Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is © The Royal Society of Chemistry 2022

Supplemental Figures

Supplemental Figure 1

Supplemental Figure 1: Pictures of the horizontal SCGD experimental setup. **A**. Side on view with plasma off. Original glass holder for rectangular capillary used here. **B**. Side on view with plasma off with lens in place for experiments. **C**. Side on view with plasma on. **D**. Viewed from above, plasma on.

Supplemental Figure 2: High speed videos. A) 5000fps, 3mm gap, 3mL/min, 80mA, 0.1M HNO₃ only. B) 5000fps, 3mm gap, 3mL/min, 80mA, 10mg/L Tl. C) C) 1000fps, 3mm gap, 3mL/min, 80mA, 0.1M HNO₃ only. A) 1000f

Supplemental Figure 3: Pictures of the SCGD studying several elements; 0.1M HNO₃, Y, Tl, In, Li

Supplemental Figure 4

Supplemental Figure 4: Spectra of equal concentrations of various elements analyzed with the RC and the SC. In each spectrum, the element being analyzed was the same concentration. Acquisition settings and plasma settings were exactly the same. The only change in conditions is a solution flow rate of 2.5mL/min for the RC and 3.0mL/min for the SC. A. 2mg/L Au and 2mg/L Cd, B. 24mg/L Mg, C. 0.1mg/L Ag, D. 8mg/L Sr, E. 1.0mg/L Tl, F. 0.1mg/L Na, G. 1.0mg/L Li, H. 0.5mg/L K, I. 0.8mg/L Cs.

Supplemental Figure 5 (pictures)

Supplemental Figure 5: Pictures of the plasma sampling 0.1M HNO₃ at 3.0mL/min with the medium capillary at different applied currents. 3mm discharge gap in each scenario. A. 30mA, B. 45mA, C. 60mA, D. 70mA, E. 80mA, F. 90mA

Supplemental Figure 6 (videos)

Supplemental Figure 6: Videos of the plasma sampling 0.1M HNO₃ at 3.0mL/min with the medium capillary at different applied currents. 3mm discharge gap in each scenario. **A**. 35mA, **B**. 70mA, **C**. 80mA, **D**. 80mA with 100mg/L Tl

Supplemental Figure 7: Effect of applied current on emission. Sample flow for RC: 2.5mL/min. Sample flow for horizontal SCGD capillaries: 3.0mL/min. 3mm discharge gap, 50um slit width, same acquisition settings used throughout. **A**. Cs I 852.1nm (5mg/L). **B**. Ag I 338.2nm (1mg/L). **C**. In I 451.1nm (1mg/L). **D**. Ga I 417.2nm 5mg/L). **E**. Pb I 405.7nm (10mg/L)

Supplemental Figure 8: Effect of applied current on emission. Sample flow for RC: 2.5mL/min. Sample flow for horizontal SCGD capillaries: 3.0mL/min. 3mm discharge gap, 50um slit width, same acquisition settings used throughout. **A.** Emission from nitrogen bandhead at 337nm. **B**. Effect of applied current on the background emission between nitrogen and Ag I 338.2nm. Same parameters as above. **C**. Comparing the effects of current on OH 306nm in the RC and MC. **D**. Emission from H-Alpha, 656.3nm, vs current. 3.0mL/min, 3mm discharge gap, 50um slit width.

Supplemental Figure 9: The effect of increasing flow rate on background emission and voltage when observing the round capillary and medium capillary while sampling 0.1M HNO₃. Both studied used a discharge gap of 3mm and 80mA applied current. **A**. OH 306nm and N₂ 337nm. **B**. Voltage change vs sample flow rate change.

Figure 10: Spatial emission profiles for multiple lines of Tl and Cd. Each profile was obtained using a discharge gap of 3mm, an applied current of 80mA, 50µm spectrometer slit, and a flow rate of 3.0mL/min.

Supplemental Figure 11: The spatial emission distribution of selected background species in the SCGD. The medium capillary was used with 80mA applied current, 3.0mL/min sample flow, and a 3mm discharge gap.

Supplemental Figure 12: The spatial variation of In 451.1nm with the medium capillary with 3.0mL/min sample flow, 3mm discharge gap. **A**. Different applied currents **B**. Different concentrations of In.

Supplemental Figure 13: Calibration curves of: A) Li I 670.7nm B) Ag I 338.2nm, each in 0.1M HNO₃ observed with the RC and each horizontal capillary SCGD. Solution flow rates were 2.5mL/min for the RC and 3.0mL/min for each rectangular capillary. In all cases, a 3mm discharge gap, 80mA discharge current.

14

Li Mg Ni Matrix Interferent

Supplemental Figure 14: Various matrix interferents and their effect on emission from 1mg/L In and 1mg/L Ga. 3mm discharge gap, 80mA current, 50μm slit. Round capillary: 2.5mL/min sample flow, A: In I 451.1nm, C: In I 410.1nm, E: Ga I 417.2nm, G: Ga I 403.2nm. Medium Capillary: 3.0mL/min, B: In I 451.1nm, D: In I 410.1nm, F: Ga I 417.2nm, H: Ga I 403.2nm.

