Supporting Information

EtOH-catalyzed Electrosynthesis of Imidazolidine-Fused
Sulfamidates from N-Sulfonyl Ketimines, N-Arylglycines and Formaldehyde
Yu-Han Lu ${ }^{\text {a,b }}$, Si-Yu Mu ${ }^{\text {a }}$, Hong-Xia $L i^{\text {a }}$, Jun Jiang ${ }^{b}$, Chao Wu ${ }^{\text {b }}$, Min-Hang Zhou ${ }^{\text {b }}$,Wen-Tao Ouyang ${ }^{\text {b }}$, Wei-Min $\mathrm{He}^{\mathrm{b}^{*}}$
${ }^{\text {a }}$ Hengyang Medical School, University of South China, Hengyang 421001, China${ }^{\mathrm{b}}$ School of Chemistry and Chemical Engineering, University of South China, Hengyang421001, China.
Table of Content

1. General Information S2
2. Experimental Section S2
3. Characterization Data of Products. S6
4. References S15
5. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR Spectra of Products. S16

1. General Information

Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification. The instrument for electrolysis is dual display potentiostat (DJS-292B) (made in China). Pt electrode is $15 \mathrm{~mm} \times 10 \mathrm{~mm} \times 0.1 \mathrm{~mm}$. The instrument for cyclic voltammetrys is CHI 660E potentiostat, and the conditions are as follow: a glassy carbon disk working electrode (diameter, 3 mm), Pt disk and $\mathrm{Ag} / \mathrm{AgCl}(0.1 \mathrm{M}$ in EtOH$)$ as counter and reference electrode. Thin layer chromatography (TLC) employed glass 0.25 mm silica gel plates. Flash chromatography columns were packed with 200-300 mesh silica gel. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 500 MHz , ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 126 MHz and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded at 471 MHz by using a Bruker Avance 500 spectrometer. Chemical shifts were calibrated using residual undeuterated solvent as an internal reference (${ }^{1} \mathrm{H}$ NMR: $\mathrm{CDCl}_{3} 7.26 \mathrm{ppm},{ }^{13} \mathrm{C}$ NMR: $\mathrm{CDCl}_{3} 77.0$ ppm), the chemical shifts (δ) were expressed in ppm and J values were given in Hz. HRMS were performed on a spectrometer operating on ESI-TOF.

2. Experimental Section

2.1 General Procedure for Compounds 4

In an undivided flask (25 mL) equipped with a stir bar, N-sulfonyl ketimines $\mathbf{1}(0.2 \mathrm{mmol}), N$ phenylglycines $2(0.2 \mathrm{mmol})$, formaldehyde $3(0.2 \mathrm{mmol}), \mathrm{Et}_{4} \mathrm{NI}(0.06 \mathrm{mmol})$ and $\mathrm{EtOH}(7 \mathrm{~mL})$ were added. The flask was equipped with platinum anode $(15 \mathrm{~mm} \times 10 \mathrm{~mm} \times 0.1 \mathrm{~mm})$ and platinum cathode $(15 \mathrm{~mm} \times 10 \mathrm{~mm} \times 0.1 \mathrm{~mm})$. The reaction mixture was stirred and electrolyzed at a constant current of 5 mA under $40^{\circ} \mathrm{C}$ for 3 h . After completion, the solvent was concentrated under reduced pressure, and the pure products 4 were obtained by flash chromatography on silica gel.

2.2 Large Scale Synthesis of 4aa

The large scale reaction was performed in an oven-dried $100-\mathrm{mL}$ three-necked flask equipped with a stir bar, the platinum $(15 \mathrm{~mm} \times 15 \mathrm{~mm} \times 0.2 \mathrm{~mm})$ as the anode and platinum $(15 \mathrm{~mm} \times 15$ $\mathrm{mm} \times 0.2 \mathrm{~mm}$) as cathode, N-sulfonyl ketimine 1a ($5 \mathrm{mmol}, 915 \mathrm{mg}$), N-phenylglycine 2a (5 mmol , $755 \mathrm{mg})$, formaldehyde $3(5 \mathrm{mmol}, 150 \mathrm{mg}), \mathrm{Et}_{4} \mathrm{NI}(1.5 \mathrm{mmol}, 385.5 \mathrm{mg})$ and $\mathrm{EtOH}(30 \mathrm{~mL})$ were added. The reaction mixture was stirred at $40^{\circ} \mathrm{C}$ at a constant current of 10 mA for 6 h . The resulting mixture was purified by column chromatography on silica gel (eluted with $\mathrm{EA} / \mathrm{PE}=1: 15$) to afford the desired product $4 \mathbf{a a}(81 \%, 1.22 \mathrm{~g})$.

