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ABSTRACT

Here we provide supplementary information of the article “ANN-LIBS Analysis of Mixture Plasmas: Detection of 
Xenon”. The sections outlined are named accordingly to main text and comprise supporting information to key 
concepts presented therein.

Theory and Computation

In a classical LIBS protocol, the Boltzmann distribution of spectral line intensities recorded is 
employed in a linearised form which reads

                                       (1)
𝑙𝑛( 𝐼𝑖𝑗

𝐴𝑖𝑗𝑔𝑖𝜈𝑖𝑗
) =‒

1
𝑘𝐵𝑇

𝐸𝑖 + 𝑙𝑛( 𝐹𝑁𝑆

𝑄𝑆(𝑇)
ℎ

4𝜋).

Then, we can rewrite Eq. (1) in a linear form;  with the identifications𝑌 = 𝑚𝑋 + 𝑞

                      (2)
                             𝑌 = 𝑙𝑛( 𝐼𝑖𝑗

𝐴𝑖𝑗𝑔𝑖𝜈𝑖𝑗
); 𝑋 = 𝐸𝑖; 𝑞 = 𝑙𝑛( 𝑁𝑆

𝑄𝑆(𝑇)
𝐹ℎ
4𝜋).

The slope of the line, , gives the plasma temperature as . Basically, Boltzmann plot 1 𝑚
𝑇 =‒

1
𝑘𝐵𝑚

graphing  versus  summarises the distribution of energy level populations of a species when 𝑌 𝑋

LTE prevails with an excitation temperature. Ideally, a single temperature applies to all plasma 
species and approaches the real thermodynamic temperature of the warm plasma. As expected, 
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the Boltzmann plots then comprise a set of parallel lines2, 3, and their relative abundances follow 
the proportionality

                                          (3)                                                     𝐶𝑆 ∝ 𝑄𝑆(𝑇)𝑒𝑥𝑝(𝑞).

If all plasma constituents are well-characterised, their absolute abundances follow the 
normalisation

                           (4)

​

∑
𝑆

𝑁𝑆 =
1
𝐹

​

∑
𝑆

𝑄𝑆(𝑇)𝑒𝑥𝑝(𝑞) = 1,

from which the apparatus characteristics  may be obtained.𝐹

If a ratio of ionised states abundances is explicitly factored out from the Saha ionisation equation, 
separate Boltzmann plot diagrams of neutral and variously ionised states of may further reduce 
to a single Saha-Boltzmann plot with the following substitutions

               (5)

                𝑌 = 𝑙𝑛( 𝐼𝑍
𝑖𝑗

𝐴𝑍
𝑖𝑗𝑔𝑖𝜈𝑖𝑗

) ‒ 𝑍𝑙𝑛(2 (2𝜋𝑚𝑒𝑘𝐵𝑇𝑒)
3
2

𝑁𝑒ℎ3 ); 𝑋 = 𝐸𝑖 + 𝑍(𝐸 𝑍
∞ ‒ Δ𝐸).

Hence, the Saha-Boltzmann diagram Eq. (5) can be expressed as a space of linear functions 
resembling Eq. (2) for which the fitted slope represents the electron temperature, , and the 𝑇𝑒 ∼ 𝑇

linear coefficient still shows the concentration of neutral species. The most important advantage 
of this method, compared to the Boltzmann plot method, is that a fitted slope is obtained from 
two species, either an ion and a neutral atom or ions at different ionization stage and is therefore 
more accurate4. On the other hand, independent knowledge of the electron density  is 𝑁𝑒

necessary to calculate the temperature through the Saha-Boltzmann method5.

The above procedure is fast and comprehensive but fails to offer precise results for more complex 
analytes or matrices. Since in our work we are prevented from using the spectroscopic 
diagnostics of Xe I and Xe III species, we employ the LIBS protocol to obtain a reasonable initial 
guess for the numerical optimisation described below.