Supplemental Table 1

			RC		SC		МС	
			Slope				Slope	
	Eleme	Waveleng	(cps/mg/	LOD	Slope	LOD	(cps/mg/L	LOD
	nt	th	L)	(ppb)	(cps/mg/L)	(ppb))	(ppb)
Narrow	In	410.1nm	9300	75	95000	3.8	57900	7.6
		451.1nm	14600	86	155000	2.5	87900	8.4
	TI	377.5nm	42000	31	76005	6.0	46900	18
		535.0nm	69600	6.0	176880	6.3	133000	73
	Cs	852.1nm	93600	130	186000	7.8	134000	48
		894.3nm	46300	380	102000	16	73200	92
	Ga	403.2nm	9600	43	23800	15	13100	41
		417.2nm	19800	20	51900	6.0	25900	25
Somi								
Narrow	Pb	368.3nm	863	800	4080	36	2850	40
		405.7nm	871	1100	4380	110	3450	180
	AI	396.1nm	614	1000	745	420	936	220
	Ca	422.6nm	5400	63	3780	46	2960	100
	Na	588.9nm	3880000	2.6	5608000	0.4	57890000	1.7
		589.5nm	2027000	5.0	2980000	0.6	2950000	2.1
	к	766.4nm	1443000	30	2690000	0.9	2180000	3.2
		769.8nm	764000	57	1390000	0.8	1130000	6.0
Somi								
Diffuse	Ag	328.0nm	79000	21	90600	1.1	117000	2.6
		338.2nm	66500	16	75200	1.0	97400	1.0
	Pd	340.4nm	12700	12	11500	16	10100	28
		360.9nm	7960	21	10900	21	6270	63
	Cu	324.7nm	24800	92	61400	11	42700	24
		327.3nm	23800	130	36300	12	23600	63
	Mg	285.2nm	154000	8.9	279000	7.5	136000	26
	Li	670.7nm	723000	45	1630000	5.6	868000	2.5
	Sr	460.7nm	2490	430	1600	190	2630	260
	Cr	357.8nm	604	250	235	460	487	920
		425.4nm	1130	420	251	740	465	680
	Ni	341.4nm	1920	61	1440	54	1910	70
		352.4nm	1810	1000	1920	300	2630	490
	Со	345.3nm	1550	160	1070	85	918	140
Diffuse		220 0000	4700	110	6400	0.1	1110	24
Dinuse		220.01111	4700	120	0490	0.1 20	4410	24
		213.8NM	3860	120	3360	20	2070	52
	⊦e	248.3nm	1400	370	940	120	854	180

	Au	242.7nm	2420	230	1910	58	1820	85
		267.5nm	3570	180	2840	56	2660	94
	Bi	223.0nm	137	6000	95	510	77	2300
	Mn	403.0nm	1200	560	1650	89	1420	150

Supplemental Table 1: Full table of backgrounds at the given emission lines and RSDs

Supplemental Table 2

			RC		SC		МС	
			Slope		Slope			
	Elemen	Wavelengt	(cps/mg/L	LOD	(cps/mg/L	LOD	Slope	LOD
	t	h)	(ppb))	(ppb)	(cps/mg/L)	(ppb)
Narrow	In	410.1nm	9300	75	95000	3.8	57900	7.6
		451.1nm	14600	86	155000	2.5	87900	8.4
	TI	377.5nm	42000	31	76005	6.0	46900	18
		535.0nm	69600	6.0	176880	6.3	133000	73
	Cs	852.1nm	93600	130	186000	7.8	134000	48
		894.3nm	46300	380	102000	16	73200	92
	Ga	403.2nm	9600	43	23800	15	13100	41
		417.2nm	19800	20	51900	6.0	25900	25
Semi-								
Narrow	Pb	368.3nm	863	800	4080	36	2850	40
		405.7nm	871	1100	4380	110	3450	180
	AI	396.1nm	614	1000	745	420	936	220
	Са	422.6nm	5400	63	3780	46	2960	100
	Na	588.9nm	3880000	2.6	5608000	0.4	57890000	1.7
		589.5nm	2027000	5.0	2980000	0.6	2950000	2.1
	К	766.4nm	1443000	30	2690000	0.9	2180000	3.2
		769.8nm	764000	57	1390000	0.8	1130000	6.0
Semi Diffuse	Ag	328.0nm	79000	21	90600	1.1	117000	2.6
		338.2nm	66500	16	75200	1.0	97400	1.0
	Pd	340.4nm	12700	12	11500	16	10100	28
		360.9nm	7960	21	10900	21	6270	63
	Cu	324.7nm	24800	92	61400	11	42700	24
		327.3nm	23800	130	36300	12	23600	63
	Mg	285.2nm	154000	8.9	279000	7.5	136000	26
	Li	670.7nm	723000	45	1630000	5.6	868000	2.5
	Sr	460.7nm	2490	430	1600	190	2630	260
	Cr	357.8nm	604	250	235	460	487	920
		425.4nm	1130	420	251	740	465	680
	Ni	341.4nm	1920	61	1440	54	1910	70
		352.4nm	1810	1000	1920	300	2630	490
	Со	345.3nm	1550	160	1070	85	918	140
Diffuse	Cd	228.8nm	4700	110	6490	8.1	4410	24
	Zn	213.8nm	3860	120	3360	20	2070	52
	Fe	248.3nm	1400	370	940	120	854	180
	Au	242.7nm	2420	230	1910	58	1820	85

		267.5nm	3570	180	2840	56	2660	94
	Bi	223.0nm	137	6000	95	510	77	2300
	Mn	403.0nm	1200	560	1650	89	1420	150

Supplemental Table 2: Full table of calibration curves obtained with the RC, SC, and MC.

Supplemental Table 3

Element and		Limits of Detection (ppb)						
emission line	RC		MC	SC	SC + PC			
Cu I 324.7nm		92	24	11		0.054		
Cu I 327.3nm		127	63	12		0.077		
Pb I 368.3nm		799	40	36		0.72		
Pb I 405.7nm		1065	88	81		0.9		

Supplemental Table 3: Limits of detection obtained for Cu and Pb using continuous flow analysis with capillaries (type: RC, SC, MC) and with preconcentration and the smallest rectangular capillary (type: SC). Discharge current was 80mA, 50µm spectrometer slit and a 3mm discharge gap was used throughout.