
Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is © The Royal Society of Chemistry 2022

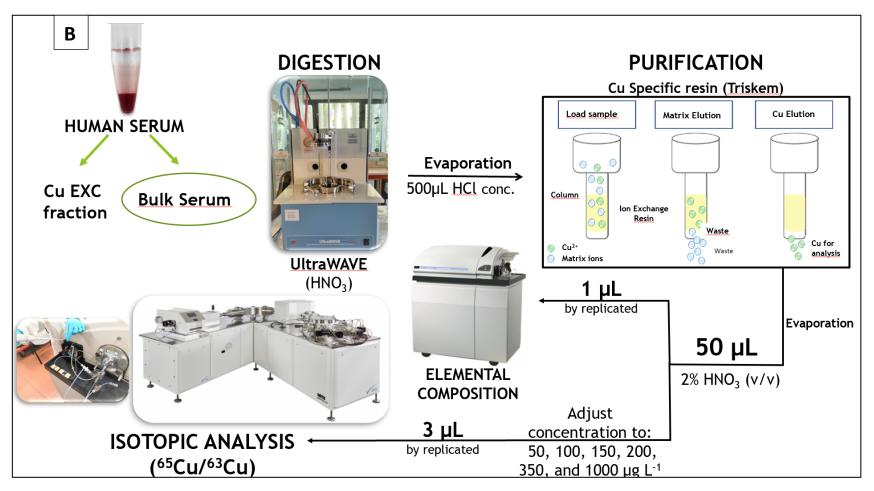


Figure S1. Schematics of the procedures for sample preparation for: A) Cu EXC fraction; B) Bulk fraction.

Calculation of isotope ratios

For mass bias correction, a combination of internal normalization according to the exponential model described by Maréchal *et al.*⁴¹ using the ⁶²Ni/⁶⁰Ni ratio, following the equation (1S) and (2S) and the standard-sample-standard bracketing sequence with the NIST SRM 3114 were used.

$$R_{Cu} = r_{Cu} * \frac{1}{\left(\frac{65}{63}\right)^f}$$
(1S)

Where R_{Cu} is the real ${}^{65}Cu/{}^{63}Cu$ isotope ratio, r_{Cu} is the measured isotope ratio and f is the exponential fractionation coefficient calculated following the equation (2S)

$$f = \frac{ln\frac{T_{Ni}}{R_{Ni}}}{ln\frac{62}{60}}$$
(2S)

Where R_{Ni} is the real of ${}^{62}Ni/{}^{60}Ni$ value and r_{Ni} is the measured value (calculated by LRS).

Finally, the results were expressed as delta values (δ), *i.e.*, as a relative difference (in per mil) versus a reference (NIST SRM 3114) following equation (3S):

$$\delta^{65} Cu (\%_0) = \frac{(R_{sample} - R_{STD})}{R_{STD}} * 1000$$
(3S)

where R_{sample} is the ${}^{65}Cu/{}^{63}Cu$ isotope ratio determined for a given sample and R_{STD} is the average ${}^{65}Cu/{}^{63}Cu$ isotope ratio determined for the standards measured before and after that particular sample.

Table S1. Protocol for Cu isolation with the anion exchange Cu specific resin(Triskem).

Step	Volume (mL)	Medium
Resin loading	0.5	Cu-specific
Cleaning	10	6 mol L ⁻¹ HCl
Conditioning	10	5 mmol L ⁻¹ HCl
Sample load	4	5 mmol L ⁻¹ HCl
Matrix elution	40	5 mmol L ⁻¹ HCl
Cu elution	10	6 mol L ⁻¹ HCl