Numerical Simulation

Numerical simulations shown in this work start with fitting fundamental spectral line parameters, 
i.e., integral intensity and linewidth, onto Voigt line profile function

                       (6)
𝑉(𝜆) = 𝐼𝑖𝑗

+ ∞

∫
‒ ∞

𝐺(𝜆')𝐿(𝜆 ‒ 𝜆')𝑑𝜆',

Where  is the integral transition intensity fitted and  and  are normalised Gauss and 𝐼𝑖𝑗 𝐺(𝜆) 𝐿(𝜆)

Lorentz profiles, respectively, defined by



                     (7)

𝐺(𝜆) =
1

𝜎 2𝜋
𝑒𝑥𝑝( ‒ (𝜆 ‒ 𝜆𝑖𝑗)2

2𝜎2 ) and

𝐿(𝜆) =
𝛾

2𝜋(𝜆 ‒ 𝜆𝑖𝑗)2 + 2𝜋𝛾2
.

With parameters  and  related to the linewidth by𝜎 𝛾

                            (8)
𝜎 =

𝐹𝑊𝐻𝑀
2 2𝑙𝑛2

 and 𝛾 =
𝐹𝑊𝐻𝑀

2
.

The line broadening of well-defined lines for which  is then directly related to the 𝑉(𝜆)≅𝐼𝑖𝑗(𝜆)

electron density  through the electron impact parameter. Thereby, an initial guess on the 𝑁𝑒

electron density value  is obtained. Weak or heavily scattered peaks undergo a �̂�𝑒 = 𝑁𝑒(FWHM)

simple self-absorption correction, its procedure adopted from6-9. Based on earlier suggestions10, 

11,wavelength-dependent self-absorption coefficients are employed to relate experimentally 
observed signal  to its value  hypothetically arisen in an ideally optically thin environment. Its 𝐼 𝐼0

definition then reads

                      (9)
SA =

𝐼0

𝐼
= FWHM0

1 ‒ 𝑒𝑥𝑝( ‒ 𝜏(𝜆)𝑙)
𝜏(𝜆)

for an electron-broadened line width  and the optical depth . The former is estimated FWHM0 𝜏(𝜆)

by taking the instrumental broadening function enhanced merely by thermal and electron 
collision broadening (i.e., excluding self-absorption). Since optical depth  is, however, 𝜏

troublesome to calculate, the value of a self-absorption coefficient is instead deduced from the 
apparent linewidths measured ( ) and their increase from  as follows:FWHM FWHM0

                                          (10)
SA ≈ (

FWHM
FWHM0

)
1
𝜗,

Which results from approximating the shape of both unaffected and self-absorbed spectral lines 
with a regular pulse. Usually, it is convenient to set 6-9. Then, the hypothetical optically thin 𝜗 = 2

intensity values desired for further analyses are given by factoring our  from Eq. (9) with  𝐼0 SA

read from Eq. (10). The corrected intensity values are drawn into Boltzmann plot diagrams and 
employed to get an initial guess on inidividual species’ abundances  by Eq. (3) . In our �̂�𝑆 = 𝑁𝑆(𝑞)

particular case, the abundances of Xe III are guessed from the Saha equation since, to the 
knowledge of authors, no transition probabilities thereof are available12. Integral intensities of 
observed transitions are then related to the theoretical line intensity  as follows𝐼𝑖𝑗

                                (11)
𝐼𝑖𝑗(𝑇,�̂�𝑆) =

+ ∞

∫
‒ ∞

𝑉(𝜆,𝐹𝑊𝐻𝑀 = 𝐹𝑊𝐻𝑀(𝜎0,�̂�𝑒)),

 is a fitted parameter of the Gaussian broadening Eq. (8) ascribed to the instrumental function 𝜎0

and thermal broadening. Since both  and  has been guessed and are considered known, the �̂�𝑆 �̂�𝑒



only free parameter is plasma thermodynamic temperature . The latter is optimised numerically 𝑇

until Eq. (11) holds for all experimentally observed transitions. Such an optimization yields an 
estimate on plasma temperature .�̂�

Next, a synthetic spectrum is drawn a sum of Voigt profile functions of individual peaks. The 
resultant plot with coordinates  can be directly compared with an experimental record13 [𝜆,𝐼(𝜆)]

or used to yield improved values of the free parameters sought for. The procedure is iterated 
until at least a 98% correlation between the experimental record and a simulated spectrum is 
obtained. Such a spectrum is then considered fully analysed and both thermodynamic 
temperature and particle densities are taken for solved in terms of an LTE model.

