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S1 Monte Carlo simulations

Synthetic time scans were generated with the following procedure:

• First, the points of discontinuity of a homogeneous Poisson process of intensity λ were randomly
drawn. These points model the starts of the particle events left by the ions clouds stemming
from the nanoparticles in the time scan. To perform this step, a series of random interarrival
times, distributed according to an exponential law of parameter λ, was generated.

• Then, the duration of each particle event was drawn from one of the three distributions men-
tioned in Sec S2.

• If the intersection between a particle event and a given time bin of the synthetic time scan was
not void, a nonzero value was affected to the corresponding reading. All the readings of the time
scan that did not belong to a fraction of any particle event were set equal to 0.

The number of nanoparticles having entered the instrument is equal to the number of discontinuities
of the homogeneous Poisson process generated during the first step of the algorithm, up to a duration
τobs. The spike count is the number of blocks made of contiguous nonzero readings in the synthetic
signal.
All the Monte Carlo results reported in this work are based on 10,000 trials.

S2 Effect of the probability distribution ruling the particle
event duration on the average number of particles per
spike

To check that the average number of particles per spike N depends only on the average of the
duration τ of particle events and not on the shape of the probability distribution function of this
random variable (a feature named “universality” in the article), Monte-Carlo simulations for three
possible distributions were run:

• Constant-valued (i.e. Dirac-distributed) τ = τp ;

• Gamma (G) distribution: PDF(τ) = 1
Γ(k)θk

τk−1e−τ/θ, where Γ denotes the gamma function –

Γ(x) =
∫ +∞

0
tx−1e−t dt for x > 0;

• Inverse Gaussian (IG) distribution: PDF(τ) =
√

λ
2πτ3 exp

(
− λ(τ−τm)2

2τ2
mτ

)
.

Gamma and inverse Gaussian distributions are commonly employed to model nonnegative real random
variables.
The relationships between the parameters of these distributions and their first two moments (average
and variance) are given in Tab. S1.

Table S1: Dirac, Gamma and inverse Gaussian distributions average and variance.
Particle event duration PDF Average Variance

δτp τp 0
Gamma(k, θ) kθ kθ2

IG(τm, λ) τm τ3m/λ

Fig. S1 confirms that the average number of particles per spike is universal, i.e. it only depends on
the average value of τ regardless of the underlying probability distribution of τ .
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Figure S1: Comparison between the average number of particles per spike when the particle event
duration is random with an average equal to 0.9 ms and when it is constant and equal to 0.9 ms. Data
were obtained by Monte Carlo simulation. The dashed line is the identity line and is here to guide
the eye.

S3 Effect of the probability distribution ruling the particle
event duration on the probability distribution governing
the number of particles per spike

It is shown in the manuscript that the number of particle per spikes is geometrically distributed in
the zero dwell time and constant particle event case, and that it is no longer rigorously true when one
of these assumptions is waived. However, the deviation from the geometric distribution is expected
to be gradual.
The p-values stemming from the Pearson’s χ2 statistics obtained from the comparison between the

distributions obtained numerically and the geometric distribution with parameter e−2λτdw eλτdw−1
λτdw

e−λ

are displayed in Tab. S2. The p-values equal to unity when λ is greater than 4 × 103 s−1 should be
interpreted with caution: empirical frequencies can be low in this case and the Pearson’s χ2 test is
not very reliable in such a situation.

S4 Effect of the probability distribution ruling particle event
duration on the average spike duration

S4.1 Zero dwell time and constant particle duration case

Calculating the average spike duration 〈τs〉 when the duration of particle events is constant is straight-
forward. According to the law of total expectation, it is equal to

∑+∞
k=1 E(τs|k) P(X = k), E(τs|k)

being the expected value of the spike duration τs given that the spike is the outcome of k particle
events, while P(X = k) denotes the probability that a spike stems for k particle events. Given that
E(τs|k) = (k − 1)E(t|t ≤ τp) + τp and P(X = k) = p(1 − p)k−1 for a zero dwell time and a constant
particle event duration,

〈τs〉 =

+∞∑
k=1

(
(k − 1)E(t|t ≤ τp) + τp

)
p(1− p)k−1. (1)
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Table S2: Pearson’s χ2 test: p-values resulting from Monte Carlo simulations. Column δ9 corresponds
to a constant particle event duration τ equal to 0.9 ms. Column Gn,m denotes a Gamma distributed
particle event duration τ with average n× 10−4 s and standard deviation m× 10−4 s. Column IGn,m

denotes a particle event duration τ following an inverse Gaussian distribution with average n× 10−4 s
and standard deviation m× 10−4 s.
Flux rate (s−1) δ9 G9,1 G9,3 G9,6 G9,9 G9,18 IG9,1 IG9,3 IG9,6 IG9,9 IG9,18