2.3 Cyclic Voltammetry Experiments

Figure S1. Cyclic voltammogram experiments of TBAI $(0.1 \mathrm{M})$ as electrolyte in EtOH from -2.0 V to +2.0 V at room temperature

Figure S2. Cyclic voltammogram experiments of blank, 1a and 2a in an electrolyte of LiClO_{4} (0.1 M) in EtOH from -2.0 V to +2.0 V at room temperature

CV measurements were performed on a CHI 660 E potentiostat, and the conditions are as follow: a glassy carbon disk working electrode (diameter, 3 mm), Pt disk and $\mathrm{Ag} / \mathrm{AgCl}$ as counter and reference electrode. As shown in the Figure S1, TBAI $(0.1 \mathrm{M})$ as elctrolyte in 10 mL EtOH . And in the Figure S2, cyclic voltammograms of reactants and their mixtures in $0.1 \mathrm{M} \mathrm{LiClO}_{4}$ glassy carbon disk working electrode (diameter, 3 mm), Pt disk and $\mathrm{Ag} / \mathrm{AgCl}(0.1 \mathrm{M}$ in EtOH$)$ as counter and reference electrode at $100 \mathrm{mV} / \mathrm{s}$ scan rate: 1) $\mathrm{EtOH}(10 \mathrm{~mL})$ (green line), (2) 10 mM of $\mathbf{1 a}$ in EtOH (10 mL) (black line), (3) 10 mM of 2a in $\mathrm{EtOH}(10 \mathrm{~mL})$ (red line).

2.4 ON-OFF Experiment

Figure S3. ON-OFF Experiment
As shown in the Figure $S 3$, the reaction between 1a, 2a and $\mathbf{3}$ was conducted under the standard conditons on a 0.2 mmol scale. The mixture was subjected to sequential periods of stirring under electrolyzing under air at a constant current 5 mA with 10 mins and followed by stirring in the absence of electricity with 30 mins. Compared to the OFF periods, the reaction system was rapidly continued during the ON period. The mixture was then purifide with chromatography column on silica gel (EtOAc: petroleum ether $=10: 1$) to give the corresponding products 4aa.

(R)-2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (4aa): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{dd}, J=8.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.06(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.47(\mathrm{dd}, J=5.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.97$ $(\mathrm{d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 151.08,145.04,129.78,129.51,126.52,126.05,120.87,119.33,119.01,113.21,66.04,61.91$, 54.53.

(R)-7-methyl-2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (4ba) $)^{1}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.43(\mathrm{~d}, J=5.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.91(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ $\operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.50,144.04,130.13,128.45,127.37,124.28,122.92,119.56,118.23$, 112.17, 65.07, 60.92, 53.70, 14.42.

(R)-8-methyl-2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (4ca) ${ }^{1}:{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.42(\mathrm{t}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{dd}, J$ $=4.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(126$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.81,144.05,139.37,128.44,125.89,125.19,118.17,118.15,116.60,112.10$, $76.25,64.93,60.73,53.43,19.95$.

(R)-9-methyl-2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (4da) $)^{1}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~s}$, $1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.40(\mathrm{t}, J=3.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.93(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 147.90,144.03,134.87,129.36,128.45,125.71,119.27,118.19,117.63$, 112.13, 64.94, 60.85, 53.40, 19.83.

(R)-10-methyl-2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine dioxide (4ea) $)^{1}:{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.44(\mathrm{dd}, J=7.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.95$ $(\mathrm{d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{dd}, J=9.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=9.4,3.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 149.99, 144.19, 134.97, 128.47, 128.18, $127.42,119.78,118.86,116.06,113.00,66.02,59.92,53.83,18.40$.