Overall, this procedure overcomes the above mentioned issues arisen upon analysing complex 
or less common LIBS data, which exhibit corrupted or incomplete Boltzmann planes. However, it 
does not alter the physical principle of the solution, which is rather a long-time (i.e., equilibrium) 
limit. At shorter timescale, plasma systems may be governed by various non-collisionally 
dominated processes which lead to energy dissipation, pressure-volume changes of a state and 
possibly a fully non-equilibrium behaviour. Qualitatively, such effects may be seen e.g., in the 
temperature profiles discrepancy between  and  (see Fig. 5B in the 𝑇(𝑡,𝑡 ≤ 500 𝑛𝑠) 𝑇(𝑡,𝑡 > 500 𝑛𝑠)

main text). A thorough explanation of such phenomena is beyond the scope of the current paper 
and will be addressed in a separate plasma dynamics study.

Experimental

Apparatus

Figure S1: Schematic diagram of LIBS experimental setup with table top Nd:YAG laser.



Figure S2: (Color online) (a) Represents the Lorentzian fit for Xe II-460.304 nm at varying gate delay which is obtained 
using Nd:YAG laser at pressure 120 Torr. (b) Lorentzian fit for Xe II- 484.432 nm with gate delay 10 ns at various total 
pressures.



Figure S3: (a) Represents the time evolution of the electron density for Nd:YAG experimental data for pressure 120 
Torr. The solid red line shows the best fit of the data using a exponential function. The pink shadow represents the 
95% confidence band in logarithmic scale for the fitted data. (b) Depicts the Boltzmann diagrams of pure Xenon 
measured by Nd:YAG laser at p=120 Torr for Xe II. The spectral data measurement is performed at different delay 
times; 10, 500, 1000, 2000, and 3000 ns. Solid gray lines show the best linear fit. (c) 3D surface profile of temperature 
(computed considering height at central maximum of spectral lines as the function of total pressure for different gate 
delay times 10, 500, 1000, 1500, 2000, 25000, and 3000 ns.

Spectral Lines Selection and Plasma Diagnostics

During the data acquisition, all representative spectral samples were evaluated manually and 
fitted onto Lorentzian or Voigt profile function, as exemplified by a representative line profile fit 
shown in Fig. S2. The complete analysis of all spectral samples, similar to that in the main text, 
confirmed that mostly first ionised states (i.e., Xe II) repeatedly appeared in the spectral data. For 
each experiment, at least five well-isolated ionic lines were selected for calculating average 
electron density. From Fig. S3(a), it is clear that the electron density decreases with time, since 
both absolute integral intensities and line widths are obviously decreased for different gate 
delays.

Figure S4: Optimal values of (a) correlation coefficient (linear regression) and (b) mean square error for the 
validation and test of temperature calculation compared among different algorithms.

Fig. S3(b) exemplifies the Boltzmann plot method adopted for calculating plasma temperatures. 
Despite no self-absorption corrections taken, it is clear that Xe II lines do not indeed make a 
scattered pattern in the single-species Boltzmann plane. Furthermore, Fig. S3(c) shows the results 



of estimating the plasma temperature with the time evolution of LIBS signal against different 
pressures of Xe gas (i. e., 39, 72, 120, and 709 Torr). The experimental results found a clear 
support for temperature decreasing with time and slightly decreased at higher pressures. Such 
kind of a decreasing trend could be explained by a higher percentage of inelastic collisions which 
dissipate the kinetic energy of electrons. A detailed analysis of pressure-dependent data is 
beyond the scope of this paper, but still has a potential for further research.