10 1.000 1.000 1.000 0.996 0.996 0.565 1.000 1.000 0.997 0.987 0.588
20 1.000 1.000 1.000 0.998 0.998 0.074 1.000 1.000 0.997 0.963 0.063
30 1.000 1.000 1.000 0.998 0.998 0.001 1.000 1.000 0.998 0.942 0.000
40 1.000 1.000 1.000 0.998 0.998 0.000 1.000 1.000 0.999 0.815 0.000
50 1.000 1.000 1.000 0.994 0.994 0.000 1.000 1.000 0.998 0.738 0.000
60 1.000 1.000 1.000 0.985 0.985 0.000 1.000 1.000 0.995 0.645 0.000
70 1.000 1.000 1.000 0.987 0.987 0.000 1.000 1.000 0.986 0.444 0.000
80 1.000 1.000 1.000 0.987 0.987 0.000 1.000 1.000 0.970 0.258 0.000
90 1.000 1.000 1.000 0.971 0.971 0.000 1.000 1.000 0.947 0.261 0.000
100 1.000 1.000 1.000 0.941 0.941 0.000 1.000 1.000 0.950 0.131 0.000
200 1.000 1.000 1.000 0.545 0.545 0.000 1.000 1.000 0.659 0.000 0.000
300 1.000 1.000 1.000 0.126 0.126 0.000 1.000 1.000 0.097 0.000 0.000
400 1.000 1.000 1.000 0.004 0.004 0.000 1.000 1.000 0.004 0.000 0.000
500 1.000 1.000 1.000 0.000 0.000 0.000 1.000 1.000 0.000 0.000 0.000
600 1.000 1.000 1.000 0.000 0.000 0.000 1.000 1.000 0.000 0.000 0.000
700 1.000 1.000 1.000 0.000 0.000 0.000 1.000 1.000 0.000 0.000 0.000
800 1.000 1.000 1.000 0.000 0.000 0.000 1.000 1.000 0.000 0.000 0.000
900 1.000 1.000 1.000 0.000 0.000 0.000 1.000 1.000 0.000 0.000 0.000
1000 1.000 1.000 1.000 0.000 0.000 0.000 1.000 1.000 0.000 0.000 0.000
2000 1.000 1.000 1.000 0.000 0.000 0.000 1.000 1.000 0.000 0.000 0.000
3000 1.000 1.000 1.000 0.000 0.000 0.000 1.000 1.000 0.000 0.000 0.000
4000 1.000 1.000 1.000 0.000 0.000 0.000 1.000 1.000 0.965 0.000 0.000
5000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000 0.000 0.000
6000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000 1.000 0.000
7000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000 1.000 0.000
8000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000 1.000 0.000
9000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000 1.000 0.000

Since
∑+∞
k=1(k − 1)xk−1 = x/(1− x)2 for |x| < 1, one gets in the zero dwell time and constant valued

particle event duration case

〈τs〉 =

(
1

p
− 1

)
E(t|t ≤ τp) + τp, (2)

as stated in Sec. 2.3.1. t being exponentially distributed with parameter λ (t is the interarrival
time between successive events of a homogeneous Poisson process of rate λ), E(t | t ≤ τp) = (1 −
e−λτp)−1

∫ τp
0
λte−λt dt, and finally,

〈τs〉 = (eλτp − 1)
(
1− (1 + λτp)e

−λτp
)
/
(
λ(1− e−λτp)

)
+ τp. (3)

Monte Carlo simulations displayed in Fig. S2 are in perfect agreement with this formula.

S4.2 Nonnegative dwell time and random particle duration case

A universal tight upper bound was derived in the article for the average spike duration. Additionally,
Monte Carlo simulations demonstrate numerically that the average spike duration itself is universal,
i.e. does not depend on the whole probability distribution of the particle event duration τ , but only
on its average. This interesting feature is illustrated in Fig. S3.
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Figure S2: Average spike duration calculated by Monte Carlo simulation (circles) and theoretical
estimation (black line) for a zero dwell time and a constant valued particle event duration (equal to
0.9 ms in this case).

S5 Average size of nanoparticles in a 3:1 mixture of 60 and
150 nm-sized AuNPs

Single particle ICP-MS experiments were performed with dispersions composed of a mixture of 60 and
150 nm-sized gold nanoparticles stabilized with a citrate buffer (Sigma-Aldrich). The particle number
concentration of the 60 nm stock dispersion was ≈ 1.9 × 1010 mL−1, while it was ≈ 3.6 × 109 mL−1

for the 150 nm stock dispersion.
The most dilute dispersion analyzed was made from a mixture between the 250, 000× diluted 60 nm
dispersion and the 150, 000× diluted 150 nm dispersion. According to the particle number concentra-
tions of the stock solutions, 76% of the particles of this dispersion had a 60 nm size and 24% a 150
nm size, a ratio consistent with sp-ICP-MS measurements. More concentrated dispersions were also
analyzed, always with the same ratio between the numbers of 60 and 150 nm-sized nanoparticles.
The expected average diameter of the nanoparticles in all these dispersions is thus equal to 0.76 ×
60 nm+0.24×150 nm = 81.6 nm. According to the sp-ICP-MS experiments, with the operating param-
eters that were employed, the average number of counts associated with the 60 nm sized nanoparticles
is 992, while the mean number of counts associated with the spikes in the sp-ICP-MS time scans
averaged over all the nanoparticle flux rates that were measured is 2569 (cf. Tab. S3). Assuming that
the nominal diameter of the 60 nm nanoparticles is genuinely equal to 60 nm, the average nanoparticle
diameter than can be inferred from the experimental data is (2569/992)1/3×60 nm = 82.4 nm, a value
that differs by less than 1% from the expected one.
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Figure S3: Comparison between the average spike duration when the particle event duration is random
with an average equal to 0.9 ms and when it is constant and equal to 0.9 ms. Data were obtained from
Monte Carlo simulations. The dashed line is the identity line and is here to guide the eye.

Table S3: Average number of particles per spike and average number of counts per particle as a
function of the nanoparticle flux rate λ for the analyzed 3:1 mixture of 60 and 150 nm sized gold
nanoparticles.
Flux rate λ (s−1) N Average number of counts per particle

25 1 3052
821 2 3015
1642 5 2961
2463 10 3095
3283 22 2510
4104 48 2507
4925 103 2847
5748 222 2593
6563 477 2235
7390 1036 2466
8208 2227 2654
9027 4789 2632
9850 10338 2101
10669 22225 2138
11486 47612 2100
12313 102972 2202
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