(R)-9-(tert-butyl)-2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5dioxide (4fa) ${ }^{1}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{dt}, J=8.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{dd}, J=8.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $5.45(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{dd}, J=4.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{dd}, J=4.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{ddd}, J$ $=7.8,6.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=8.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 148.23,147.68,144.03,128.47,126.01,121.97,118.82,118.17,117.39,112.11,65.00$, 61.04, 53.59, 33.60, 30.28 .

(R)-9-methoxy-2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5dioxide (4ga) ${ }^{1}:{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.19(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, 6.81-6.75 (m, 2H), $6.65(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.35-5.30(\mathrm{~m}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J$ $=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.85(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 156.21,144.02,143.71,128.47,120.62,118.84,118.30,113.86,112.20,110.53,65.03$, 60.96, 54.78, 53.47.

(R)-9-(benzyloxy)-2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5dioxide (4ha): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.05(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.81-6.74(\mathrm{~m}, 2 \mathrm{H}), 6.56(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.32(\mathrm{dd}, J=$ $4.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.86(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-$ $3.82(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.55,150.65,144.02,134.93,128.46,127.72$, $127.28,126.42,126.14,118.16,112.66,112.06,111.62,103.68,69.43,64.90,60.51,53.40$. HRMS: calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}, 409.1217$, found 409.1220.

(R)-7-(diethylamino)-2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine

5,5-dioxide (3ia) ${ }^{1}:{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.82(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.49(\mathrm{dd}, J=8.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=2.6 \mathrm{~Hz}$,
$1 \mathrm{H}), 5.38-5.33(\mathrm{~m}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=4.0 \mathrm{~Hz}$, $2 \mathrm{H}), 3.31(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.14(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.05$, $147.71,144.18,128.39,125.93,117.73,111.83,108.47,104.69,99.28,64.73,60.45,53.25,43.43$, 11.36.

(R)-9-fluoro-2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (4ja) ${ }^{1}:{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J$ $=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.41(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J$ $=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 158.68(\mathrm{~d}, J=248.2 \mathrm{~Hz}), 145.95(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 143.85,128.52,121.49(\mathrm{~d}, J=6.3 \mathrm{~Hz}), 119.60$ $(\mathrm{d}, J=8.82 \mathrm{~Hz}), 118.59,115.85(\mathrm{~d}, J=22.68 \mathrm{~Hz}), 112.32,112.08(\mathrm{~d}, J=25.2 \mathrm{~Hz}), 65.09,60.79(\mathrm{~d}$, $J=12.6 \mathrm{~Hz}), 53.45 .{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-114.71$.

(R)-9-chloro-2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (4ka) $)^{1}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.88(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.44-5.39(\mathrm{~m}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=4.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.65(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.58$, $143.83,130.26,128.87,128.53,125.42,121.50,119.41,118.64,112.35,65.09,60.67,53.45$.

(R)-9-bromo-2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (4la) ${ }^{1}$: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31(\mathrm{dd}, J=8.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.15$
$(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.28$ $(\mathrm{t}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ $\operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.14,143.82,131.78,128.37,121.89,119.68,118.63,117.65,112.36$, 65.09, 60.56, 53.46.

(R)-9-iodo-2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (4ma) ${ }^{1}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.21$ $(\mathrm{m}, 2 \mathrm{H}), 6.84(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.37(\mathrm{t}, J=3.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl} 3) \delta 150.01,143.81,137.66,134.26,128.52,122.20,119.89,118.62,112.35,88.17$, 65.08, 60.34, 53.46.

(R)-2-phenyl-9-(trifluoromethyl)-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (4na) ${ }^{1}:{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.24$ $(\mathrm{m}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.49(\mathrm{~d}, J=5.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{t}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(126$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.43,152.38,143.75,128.56,127.44(\mathrm{q}, J=32.76 \mathrm{~Hz}), 125.98(\mathrm{q}, J=3.78 \mathrm{~Hz})$, $122.98(\mathrm{q}, J=3.78 \mathrm{~Hz}), 120.83,120.18,118.82,112.46,65.21,60.78,53.63 .{ }^{19} \mathrm{~F}$ NMR (471 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-62.31$.

carboxylate 5,5-dioxide (3oa) ${ }^{1}:{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{t}, J=$ $7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.11-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.84(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.46(\mathrm{~d}, J=5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-3.92(\mathrm{~m}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 164.44,153.28,143.82,130.07,128.51,127.44,126.92,120.02,118.60$, $118.19,112.34,65.09,60.79,53.56,51.50$.

