

Figure S1. Ishikawa Shikawa diagram of uncertainty sources.

Table S1. Calculated t-values and s-values for the comparison between the analytical results obtained by hTISIS-ICP-MSMS analysis and by the ICP-OES reference method. Values of t lower than the critical t-value for 10 degrees of freedom and 99%-confidence level are highlighted in bold.

Nuclide		G8	D2	PO3	VO4	VO12
²⁴ Mg	t	0.15			4.95	3.01
	s	370			130	460
²⁷ AI	t				27	1.1
	S				680	230
²⁸ Si	t			2.6	0.3	0.8
	S			1.7	280	2.4
4000	t				2.6	1.1
Cu	S				780	910
52 C r	t			3.2		
° Cr	S			19		
551.40	t		0.16		0.3	0.06
³³ IVIII	S		12		47	79
⁵⁶ Fe	t	1.3	0.09		1.9	3.5
	S	27	52		1000	820
¹¹⁸ Sn	t				2.9	
	S				200	

J. Name., 2013, 00, 1-3 | 1

Table S2. Procedural limits of quantification (μg Kg ⁻¹), pLOQ,	for the different nuclides determined and samples analyzed.
---	---

Nuclide	Oils	Light petroleum cuts	VO2*
⁷ Li	3	0.8	15
⁰Be	1.5	0.4	8
²³ Na	150	40	800
²⁴ Mg	140	40	700
²⁷ AI	15	4	70
²⁸ Si	400	100	2,000
³² S	200	50	1,000
³⁹ K	50	11	200
⁴⁰ Ca	150	40	800
⁴⁷ Ti	12	3	60
⁵¹ V	1.8	0.4	9
⁵² Cr	6	1.4	30
⁵⁵ Mn	0.5	0.12	3
⁵⁶ Fe	5	1.1	20
⁶⁰ Ni	0.4	0.09	1.8
⁶³ Cu	6	1.6	30
⁶⁶ Zn	400	90	2,000
⁹⁵ Mo	4	1.1	20
¹⁰⁷ Ag	0.7	0.18	4
¹¹¹ Cd	3	0.7	14
¹¹⁸ Sn	4	1.1	20
¹²¹ Sb	2	0.5	10
¹³⁸ Ba	5	1.2	20
²⁰⁸ Pb	4	0.9	19

* Dilution factor: 1:100 (sample:xylene, w/w).