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Experimental section

1. Physicochemical methods

The structures and crystal phases of the adsorbents were investigated using a Powder
X-ray diffractometer (XRD) Philips X’ pert MPD system for powder X-ray Diffractometer with
Cu-Ka radiation of 1.54056 A wavelength and a Ni filter. Fourier transform infrared (FT-IR)
spectra were recorded on a Perkin-Elmer GX-FTIR spectrophotometer with KBr pellets in the
wavelength range of 400-4000 cm'. UV/VIS spectra of melanin were acquired by the
dissolution of melanin in distilled water and scanned in the wavelength range of 200 to 800 nm
in a Thermo Scientific Evolution 201 UV-Vis spectrophotometer. The presence of free radicals
in purified melanin was detected by the MS-5000 benchtop ESR/EPR spectrometer
(Magnettech). For this, 2 mg melanin powder was added into a thin-walled glass tube and EPR
signals were recorded. The parameters used to acquire the spectra were as follows; modulation
amplitude: 0.16 mT; modulation frequency: 100 kHz; center field: 325 mT; sweep width: 25
mT; sweep time: 2 min; microwave frequency: 9.1 GHz; microwave power: 0.1 mW; at room
temperature. Raman spectroscopic analysis of the catalyst was done with 532 nm argon source
laser excitation with 10 mW power in the range of 1000-2000 cm™!. The surface microscopic
features of the sample were investigated using Field Emission Scanning Electron Microscopy
(FE-SEM, JSM-7100F) equipped with INCA Oxford Energy dispersive X-ray (EDX), having
silicon detector, and High-Resolution Transmission Electron Microscope (HRTEM, JEOL,
JEM 2100). The detailed elemental composition and chemical state at the surface of
synthesized materials were studied by an X-ray photoelectron spectrometer (XPS) instrument
Thermo Fisher Nexsa spectrometer equipped with Al-Ka as a monochromatic X-ray radiation
source and energy of 1486.6 eV. For the survey and narrow scan, the pass energy was set at
400 eV and 50 eV, respectively. Regarding the low-energy electrons and ions, dual-beam

charge neutralization has been used. The surface of the sample was kept at the right angle (90°)
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with the input lens axis. The standard spectra used were one of the individual core-level spectra
by charge correction Cls at 284.8 Ev. An Advantage software with a smart function for
background correction was used to fit the individual core-levels. A gas chromatograph
equipment GC-MS (Shimadzu, QP-2010) with an HP-5 column (30 m % 250 pum x 0.25 um)
using tetradecane as an internal standard was used to identify the obtained products after the

reaction.
2. Chemicals and Materials

Acetone was purchased from Qualigens (India). Microbial media components including L-
tyrosine, L-asparagine, and glycerol were purchased from HiMedia (India). y-Valerolactone
(99.0%) was purchased from Sigma-Aldrich. Ethylbenzene (99.0%), styrene ((>99%), 4-
methyl styrene (>99%), 1-choloro 4-ethylbenzene (98%), 4-bromostyrene (>95%),
diphenylmethane (99.0%), and cyclohexene (99.0%) were purchased from TCI Chemicals,
India. All these chemicals were of AR grade and were used as received without further

purification.
3. Isolation, identification and extraction of melanin
Isolation of endophytic microorganisms

The plant Salicornia brachiata Roxb. was collected from Victor port, Amreli district,
Gujarat on Feb. 26, 2018 (N 20° 58" 53.2", E071°33" 21.2"). These plant samples were brought
to the laboratory under cold conditions in a sterile Ziploc bag. Further processing of plant
samples was done according to a previously reported method.!> Plant samples were surface
sterilized for isolation of endophytic microorganisms and subjected to pre-treatment. The
surface sterilized plant samples (extract) were treated with 1.5 % v/v phenol and incubated at
28 °C for 15 min. Immediately after incubation dilutions of treated samples were made up to

10* and 100 uL of these dilutions were spread on ISP-4 agar supplemented with nystatin and
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cycloheximide (60 pg/mL each). The inoculated plates were incubated at 28 °C for 2 to 4

weeks, following which colonies appearing on ISP-# agar plates were picked up.

Screening for melanin production

The isolated colonies were screened for melanin production according to the reported
method.!* The isolates were inoculated into ISP-6 broth (Peptone Yeast Extract Iron media)
and ISP-7 (Tyrosine broth) incubated at 28 °C for 7-10 days. Production of colored pigment in
the culture medium was selected as positive for melanin production. Melanin pigment
production was quantified by measuring the O.D. of the supernatant of culture broth

spectrophotometrically at 400 nm.

