Supplementary Material:

Laser ablation of ‘diamonds-in-water’ for trace element and isotopic composition analysis

Yaakov Weiss a,b, Steffen Jockusch c,d, Janne M. Koornneef e, Oded Elazar a and Gareth R. Davies e

a The Freddy and Nadine Herrmann Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel. *yakov.weiss@mail.huji.ac.il

b Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York 10964, USA

c Department of Chemistry, Columbia University, New York, New York 10027, United States
d Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
e Vrije Universiteit Amsterdam, Faculty of Earth and Life Sciences, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands

Fig. S1: Comparison between off-line ‘diamonds-in-water’ ablation ICPMS analyses (this study) and on-line LA-ICPMS analyses ref. 22,23 of diamond 509. (a) Primitive mantle normalized trace element patterns of the two large ‘diamonds-in-water’ ablation duplicates 509C (orange diamonds) and 509D (blue circles); white filled symbols are data falling between LOQ and LOD (between 10×σ and 3×σ of the TPB). For comparison, 3 single on-line analyses of the same diamond (gray lines) and their average (solid black line with black triangles) are presented. The similarity between results is clear and the difference in absolute enrichment of the complete patterns is due to different amounts of microinclusions in the diamond volume that is ablated using the two techniques. (b) When the data are normalized to take into account the amount of microinclusions (in this case on-line average × 0.35) the patterns match confirming the accuracy of the analysis results of both techniques. Primitive-mantle values are from ref. 53.