Supplementary information:
Perspective on Oligomeric Products from Lignin Depolymerization: Its Generation, Identification, and further Valorization
Yinglei Han ^{1,2} , Blake A. Simmons ^{1,3} , Seema Singh ^{1,2,*}
¹ Deconstruction Division, Joint Bioenergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA
² Department of Bioresource and Environmental Security, Sandia National Laboratories, 7011 East Avenue, Livermore, CA 94551, USA
³ Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
* correspondence: ssingh@lbl.gov
To make each reference in Fig.1,3, and 4 easily being tracked, detail information about each reference (condition, catalyst, paper title and yet Fig.1,3 and 4 is listed in table S1, S3, and S4, respectively.

Table S1 References used to build Fig.1

	Tab	le S1 (All references used t	o build Fig.	1)																
	ref# in nev Ref #	Ref for RCD	Monomer: Ol						Cat/Feed											
2014	39	8 Alkali lignin from wheat straw	23		gAlOx 300C	4h		10 bar H2			Depolymerization									
2015		17 bamboo Lignin	27.9		y Ni+: 270C	0.5h		/1bar N2			erization of Cellu									
2015		19 organosolv lignin	10.9		u3 160C	2h		(10 bar H2			moted hydrogeno				organosolv	lignin over	metal catal	ysts in wate	r	
2016		21 Hartwig, (miscanthus giganteus lignin)	15.1		Pd/C 200C	24h	dioxane				ation of Lignin Sa			d/C under						
2015		24 Van den Bosch, (Birch)	51.5 (C yie		lu/C 250C	6h		30bar H2			E Lignocellulose F									
2013		30 EtOH/Benzene treated Birch	54		Ni/C 200C	6h		1 bar Ar			polymerization (L									
2015		31 Poplar lignin	54		dZn10 225C	12h		34.5 bar H			stic biorefinery b									
2015		32 Birch lignin	32		Ni/C 200C	6h		2bar N2			polymerization o									
2016		34 miscanthus lignin	68		Ni/C 225C	12h		60 bar H2			ization of Miscar						10 . 1			
2016		39 beech lignin	51.4 43.5	48.6 10% 56.5 Pd/C	Ni/C 200C	5h 3h		/60bar H2			Productionof Na									
2016	46	40 Poplar lignin				3h		/20 bar H2			c Effects of Alcol							ood		
2015 2016		41 Birch lignin	43.8	56.2 Pd/C		3h 3h		30 bar H2			of bio-based sol				onation of i	oircu wood.				
2016	31 47	42 Corn stover lignin 43 Birch lignin	24.5 55		Ni/C 200C +Al(O 180C	3h 2h		/30 bar H2 /30 bar H2			Catalytic Fraction of Catalytic Fraction				o and callul	aco bu tond	om motal t	riflata and D	d/C aatalusi	
2017	48	44 Birch lignin	39.5		/C 200C	2n 6h		20 bar H2			erization of lignin						em metai t	rifiate and P	d/C catalysi	
			36			3h												alconomic francis	fine for all and	
2017 2017	50	45 Birch lignin 46 Birch lignin	37		12O3 250C +H3P(180C	3h		30 bar H2 /30 bar H2			ng lignin valorizati polymerization to						alyst pellets	auring lignir	1-TIFST Tractiona	tion
2017	51	47 Birch lignin	35.5		1b2O5 250C	20h		7 bar H2			Production of Ar					item				
2017	52	48 Birch lignin	33		x/CN 260C	4h		30 bar H2			Hydrogenolysis o			-						
2017	53	49 Poplar (26% lignin)	19.7	80.3 Ni/C		1h		30 bar H2			udies of Lignin Sc					etionetion	Decembed	in Flour Thre	uah Doostore	
2018		50 Birch	46.1		%)/gar 230C	3h		/30 bar N2			Conversion of Lig									trogen
2020		51 Eucalyptus lignin	44.1	38.9 Pd/C		4h		30 bar H2			gStructure–React				Wiorionicis	II IVICTIBIIO	ij vvater ivii	Acures with	at External riy	alogen
2020		52 lignin acid extraced from corn stover	35.53	54.03 NiFe		4h		(30 bar H2			production of ph				min					
2021		53 Corncob lignin	27.12	59.23 Ru/C		24h		10 bar H2			olysis of lignin to									
2022		54 Poplar	40		iO2 180C	6h					ogen transfer hyd									
2022		55 Cornstalk lignin	31.2		l dope 260C	4h		10 bar H2			olysis of cornsta									
D		Ref for RCD							, .	,	,									
2017	17	56 Japanese cedar	22.5	77 Bu4N	NOH.3 120C	43h	Bu4NOH.3	3 air, 1 bar	7mg/1	Tetrabuty	lammonium Hyd	roxide 30-Hy	drate as Nov	el Reaction						
2009	59	57 Cornstalk lignin	18.1	22.9 LaCo	O3 120C		H2O, NaO	15 bar O2		Activity a	nd Stability of Pe	rovskite-Typ	e Oxide LaCo	O3 Catalyst	in					
2010	60	58 Beech lignin	32.5	33.8 Mn(f	NO3)2 100C	24h	EMIM[CF3	3 17 bar O2	Air	Oxidative	Depolymerization	n of Lignin ir	lonic Liquids	· .						
2013	61	59 mixed hardwood lignin	29.5	70.5 CuSC	04 175C	1.5h	ionic liquic	d 25 Bar O2	1/100	Process o	of lignin oxidation	in an ionic li	quid coupled							
2018	62	60 corn stover lignin	49	51 CuO	175C		NaOH/H20	(5 bar O2		Revisiting	alkaline aerobic	lignin oxidat	ion							
2021	32	61 Poplar	15	56 Co-P	ANI-C 190C	12h	ACETONE	2.5 bar O2	2	Oxidative	Catalytic Fractio	nation of Lig	nocellulosic E	Biomass un	der					
2020	63	62 Red oak	10.5	89.5 No	250C	10min	perfluoro	d 20 bar O2		Non-cata	lytic oxidative de	polymerizati	on of lignin							
2013	64	63 Pyrolytic lignin	66	34 H5PI	Mo10\190C	1h	water/Me	(2 bar O2		Depolyme	erization of lignin	by catalytic	oxidation							
2021	65	64 Poplar lignin	28.1	45.9 PMo		2h	Methanol	9 bar O2			Catalytic Fraction									
2011	66	65 organosolv lignin	18	45	160C			1:3Lignin/3	30%H2O2	Selective	Production of Or	ganic Acids a	ind Depolyme	rization of	Lignin by Hy	drothermal				
2019		66 Poplar lignin	8.06	85.02 Phos		6h	Ethanol/W	V1:4Lignin/3			rison of Phenolic			n Different	Types of Lig	nin by Phos	photungsti	c Acid		
2022	68	67 alkaline lignin	40.97	59.03	100C	2h	IL	11.5 bar O		Enhanced	d oxidative depoly	merization (of lignin in							
2020		68 kraft liginin	10.47	71.83 FeCI	3 100C	4h	Methanol	10 bar O2			perature lignin de									
2020	69	69 kraft liginin	17	83 CuM							vet oxidation of I									
2016	70	70 akaline liginin	17.92	68.62 NaO		1h					solvent on hydro									
2021	71	71 alkaline lignin	30.5	69.5 CusS	O4 160C	45MIN	NaOH/H20	(5 bar O2		From Lign	nin to Valuable Ar	omatic Cher	nicals: Lignin	Depolymeri	zation and N	Monomer				