Identification and phylogenetic analysis of microbial strain

The melanin-producing microorganism isolated from halophyte S. brachiata was identified by
16S rRNA analysis. The genomic DNA was isolated manually by the phenol: chloroform:
isoamyl alcohol method. Further genomic DNA sample was sent to Macrogen, Inc. is a South
Korean public for DNA purification and 16S rRNA sequencing. 16S rRNA gene was amplified
using universal primers (785F 5- GGATTAGATACCCTGGTA- 3’, 907R 5’
CCGTCAATTCMTTTRAGTTT 3’). The 16S rRNA gene sequence was identified by a
database search using the BLAST program (National Center for Biotechnology Information;

http://www.ncbi.nlm.nih.gov).

Medium for melanin production

For seed culture preparation, 8 mm diameter of well-grown culture was inoculated into 30 mL
tyrosine broth contained in a 250 mL conical flask and incubated at 28 °C for 8 days. After
incubation, the 3% seed culture was inoculated into 250 mL tyrosine broth contained in a 1L

conical flask, and incubated at at 28 °C for 8 days.

S5



Melanin extraction and purification

After 8 days of incubation, the fermented broth was harvested and centrifuged at 8000 rpm for
10 min at 25 °C to separate cell biomass. The supernatant was collected and an equal amount
of acetone was added and allowed to stand for 12 h. After 12 h, the mixture was centrifuged at
8000 rpm for 10 min at 25 °C to collect precipitate. The precipitated melanin was washed with

acetone and water to remove impurities and then dried by freeze drying for further use.

4. Synthesis of N-doped porous eumelanin-based biomaterial

In a typical synthesis, a 100 mL two-necked round-bottom flask was charged with 1 g
of eumelanin, cetyltrimethylammonium bromide (CTAB) (3 mmol), and 30 mL of
cyclohexane. The flask was stirred at 50 °C for 30 min or until the uniform dispersion of
eumelanin and CTAB with the dropwise addition of hydrogen peroxide (H,0,). Subsequently,
2 mL distilled water and 4.8 mL ammonium hydroxide were slowly added and stirred for 15
min. To this solution, 1 g tetracthyl orthosilicate (TEOS) was slowly added, and it was stirred
for an additional 2 h. The reaction was quenched by the addition of 40 mL isopropanol followed
by ultra-sonication for 5 min. The final SiO,-incorporated melanin was collected by simple
filtration using Whatman filter paper. Then, the collected solid material was dried at room
temperature and then pyrolyzed at 600 °C for 3 h at a heating rate of 5 °C/min under N,
atmosphere to get SiO,@N-doped carbon. Further, the resulted SiO,@N-doped carbon was
treated with 1 M hydrofluoric acid (HF) aqueous solution in a polypropylene bottle with a screw
cap for 24 h at room temperature to remove SiO,. Finally, the sample was washed with
deionized water and dried overnight at 70 °C. The obtained sample was labelled as porous N-

doped carbon (PNDC).
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5. Synthesis of N-doped porous material from chitosan

In a typical synthesis, a 100 mL two-necked round-bottom flask was charged with 1 g
of Chitosan, CTAB (3 mmol), and 30 mL of cyclohexane. The flask was stirred at 50 °C for 30
min or until the dissolution of chitosan and CTAB with the dropwise addition of H,O,.
Subsequently, 2 mL distilled water and 4.8 mL ammonium hydroxide were slowly added and
stirred for 15 min. To this solution, 1 g TEOS was slowly added and stirred for an additional 2
h. The reaction was quenched by adding 40 mL isopropanol followed by ultra-sonication for 5
min. The final SiO,-incorporated melanin was collected by simple filtration using Whatman
filter paper. Then, the collected solid material was dried at room temperature and then
pyrolyzed at 600 °C for 3 h at a heating rate of 5 °C/min under N, atmosphere to get SiO,@N-
doped carbon. Further, the resulting SiO,@N-doped carbon was treated with 1 M HF aqueous
solution in a polypropylene bottle with a screw cap for 24 h at room temperature to remove
S10,. Finally, the sample was washed with deionized water and dried overnight at 70 °C. The

obtained sample was labeled as PNDCC.

6. General procedure for the oxidation of alkenes derivatives in an oxygen atmosphere

In a 30 mL reaction tube fitted with a rubber septum, PNDC (10 wt% to substrate
catalyst), styrene derivatives (1 mmol), and 1 mL of 1,4-dioxane 0.1 mL tetradecane (internal
standard) were added. The mixture was heated at the desired temperature for 12 h with
continuous stirring. Progress of the reaction was monitored by withdrawing aliquots from the
reaction mixture at a definite time interval and analyzing through gas chromatography (GC).
After completion, the catalyst was recovered by filtration of the reaction mixture, washed twice
with methanol, dried in an oven at 80 °C overnight, and reused for the next cycle. The resulting

mixture was stirred at 80 °C under 1 atm of O,.
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7. General procedure for the oxidation of aromatic alkanes in oxygen atmosphere

