

(R)-2d

HPLC Conditions: Column: Chiralcel OB-H, Daicel Chemical Industries, Ltd., Eluent: Hexanes/isopropanol (92/8); Flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; Detection: UV $254 \mathrm{~nm} .(R)-\mathbf{2 d}=7.6 \mathrm{~min}$; (S) $\mathbf{2 d}=6.6 \mathrm{~min}$. The product absolute configurations were determined by comparing the retention times with those of the authentic standards and literature. ${ }^{4}$

GC conditions: Column: HP Chiral 10B, Agilent Technoligies, Co., Ltd. Temperature conditions: initial temperature $100^{\circ} \mathrm{C}, 2^{\circ} \mathrm{C} / \mathrm{min}$ to $126^{\circ} \mathrm{C}$, holding 2 min ; injector $250^{\circ} \mathrm{C}$, detector $250^{\circ} \mathrm{C}$; and $0.8 \mathrm{~mL} / \mathrm{min} \mathrm{N}_{2}$ flow. The injection volume was 1.0 uL with a split ratio of 2:1. $(R)-\mathbf{2 e}=12.7 \mathrm{~min}$; $(S)-\mathbf{2 e}=13.0 \mathrm{~min}$. The product absolute configurations were determined by comparing the retention times with those of the authentic standards.

Chromatogram of the reaction mixture

GC conditions: Column: HP Chiral 10B, Agilent Technoligies, Co., Ltd. Temperature conditions: initial temperature $130^{\circ} \mathrm{C}, 2{ }^{\circ} \mathrm{C} / \mathrm{min}$ to $150^{\circ} \mathrm{C}$; injector $250^{\circ} \mathrm{C}$, detector $250^{\circ} \mathrm{C}$; and $1.5 \mathrm{~mL} / \mathrm{min}$ N_{2} flow. The injection volume was 1.0 uL with a split ratio of $30: 1 .(R)-\mathbf{2 f}=9.0 \mathrm{~min}$; $(S) \mathbf{- 2 f}=9.2$ \min. The product absolute configurations were determined by comparing the retention times with those of the authentic standards and literature. ${ }^{5}$

Chromatogram of chemical standards

Chromatogram of the reaction mixture

GC conditions: Column: HP Chiral 10B, Agilent Technoligies, Co., Ltd. Temperature conditions: initial temperature $150^{\circ} \mathrm{C}$, holding 17 min ; injector $250{ }^{\circ} \mathrm{C}$, detector $250^{\circ} \mathrm{C}$; and $0.8 \mathrm{~mL} / \mathrm{min} \mathrm{N}_{2}$ flow. The injection volume was 1.0 uL with a split ratio of $2: 1 .(R) \mathbf{- 2 g}=15.3 \mathrm{~min} ;(S) \mathbf{- 2 g}=15.7 \mathrm{~min}$. The product absolute configurations were determined by comparing the retention times with those of the authentic standards and literature. ${ }^{5}$

Chromatogram of the reaction mixture

(R)-2h

GC conditions: Column: HP Chiral 10B, Agilent Technoligies, Co., Ltd. Temperature conditions: initial temperature $110^{\circ} \mathrm{C}, 2^{\circ} \mathrm{C} / \mathrm{min}$ to $150^{\circ} \mathrm{C}$, holding 4 min ; injector $250^{\circ} \mathrm{C}$, detector $250^{\circ} \mathrm{C}$; and $0.8 \mathrm{~mL} / \mathrm{min} \mathrm{N}_{2}$ flow. The injection volume was 1.0 uL with a split ratio of $2: 1 .(R)-\mathbf{2 h}=21.4 \mathrm{~min}$; $(S) \mathbf{- 2 h}=21.6 \mathrm{~min}$. The product absolute configurations were determined by comparing the retention times with those of the authentic standards.

(S)-2i

GC conditions: Column: CP-Chiralsil-DEX-CB, Agilent Technoligies, Co., Ltd. Temperature conditions: initial temperature $140^{\circ} \mathrm{C}, 2^{\circ} \mathrm{C} / \mathrm{min}$ to $170^{\circ} \mathrm{C}$, holding 1 min ; injector $250^{\circ} \mathrm{C}$, detector $250^{\circ} \mathrm{C}$; and $2.5 \mathrm{~mL} / \mathrm{min} \mathrm{N}_{2}$ flow. The injection volume was 1.0 uL with a split ratio of 2:1. (R)-2i= $13.4 \mathrm{~min} ;(S)-\mathbf{2 i}=13.6 \mathrm{~min}$. The product absolute configurations were determined by comparing the retention times with those of the authentic standards.

Chromatogram of the reaction mixture

References

1. L. C. Dias, S. B. Shimokomaki and R. T. Shiota, Journal of the Brazilian Chemical Society, 2005, 16, 482-489.
2. M. M. Bradford, Anal. Biochem., 1976, 72, 248-254.
3. Y.-C. Hao, M.-H. Zong, Z.-L. Wang and N. Li, Bioresour. Bioprocess., 2021, 8, 80.
4. M. Pal, G. Srivastava, L. S. Moon and R. S. Jolly, Bioresource technology, 2012, 118, 306314.
5. P. Wei, Z.-W. Guo, X.-L. Wu, S. Liang, X.-Y. Ou, P. Xu, M.-H. Zong, J.-G. Yang and W.-Y. Lou, Molecular Catalysis, 2019, 479, 110613.