Table	S3 (All references used to build Fig.3)		Maldi	GPC		FT-ICR-MS	;															
			Main inter Range	Average	(N Range	Mw	DBE	Ref ii	now	Title												
OCD	[Ref 110] 100°C, NaOH, 10bar O2	100C, 2h,	NaOH, kraft Iginin, 10	bar O2,		282	7.53		110	Base-catal	yzed oxidativ	e depol	ymerizati	on of softv	vood kraf	t lignin						
	[Ref 7] 110°C, HCO2H/HCO2Na	110C, TEM	M 243-434 200-700						7	Valorizatio	n of Lignin: E	ffective	Convers	ion of Dep	olymerize	d Lignir	to Oil by Sin	ıple Chemi	ical Mod	difications	5	
	[Ref 33] 135°C, Cu(NO3)2, pyridine	135C, V(a	cac)3, Cu(NO3)2-3H20), 30	0				33	Copper- ar	d Vanadium-	Catalyz	ed Oxida	tive Cleava	ge of Lign	in using	g Dioxygen					
	[Ref 116] 150°C, CuSO4, H2O2	150C, 1.5	h,CuSO4, H2O2,Kraft l	ε 40	0				116	CuSO4/H2	O2-Catalyzed	d Lignin	Depolym	erization u	nder the I	rradiat	ion of Microv	vaves				
RCD	[Ref 117] 150°C, Ru/C, PL, 35 bar H2	150C, 3h,	Ru/C, pyrolytic lignin,	F 72	6	631			117	Functionali	ty and molec	cular we	ight distr	ibution of r	ed oak lig	nin bef	ore and afte	pyrolysis a	and hyd	rogenatio	n	
	[Ref 55] 180°C, Pd/C, 30 bar H2	180C, 4h,	Pd/C, MeOH, 3MPa H	2 51	5				55	Unlocking !	Structure-Rea	activity	Relations	ships for Ca	talytic Hy	droger	nolysis of Ligr	in into Phe	enolic M	onomers		
	[Ref 114] 180°C, isopropanol	180C, 0.5	h 300-500 300-500						114	Lignin depo	lymerization	to aro	matic mo	nomers an	d oligome	rs in						
	[Ref 113] 190°C, Pd/C, isopropanol	190C, 5h,	F 279-399 200-500	70	0 100-50000)a			113	Highly effic	ient catalytic	c transfe	er hydrog	enolysis fo	r the conv	ersion	of Kraft ligni	ı into bio-c	oil over l	heteropo	ly acids	
	[Ref 118] 220°C, Ni/MSN, 20 bar H2	220C, 5h,	Ni/MSN-Al, MeOH, 2N	/ 100	0				118	Immobilize	d Ni Clusters	in Mes	oporous /	Aluminum S	ilica Nano	osphere	es for Catalyt	ic Hydroge	nolysis (of Lignin		
	[Ref 119] 225°C, ethanol	225C, 1h,	€ 302-480						119	Hybrid mic	rowave-ultra	sound a	ssisted c	atalyst-free	edepolym	erizati	on of Kraft lig	nin to bio-	-oil			
	[Ref 120] 270°C, Pd/C, DES-EL	270C, 1h,	DES-EL, Pd/C, DES-ligr	ni 57	0				120	Characteri	zation and Ca	atalytic	Transfer I	Hydrogeno	lysis of De	ep Eut	ectic Solvent	Extracted :	Sorghun	n Lignin t	o Phenolic	Compounds
	[Ref 109] 300°C, Cu/Cu/ZnAlOx,	300C, 8h,	Cu/CuZnAlOx, lignin o	il		340	6.5			Production	of oxygen-co	ontainir	ng fuels vi	a supercrit	ical metha	anol hy	drodeoxygen	ation of lig	gnin bio-	oil over 0	Cu/CuZnAl0	0x catalyst
	[Ref 9] 300°C, Ni/HZSM-5	300C, 4h,	↑320-379 300-700						9	Catalytic d	epolymerizat	ion of c	rganosol	v lignin to p	ohenolic n	nonom	ers and low r	nolecular v	weight o	ligomers		
	[Ref 121] 360°C, SA-Cu/CuMgAlOx,	360C, 8h	272-452 200-900	43	3 10-2000Da	1			121	Production	of Jet Fuel P	recurso	rs from V	Vaste Kraft	Lignin wit	th a Co	mplex Coppe	r Acid Cata	alyst			
Pyrolysis	[Ref 111] 500°C, 10 min, 0.1g/min	500C, resi	idence time 10min, 0.1	g/min lign	in	311	7.54			An insight i	nto the OPAH	Hs and S	PAHs for	mation me	chanisms	during	alkaline lignir	pyrolysis a	at differ	ent temp	eratures	
	[Ref 122] 500°C, 5 ton/h, precipitation	500C,5to	h, pine wood, water	€ 69	0		below trime	rs=100-45	122	In-depth st	ructural char	acteriza	ation of t	ne lignin fra	ction of a	pine-o	derived pyroly	sis oil				
	[Ref 123] 500°C, straw, precipitation	500C, rice	straw, water precipit	a 99	8					Characteri	zation of pyro	olytic lig	gnin and i	nsight into	its format	ion me	chanisms usi	ng novel te	echnique	s and DF	T method	
	[Ref 124] 550°C, red oak, 6kg/h	550C, red	pak, 6kg/h	83	1	668				The effect	of pyrolysis t	empera	iture on	ecovery of	f bio-oil as	s distin	ctive stage fr	actions				
	[Ref 98] 600°C, 10min, zeolites	600C, 10r	nin, zeolites, kraft lign	r 32	0					One step tl	nermal conve	ersion o	f lignin to	the gasolir	ne range li	iquid						