(R)-7-allyl-2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (4pa) $)^{1}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{dd}, J=7.3$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-6.80(\mathrm{~m}, 1 \mathrm{H}), 6.60-6.54(\mathrm{~m}, 2 \mathrm{H}), 5.91(\mathrm{ddt}, J=16.9,10.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.42$ (dd, $J=5.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.13-5.03(\mathrm{~m}, 2 \mathrm{H}), 4.93(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.98-3.89(\mathrm{~m}, 2 \mathrm{H}), 3.48-3.34(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.09,144.04,133.98$, $129.39,129.33,128.45,124.52,123.49,119.80,118.27,115.88,112.20,65.13,60.94,53.75,32.29$.

(R)-7,9-di-tert-butyl-2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5dioxide (4qa) ${ }^{2}:{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H})$, $6.99(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.39(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.92(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{dd}, J=9.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=9.1$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.14,146.89,144.16$, $138.40,128.46,123.50,120.09,119.51,118.19,112.27,65.47,61.22,54.29,34.10,33.73,30.34$, 28.99.

(R)-2-phenyl-1,2,3,12b-tetrahydroimidazo[1,5-c]naphtho[2,3-e][1,2,3]oxathiazine (4ra) ${ }^{2}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{dd}, J=14.5,6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.17(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.94(\mathrm{dd}, J=7.2,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.05(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{dd}, J=9.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=$ $9.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 147.68,144.01,130.66,129.82,128.99,128.43$, $128.41,126.82,124.89,121.43,118.66,117.41,114.25,112.74,65.98,59.98,54.15$.

(R)-2-(o-tolyl)-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (4ab): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33(\mathrm{dt}, J=8.5,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{t}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.44(\mathrm{t}, J=$ $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 150.04,144.04,138.40,128.70,128.32,125.49,124.99$, 119.87, 119.19, 117.94, 112.96, 109.33, 65.02, 60.87, 53.51, 20.64. HRMS: calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}, 317.0955$, found 317.0953 .

(R)-2-(m-tolyl)-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (4ac): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33(\mathrm{dt}, J=8.5,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.45(\mathrm{~s}$, $1 \mathrm{H}), 4.95(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$

NMR (126 MHz, CDCl_{3}) $\delta 150.02,144.03,138.38,128.69,128.31,125.50,124.98,119.86,119.17$, $117.92,112.95,109.32,65.01,60.86,53.49,20.64$. HRMS: calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$, 317.0955, found 317.0956.

(R)-2-(p-tolyl)-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (4ad): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{ddd}, J=8.6,6.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J$ $=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.40(\mathrm{dd}, J=5.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.95$ $(\mathrm{d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.85(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 152.49,150.06,138.59,128.58,125.40,124.96,120.26,117.98,113.98,113.96,66.15$, 60.86, 54.86, 54.67. HRMS: calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}, 317.0955$, found 317.0963.

(R)-2-(4-methoxyphenyl)-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine dioxide (4ae): ${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}) $\delta 7.38-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J=9.0,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.64-6.58(\mathrm{~m}, 2 \mathrm{H}), 5.43(\mathrm{dd}, J=5.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{dd}$, $J=4.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{dd}, J=4.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.92-3.87(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(126$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.48,150.06,138.58,128.59,125.39,124.96,120.25,117.98,113.97,113.95$, 66.14, 60.86, 54.85, 54.67. HRMS: calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}, 333.0904$, found 333.0912 .

(R)-2-(4-(trifluoromethoxy)phenyl)-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-
c][1,2,3]oxathiazine 5,5-dioxide (4af): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33$ (ddd, $J=8.6,6.4,2.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $2 \mathrm{H}), 5.46(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-3.88(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 149.96,142.72,140.80,128.90,125.46,125.14,121.61,119.56(\mathrm{q}$, S13
$J=257.1 \mathrm{~Hz}), 119.53,118.03,112.64,64.94,60.88,53.63 .{ }^{19} \mathrm{~F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-58.46$. HRMS: calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}, 387.0621$, found 387.0620.

