Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is © The Royal Society of Chemistry 2022

Supplementary Material

Speciation of copper in human serum using conjoint liquid chromatography on short-bed monolithic disks with UV and post column ID-ICP-MS detection

Katarina Marković^{a,b}, Radmila Milačič^{a,b}, Maja Cemazar^{c,d}, Gregor Sersa^{c,e} and Janez Ščančar^{a,b*}

^aDepartment of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia ^bJožef Stefan International Postgraduate School, Ljubljana, Slovenia ^cInstitute of Oncology Ljubljana, Department of Experimental Oncology, Zaloška cesta 2, 1000 Ljubljana, Slovenia ^dFaculty of Health Sciences, University of Primorska, Polje 42, 6310 Izola, Slovenia ^eFaculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia

*Corresponding author. Tel.: +386 1 4773846; Fax: +386 1 251 9385 E-mail: janez.scancar@jjs.si

Parameter	Type/Value	Type/Value	
	Speciation analysis	Analysis of total Cu content	
Sample introduction			
Nebuliser	Miramist	Miramist	
Spray chamber	Scott	Scott	
Skimmer and sampler	Ni	Ni	
Plasma conditions			
Forward power	1550 W	1550 W	
Plasma gas flow (Ar)	15.0 L min ⁻¹	15.0 L min ⁻¹	
Carrier gas flow (Ar)	0.80 L min ⁻¹	1.00 L min ⁻¹	
Dilution gas flow (Ar)	0.30 L min ⁻¹	/	
Make up gas flow (Ar)	/	0.20 L min ⁻¹	
He flow	9.5	4.5	
Data acquisition parameters			
m/z of isotopes monitored	⁶³ Cu, ⁶⁵ Cu	⁶³ Cu	
m/z of internal standards*	¹⁰³ Rh*	¹⁰³ Rh	
Total acquisition time 960 s		/	

 Table 1S
 ICP-MS operating parameters

*In speciation analysis, internal standards were not used when the ID-ICP-MS procedure was applied.

Time (min)	Eluent				Flow rate	Steps in the	
	A (%)	В (%)	C (%)	D (%)	(mL min ⁻¹)	procedure	
0-3	100				0.3		
3-12	50	50			0.6		
12-13.5	50	50			0.6	separation	
			100		0.6		
13.5-16			100		1.0		
16-20				100	1.5		
20-25		100			1.5	regeneration	
25-26				100	1.5		
26-30	100				1.5	equilibration	
30-30.5	100				0.3		

Table 2S Chromatographic program for separation of Cu species on the CLC monolithic column

Buffer A: 50 mmol L⁻¹ MOPS, pH 7.4 Buffer B: buffer A + 2 mol L⁻¹ of ammonium chloride (NH₄Cl), pH 7.4 Eluent C: 0.5 mol L⁻¹ acetic acid, pH 2.45 Buffer D: 2 mol L⁻¹ MOPS, 2 g L⁻¹ EDTA and 1% Tween 20, pH 7.4

Fig. 1S Chromatograms of separation of 5-times and 15-times diluted sample of standard serum protein HSA (25 g L⁻¹) on the DEAE disk monitored by (A) UV detection (278 nm), (B) ICP-MS detection at m/z 63 and (C) ICP-MS detection. Cu mass flow is based on measurements of isotope ratios m/z 63 and 65.

Fig. 2S Chromatogram of separation of 15-times diluted sample of standard serum protein HSA (25 g L⁻¹) on the CLC monolithic column monitored by ICP-MS detection. Cu mass flow is based on measurements of isotope ratios m/z 63 and 65.

Fig. 3S Chromatogram of separation of 15-times diluted sample of standard serum protein Cp (3 g L⁻¹) on the CLC monolithic column monitored by ICP-MS detection. Cu mass flow is based on measurements of isotope ratios m/z 63 and 65.

Fig. 4S Chromatogram of separation of synthetically prepared Cu-glycine (47.0 ng mL⁻¹Cu) on the CLC monolithic column monitored by ICP-MS detection. Cu mass flow is based on measurements of isotope ratios m/z 63 and 65.

Fig. 5S Chromatogram of separation of Cu species in 15-times diluted human serum sample H1 on the CLC monolithic column. Cu mass flow is based on measurements of isotope ratios m/z 63 and 65.