Plasma Diagnostics Using ANN

Bayesian regularization back-propagation (BR-BP), Levenberg Marquardt back propagation (LM-
BP), gradient descent back propagation (GD-BP), Gradient descent with adaptive learning rate 
backpropagation(GDALR-BP), resilient backpropagation (PRrop), Conjugate gradient 
backpropagation with Fletcher–Reeves(CGBPFRU), Conjugate gradient backpropagation with 
Powell–Beale restart (CGBPPBR), Broyden-Fletcher-Goldfarb-Shanno Quasi-Newton 
Backpropagation (BFGS-QNBP), and Scaled conjugate gradient back propagation (SCG-BP) as 
shown in Fig.S4 . As it is clear from Fig. S4 a, the CGBPFRU, CGBPPBR, and SCG-BP are in the 
roughly similar accuracy level. Among different training algorithms, SCG-BP algorithm showed 
the best performance in the test and validation steps, while the accuracy of prediction exceeded 

 90%. The performances of all tested ANNs (with different training algorithms) are presented ∼

in the Fig.S4. Nevertheless, The SCG-BP model with the minimum validation MSE is selected for 
the evaluation process (See Fig. S4 b). Furthermore, the SCG-BP is the simplest and fastest one.

Plasma Diagnostics Using Numerical Simulation

State Diagrams

Abundances of the species of our interest may be depicted in the form of state diagrams plotting 
excited states distribution against temperature. A ratio of arbitrary adjacent ionisation states 
may be defined as

                              (12)
𝜒(𝑇𝑒,𝑁𝑒) =

𝑁𝑍 + 1

𝑁𝑍
=

1
𝑁𝑒

⋅
(2𝜋𝑚𝑒𝑘𝐵𝑇)

3
2

ℎ3

2𝑄𝑍 + 1(𝑇)

𝑄𝑍(𝑇)
𝑒𝑥𝑝( ‒

𝐸 𝑍
∞

𝑘𝐵𝑇).

With the right-hand side factored out from the Saha ionisation equation and partition functions 
taken from12. Our experimental results indicate that at longer observation time, electron density 
adopts a roughly constant trend ( ) against temperature varying within repeated 𝑁𝑒 = �⃐�𝑒

measurements. However, equilibrium electron density may in a general case vary with electron 
temperature, as suggested by the ionisation equilibria. To overcome this issue theoretically, the 
function  can be differentiated with respect to temperature to obtain𝜒

                         (13)
𝜒𝑇 =

∂
∂𝑇

{
1

𝑁𝑒
⋅

(2𝜋𝑚𝑒𝑘𝐵𝑇)
3
2

ℎ3

2𝑄𝑍 + 1(𝑇)

𝑄𝑍(𝑇𝑒)
𝑒𝑥𝑝( ‒

𝐸 𝑍
∞

𝑘𝐵𝑇)≔
∂

∂𝑇
{
𝜑(𝑇)

𝑁𝑒

Expanding the equation using an identification  and an identity𝑁𝑒 = 𝑁𝑒(𝜒)



∂𝜒
∂𝑁𝑒

) =
∂𝑁𝑒

∂𝜒
) ‒ 1

gives

                                                      (14)
𝜒𝑇 =‒

∂𝜒
∂𝑁𝑒

) ‒ 1∂𝜒
∂𝑇

)
𝜑(𝑇)

𝑁2
𝑒

+ 𝑁𝑒(𝜒)𝜑'(𝑇).

The latter equation can be solved by the method of characteristics. Our experimental data then 
provide an initial condition

                                                                              (15)𝜒(𝑇,�⃐�𝑒) = �⃐�𝑒 ⋅ 𝜑(𝑇).

 is obtained by substituting the optimised heavy particle number densities into the Saha 𝜑(𝑇)

equation. Particular solutions to Eq. 14 were employed to draw the state diagrams as shown in 
Fig. 5(c) in the main text. Such figures demonstrate the contribution of individual species to the 
state behaviour of our experimental systems in a clearer way then individual spectra simulations.