(R)-2-(4-(methylthio)phenyl)-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5dioxide (4ag): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.24(\mathrm{t}, J=5.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.04(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.44(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}$, $J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{dd}, J=7.1,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.99$, $142.50,129.56,128.80,126.37,125.47,125.06,119.71,118.00,112.86,65.00,60.84,53.61,17.24$. HRMS: calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}, 349.0676$, found 349.0678.

(R)-2-(4-fluorophenyl)-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine dioxide (4ah): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.54(\mathrm{dd}, J=9.1,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.44(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.94(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-3.86(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right)$ $\delta 155.82(\mathrm{~d}, J=238.1 \mathrm{~Hz}), 150.01,140.67(\mathrm{~d}, J=2.52 \mathrm{~Hz}), 128.76,125.23(\mathrm{~d}, J=44.1 \mathrm{~Hz}), 120.90$ $(\mathrm{d}, J=875.7 \mathrm{~Hz}), 119.87,118.03,115.04(\mathrm{~d}, J=22.6 \mathrm{~Hz}), 113.41(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 65.61,60.89$, 54.29. ${ }^{19} \mathrm{~F}$ NMR (471 MHz, CDCl_{3}) δ-125.08. HRMS: calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{FN}_{2} \mathrm{O}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$, 321.0704, found 321.0709 .
 $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.45(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}$, $J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{dd}, J=9.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 149.97,142.59,128.86,128.33,125.47,125.11,123.38,119.59$, 118.04, 113.28, 64.98, 60.85, 53.61. HRMS: calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}, 337.0408$, found 337.0409 .
 dioxide (4aj): ${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}) δ 7.29-7.22 (m, 3H), 7.19-7.13 (m, 2H), 6.99-6.94 (m, $1 \mathrm{H}), 6.35(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.37(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=4.7 \mathrm{~Hz}$, 1H), 3.89-3.79 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.94,142.97,131.19,128.88,125.49$, $125.13,119.54,118.02,113.70,110.49,64.84,60.82,53.47$. HRMS: calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{BrN}_{2} \mathrm{O}_{3} \mathrm{~S}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}, 380.9904$, found 380.9907.

4. Reference

1. Wang, X.; Shi, A.; Huang, X.-Q.; Chen, X.; Li, T.; Qu, L.; Yu, B., Org. Biomol. Chem., 2022, 20, 3798-3802.
2. Shi, A.; Sun, K.; Chen, X.; Qu, L.; Zhao, Y.; Yu, B., Org. Lett., 2022, 24, 299-303.

5. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR Spectra of Products

4aa ${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MHz)

4ca ${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MHz)

4da ${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MHz)

4ea ${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MHz)

4ga ${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MHz)

4ha ${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MHz)

1||畿濖| H|

4ia ${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MHz)

4ja ${ }^{1} \mathrm{H}$ NMR (500 MHz), ${ }^{13} \mathrm{C}$ NMR (126 MHz) and ${ }^{19} \mathrm{~F}$ NMR (471 MHz)

[^0]
(

4ka ${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MHz)

4la ${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MHz)

(-sis)

4ma ${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MHz)

	8タanaran	$\begin{aligned} & 55_{8}^{8} \\ & V \end{aligned}$	$\begin{aligned} & \text { sog } \\ & \text { V } \end{aligned}$		¢

4na ${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MHz) and ${ }^{19} \mathrm{~F}$ NMR (471 MHz)

$$
\begin{aligned}
& \text { タ8. }
\end{aligned}
$$

4oa ${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MHz)

 1 | 器

4pa ${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MHz)

4qa ${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MHz)

	\%\%	\%\% ${ }^{\text {\% }}$	
ヘV V V	V	$\stackrel{\rightharpoonup}{V}$	Y/V

4ra ${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MHz)

4ab ${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MH)

H 14
॥ 1

$\begin{array}{llllllllllll}210 & { }_{200}^{1} & { }_{190}^{1} & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & { }_{10}^{100} \\ \mathrm{fl}_{1(\mathrm{ppm})}^{1}\end{array}$

4ac ${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MH)

4ad ${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MH)

4ae ${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MH)

[^1](

(s)

[^2]

4ag ${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MH)

4ah ${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MH) and ${ }^{19} \mathrm{~F}(471 \mathrm{MHz})$

4ai ${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MH)

4aj ${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MH)

[^0]:

[^1]:

[^2]:

