Supporting Information

Preparation of York-Shell Urchin-Like Porous Co₃O₄/NiO@C Microspheres with Excellent Lithium Storage Performance

Linhe Yu,^a Qihao Yang,^a Guozhen Zhu,^{*a} Renchao Che^{*bc}

^a Institute of Advanced Materials, Jiangxi Normal University, Nanchang

330022, P. R. China

^b Laboratory of Advanced Materials, Shanghai Key Lab of Molecular

Catalysis and Innovative Materials, Fudan University, Shanghai 200438,

PR China

^c Department of Materials Science, Fudan University, Shanghai 200438,

PR China

E-mail: zhuguozhen@jxnu.edu.cn, rcche@fudan.edu.cn

Fig.S1 SEM images of (a) YSUCNO@C, and (b) CNO microspheres

Fig.S2 (a) Nitrogen adsorption/desorption curves of YSUCNO@C, YSUCNO, and CNO microspheres, (b) pore size distribution of YSUCNO@C microspheres

Fig.S3 HRTEM image of YSUCNO@C microspheres

Fig.S4 Raman curves of YSUCNO, YSUCNO@C, CNO microspheres

Fig.S5 Thermogravimetry curve of YSUCNO@C microspheres

Fig.S6 (a) Low magnification, (b) high magnification SEM images of YSUCNO@C microspheres after 1000 cycles at 5 C

microspheres

microspheres after 100 cycles

Table	S 1	The	rate	capability	comparison	of the	reported	cobalt	nickel
oxide	mate	erials	and	YSUCNO	@C microspl	neres			

Matariala	Specific capacity	Current density	Reference	
Materials	(mA h g⁻¹)	(mA g ⁻¹)		
Co ₃ O ₄ /NiO/C	421	4000	30	
Co ₃ O ₄ /NiO/NC	493	5000	37	
CoO/NiO/CoNi	267	2000	38	
YSUCNO@C	656	8040	This work	

Materials	Specific capacity	Current density	Reference	
Materials	(mA h g ⁻¹)	(mA g ⁻¹)		
TiO ₂ @C@MnO ₂	186	6700	40 <u>1</u>	
3DG/Fe ₂ O ₃ aerogel	534.2	5000	41 <u>2</u>	
CSHCo ₃ O ₄ @C microspheres	332.6	8900	4 <u>23</u>	
CoO nanoflakes	494	5000	43 <u>4</u>	
MnO-doped Fe₃O₄@C	430	800	44 <u>5</u>	
CoO@N-C nanocubes	309	1000	45 <u>6</u>	
YSUCNO@C	656	8040	This work	

Table	S2	The	TMO-based	cell	performance	comparison	between	
YSUCNO@C microspheres and other reported work at high rate. ⁴⁰¹⁻⁴⁵⁶								

References

1. J. Liao, D. Higgins, G. Lui, V. Chabot, X. Xiao and Z. Chen, <u>Multifunctional TiO₂-C/MnO₂ Core-Double-Shell Nanowire Arrays</u> <u>as High-Performance 3D Electrodes for Lithium Ion Batteries</u>, *Nano* <u>Lett.</u>, 2013, **13**, 5467–5473.

2. T. Jiang, F. Bu, X. Feng, I. Shakir, G. Hao and Y. Xu, Porous <u>Fe₂O₃ Nanoframeworks Encapsulated within Three-Dimensional</u> <u>Graphene as High-Performance Flexible Anode for Lithium-Ion</u> <u>Battery, ACS Nano, 2017, 11, 5140–5147.</u> 3. L. Yu, Q. Yang, G. Zhu and R. Che, Preparation and lithium storage of core-shell honeycomb-like Co₃O₄@C microspheres, *RSC Adv.*, 2022, **12**, 29818–29825.

4. M. Yao, Q. Zhang, F. Tang, Z. Xu, X. Zhou, Y. Li, Y. Zhang, C.

Yang, Q. Ru and L. Zhao, Nanosized CoO Loaded on Copper Foam

for High-Performance, Binder-Free Lithium-Ion Batteries, Nanomaterials, 2018, **8**, 183.

5. Z. He, K. Wang, S. Zhu, L.-a. Huang, M. Chen, J. Guo, S. Pei, H.

Shao and J. Wang, MOF-Derived Hierarchical MnO-Doped

<u>Fe₃O₄@C Composite Nanospheres with Enhanced Lithium Storage,</u>

ACS Appl. Mater. Interfaces, 2018, 10, 10974–10985.

6. K. Xie, P. Wu, Y. Zhou, Y. Ye, H. Wang, Y. Tang, Y. Zhou and T.

Lu, Nitrogen-Doped Carbon-Wrapped Porous Single-Crystalline

CoO Nanocubes for High-Performance Lithium Storage, ACS Appl.

Mater. Interfaces, 2014, 6, 10602–10607.