In a 30 mL reaction tube fitted with a rubber septum, PNDC (10 wt% to substrate
catalyst), aromatic alkanes (1 mmol), and 1 mL of GVL 0.1 mL tetradecane (internal standard)
were added. The mixture was heated at the desired temperature for 24 h with continuous
stirring. Progress of the reaction was monitored by withdrawing aliquots from the reaction
mixture at a definite time interval and analyzing through gas chromatography (GC). After
completion, the catalyst was recovered by filtration of the reaction mixture, washed twice with
methanol, dried in an oven at 80 °C overnight, and reused for the next cycle. The resulting

mixture was stirred at 80 °C under 1 atm of O,.
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Table S1. XPS elemental composition of PNDC and PNDCC

Sample Cls N1s (atomic%) Ols
Code  (at.%) Graphitic-N  Pyridinic-N Pyrrolic-N  Quaternary-N  (at.%)

PNDC 889 1.7(20.56) 1.7(20.67)  1.7(45.06) 1.7(13.71)  7.44
PNDCC 8033  431(0)  431(22.53) 431(41.72) 431(35.74) 1536

Other trace element present on PNDC: Cl (0.67%) and Si (1.3%)
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Table S2. Metal-free selective oxidation of olefins and hydrocarbons

S.No | Catalyst | Substrate Reaction conditions Oxidant Conv.(%) | Sel. of | Ref.
and C=0
Additive (%)
1. g-C3N, Styrene Subs.;10 mmol, C.; 100 mg, | O,, NHPI 98 97 4
NHPI: 1 mmol, S.; ACN, 1
atm
2. NG Styrene Subs.;1 mL, C.; 10 mg, P.; 0, 58 49 5
balloon O, pressure at 100
°C for 10 h
3. NG Ethylbenzene | Subs.;2 mL, C.; 5 mg, P.; 0, 9 94 5
balloon O, pressure at 120
°C for24 h
4. g- Styrene Subs.; 0.8 mmol, C.; 20 mg, | TBHP NR NR 6
C:N,@G S.; 1 mL ACN, at 80 °C for
4h
5. PDNSC- | Ethylbenzene | Subs.; 1 mmol, Oxidant: TBHP >99 98.7 7
800 500 uL, C.; 20 mg, S.; 3
mL H,0, at 80 °C for 10 h
6. NGG-4- | Ethylbenzene | Subs.; 0.5 mmol, Oxidant: TBHP 99 99 8
900 500 uL, C.; 10 mg, S.; 6.5
mL H,0, at 80 °C for 12 h
7. N-HCSs | Ethylbenzene | Subs.; 0.5 mmol, Oxidant: TBHP 98.4 99.5 9
500 uL, C.; 10 mg, S.; 6.5
mL H,0, at 50 °C for 12 h
8. g-C5Ny- | Styrene Subs.; 4.37 mmol, Oxidant: | TBHP 81.2 12.9 10
NS 8.7 mmol, C.; 50 mg, S.; 5
mL ACN, at 80 °C for 12 h
9. NPS- Ethylbenzene | Subs.; 1 mmol, Oxidant: 1 TBHP 99 99.5 11
HCS mL, C.; 10 mg, S.; 2 mL
H,0, at 80 °C for 12 h
10. GS1000 | Ethylbenzene | Subs.; 1 mmol, Oxidant: 1 TBHP 85 98 12

mL, C.; 10 mg, S.; 1 mL
H,0, at 80 °C for 4 h

NHPI: N-hydroxyphthalimide, ACN: Acetonitrile, g-C3N4: Graphitic carbon nitride, (B,N)G: boron and

nitrogen-doped carbon, PDNSC-800: Polymer-derived N,S co-doped carbon catalysts, N-HCSs: N-doped
hollow carbon spheres, S.: Solvent, Subs.: Substrate, C.: Catalyst, Conv.: Conversion, Sel. of C=0:

Benzaldehyde for styrene and acetophenone for ethylbenzene, NR: Not reported
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—— Burkholderia cepacia (NR 113645)
— 7VPTS5-5V

Burkholderia aenigmatica (NR 174230)
—— Burkholderia contaminans (NR 104978)
—— Burkholderia lata (NR 10890)
—— Burkholderia arboris (NR 042634)

——— Burkholderia anthina (NR 104975)
Burkholderia metallica (NR 042636)

—— Burkholderia diffusa (NR 042633)
L Burkholderia ambifaria (NR 074687)

Burkholderia seminalis (NR 042635)
——— Burkholderia latens (NR 042632)
L\ Burkholderia vietnamiensis (NR 041720)

0.10

Figure S1. Neighbour-joining phylogenetic tree based on 16S rRNA gene sequences. Bar, 0.10

substitution per nucleotide position.
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Figure S2. UV/VIS spectrum of eumelanin.
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Figure S3. FT-IR spectrum of eumelanin.
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Figure S6. Raman spectrum of eumelanin.
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Figure S9. FESEM elemental composition of PNDC-Si0,; (a) and PNDC (b).
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