Newton’s Law of Cooling

The Newton’s Law of Cooling can be expressed as:

                                        (16)
�̇� = 𝐶𝑝𝜌𝐴𝑑

𝑑𝑇(𝑡)
𝑑𝑡

=‒ 𝐾𝐴(𝑇(𝑡) ‒ 𝑇bulk)

Where  is the heat transfer rate,  and  are respectively the isobaric heat capacity and mass �̇� 𝐶𝑝 𝜌

density of the plasma spark,  is the heat transfer surface projected along a diameter , and  is 𝐴 𝑑 𝐾

the overall heat transfer coefficient.  is the actual plasma temperature and  K is 𝑇(𝑡) 𝑇bulk298.15

the bulk gas temperature recorded in the laboratory. By inspecting the relatively small overall 
temperature difference in Fig. 5(b) (main text) and hence by ignoring the dependencies of , , 𝐶𝑝 𝜌

and  on varying temperature, we can factor out the derivative as follows𝐾

                 (17)

𝑑𝑇
𝑑𝑡

≈‒
1

𝐶𝑝𝜌
𝐾
𝑑(𝑇(0) ‒ 𝑇bulk) =‒ constant.

In our case, since , the factor  can be approximated by a constant difference 𝑇 ≫ 𝑇bulk 𝑇(𝑡) ‒ 𝑇bulk

, giving rise to a linear trend.𝑇(0) ‒ 𝑇bulk
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List of Symbols
Main Text

 J sℎ = 6.626 × 10 ‒ 34 Planck constant

 J K𝑘𝐵 = 1.38 × 10 ‒ 23
​ ‒ 1 Boltzmann constant

 kg𝑚𝑒 = 9.109 × 10 ‒ 31 electron mass

 (Arbitrary units)𝐼𝑖𝑗 spectral line intensity

 (s )𝜈𝑖𝑗 ​ ‒ 1  transition frequency𝑖→𝑗

 (s )𝐴𝑖𝑗 ​ ‒ 1 Einstein A coefficient

 (J)𝐸𝑖 upper energy level

𝑔𝑖 upper energy level degeneracy

𝐹 optical collection efficiency factor

 (cm )𝑁𝑆 ​ ‒ 3 number density of species 𝑆

𝑄𝑆 partition function

 (K)𝑇 plasma temperature

 (K)𝑇𝑒 free electron temperature

 (cm )𝑁𝑒 ​ ‒ 3 electron density

 (J)𝐸∞ ionisation energy

 (Elementary charges)𝑍 ionisation state

 (J, eV in McWhirter criterion)Δ𝐸 energy level gap

 (nm)𝛾 Lorentzian spectral line half-width

 (nm)Ω electron impact parameter

 (nm)𝐴 ion broadening parameter



Main Text

𝑁𝐷 plasma parameter

𝑒 ANN error function

𝑜 net output of ANN

𝑡 desired output of ANN

Γ learning constant

𝑤,𝑊 synaptic weights

Supplementary Information

 (J)𝑋 independent variable in (Saha-)Boltzmann plane

𝑌 dependent variable in (Saha-)Boltzmann plane

𝑞 -intercept of (Saha-)Boltzmann plot𝑌

 (J )𝑚 ​ ‒ 1 slope of (Saha-)Boltzmann plot

 (nm)𝜆 wavelength

 (nm)𝜆' formal convolved wavelength

 (nm)𝜆𝑖𝑗 spectral line centre wavelength

 (nm)𝜎 Gaussian spectral line width parameter

 (nm)𝜎0 instrumental function line width parameter

 (nm)FWHM full width at half-maximum of a spectral line

SA self-absorption coefficient

 (arbitrary units)𝐼0 spectral signal hypothetically recorded in optically thin environment

 (arbitrary units)𝐼 spectral signal measured

 (m )𝜏(𝜆) ​ ‒ 1 optical depth

 (m)𝑙 optical path

 (nm)FWHM0 (apparent) linewidth unaffected by self-absorption

𝜗 self-absorption fitting coefficient

 (ns)𝑡 observation time

𝜒 ratio of adjacent ionisation states abundance

𝜑 temperature-dependent part of 𝜒(𝑇,𝑁𝑒)

 (J s )�̇� ​ ‒ 1 heat transfer rate

 (J K )𝐶𝑝 ​ ‒ 1 isobaric heat capacity

 (kg m )𝜌 ​ ‒ 3 mass density

 (m )𝐴 ​2 heat transfer surface

 (m)𝑑 diameter

 (J m  s  K )𝐾 ​ ‒ 2 ​ ‒ 2 ​ ‒ 1 overall heat transfer coefficient