Table S4 References used to build Fig.4

Table S4 (All references used	to build Fig.4)											
	Title											
Ref 133(OCF)	133 Depolym	rization of Lignin to Aron	natics by Selective	ly Oxidizing Cle	eavage of C-	C and C-O Bond	s Using CuCl2	/Polybenzo	xazine Cat	alysts at Ro	om Temper	ature
Ref 65 (OCF)	65 Oxidative	Catalytic Fractionation a	nd Depolymerizat	ion of Lignin in	a One-Pot Si	ingle-Catalyst S	stem					
Ref 33(OCF)	33 Copper- a	nd Vanadium-Catalyzed (Oxidative Cleavag	e of Lignin usin	g Dioxygen							
Ref 97(RCF)	97 Catalytic	iorefining of Plant Bioma	ass to Non-Pyroly	tic Lignin Bio-C	il and Carbol	hydrates throug	n Hydrogen T	ransfer Rea	ctions			
Ref 118 (RCF)	118 Immobili	ed Ni Clusters in Mesopo	rous Aluminum Sil	ica Nanospher	es for Cataly	tic Hydrogenoly	sis of Lignin					
Ref 134 (RCF)	134 Tungsten	pased catalysts for lignin	depolymerization	: the role of tu	ngsten specie	es in						
Ref 117 (Pyrolysis)	117 Functiona	ity and molecular weight	distribution of re	d oak lignin be	fore and afte	er pyrolysis and	nydrogenatio	n				