High Intermediate precision Sm Isotope Measurements in

Geological Samples by MC-ICP-MS

Jiang-Hao Bai^{a, b, d}, Mang Lin^a, Song-Xiong Zhong^c, Yi-Nan Deng^b, Le Zhang^a,

Kai Luo^{a, d}, Hao Wu^{a, d}, Jin-Long Ma^{a*}, Gang-Jian Wei^{a*}

^a State Key Laboratory of Isotope Geochemistry, CAS Center for Excellence in Deep Earth

Science, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou

510640, China

^b Key Laboratory of Marine Mineral Resources, Ministry of Natural and

Resources, Guangzhou 511458, China

^c National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong, Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Ecoenvironmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China

^d University of Chinese Academy of Sciences, Beijing 100049, China

*Corresponding Email: jlma@gig.ac.cn; gjwei@gig.ac.cn

Contents

- 1. Table S1 Potential isobaric interferences and their abundances (%)
- 2. Table S2 Instrumental operating parameters for Sm stable isotopes measurements.
- 3. Table S3 Sm stable isotopic ratios of geological reference rocks in this work.
- 4. Figure S1. Repeated analysis of the NIST 3147a standard with six Eu/Sm ratios for $\delta^{152/149}$ Sm. The horizontal area represents a 2SD uncertainty of \pm 0.04 ‰.

	144	147	148	149	150	152	154
Sm	3.07	14.99	11.24	13.82	7.38	26.75	22.75
Nd	23.79		5.76		5.64		
Gd						0.20	2.18

Table S1 Potential isobaric interferences and their abundances (%)

Table S 2 Instrumental operating parameters for Sm stable isotopes measurements

Instrument parameters	Neptune Plus						
RF power	1168W						
Cooling gas	16.0 L min ⁻¹						
Auxiliary gas	0.95 L min ⁻¹						
Sample gas	0.975 L min ⁻¹						
Extraction	-2000V						
Focus	-726V						
Data acquisition	4.194 s/cycle ×40 cycle×1						
(integration×cycle×block)							
Typical ¹⁴⁹ Sm sensitivity	15 V /mg L ⁻¹						
Background of ¹⁴⁹ Sm	less than 0.2mV						
Mass resolution	low resolution						
Sample uptake	50 μL min ⁻¹						
Spray chamber	Glass cyclonic						
Nebulizer type	Micromist PFA nebulizer						
Mass bias correction	Internal correction using ¹⁵³ Eu/ ¹⁵¹ Eu=1.09160 ¹						
L4 L3 L2	L1 C H1 H2 H3						
¹⁴⁶ Nd ¹⁴⁷ Sm ¹⁴⁹ Sn	¹⁵⁰ Sm ¹⁵¹ Eu ¹⁵² Sm ¹⁵³ Eu ¹⁵⁵ Gd						

Sample	Description	Sm(µg g ⁻¹) ^a	Run number ^b	¹⁴⁶ Nd/ ¹⁴⁹ Sm	¹⁵⁵ Gd/ ¹⁴⁹ Sm	$\delta^{150/149} Sm(\%)^{c}$	$\delta^{152/149} Sm(\%)^{c}$	Yield(%
AA-STD	Pure		Average+2SD			0.00±0.04	0.00±0.04	
BHVO-2	Basalt	6.12	BHVO-2-(1)	0.00045	0.00023			99.3
			BHVO-2-(1)*			0.01±0.02	0.02±0.03	
			BHVO-2-(2)	0.00055	0.00051	0.02 ± 0.02	-0.01 ± 0.02	99.6
			BHVO-2-(2)*			0.03±0.01	-0.01 ± 0.02	
			BHVO-2-(3)	0.00070	0.00056	-0.02 ± 0.02	-0.01 ± 0.02	99.5
			BHVO-2-(3)*			-0.04 ± 0.02	-0.02 ± 0.02	
			BHVO-2-(4)	0.00054	0.00037	-0.01 ± 0.02	-0.01±0.03	99.6
			BHVO-2-(4)*			-0.01±0.03	-0.01±0.03	
			BHVO-2-(5)	0.00027	0.00044	-0.03 ± 0.02	-0.02 ± 0.02	99.5
			BHVO-2-(6)	0.00069	0.00024	-0.02 ± 0.02	-0.02 ± 0.02	99.4
			BHVO-2-(6)*			-0.02 ± 0.02	0.02±0.03	
			BHVO-2-(7)	0.00098	0.00057	-0.01±0.02	0.02±0.03	99.3
			BHVO-2-(8)	0.00014	0.00028	-0.03 ± 0.02	-0.02±0.03	99.2
			BHVO-2-(8)*			-0.01±0.02	-0.01±0.03	99.3

Table S3 Sm stable isotopic ratios of geological reference rocks in this work.

			BHVO-2-(9)	0.00080	0.00174	-0.01±0.02	0.03±0.03	99.6
			Average+2SD			-0.01±0.03	0.00±0.04	
JB-2	Basalt	2.28	JB-2-(1)	0.00048	0.00064	-0.01±0.02	0.01 ± 0.02	99.4
			JB-2-(1)*			-0.02 ± 0.02	-0.01±0.03	
			JB-2-(2)	0.00032	0.00023	0.01±0.02.	-0.02±0.02.	99.6
			JB-2-(2)*			0.00 ± 0.02	0.00 ± 0.02	
			Average+2SD			0.00±0.03	0.00±0.02	
AGV-2	Andesite	5.75	AGV-2-(1)	0.00052	0.00006	-0.02 ± 0.02	-0.02 ± 0.02	99.5
			AGV-2-(1)*			0.02 ± 0.03	-0.03±0.03	
			AGV-2-(2)	0.00020	0.00002	-0.01±0.02	-0.01±0.03	99.3
			AGV-2-(3)	0.00055	0.00051	-0.01±0.02	-0.01±0.02	99.6
			AGV-2-(4)	0.00103	0.00095	-0.01±0.02	-0.01±0.02	99.5
			AGV-2-(5)	0.00039	0.00016	-0.02 ± 0.02	-0.01±0.02	99.8
			AGV-2-(6)	0.00077	0.00061	-0.01±0.02	0.02 ± 0.02	99.2
			Average+2SD			-0.01±0.03	-0.01±0.03	
GSR-2	Andesite	3.4	GSR-1-(1)	0.00067	0.00006	-0.02±0.02	-0.06±0.02	99.4
			GSR-1-(1)*			-0.03±0.02	-0.08 ± 0.02	
			GSR-1-(2)	0.00002	0.00005	-0.02±0.02	-0.06±0.02	99.7

			Average+2SD			-0.02±0.01	-0.07±0.03	
GSP-2	Granodiorite	27	GSP-2-(1)	0.00060	0.00012	0.01 ± 0.02	0.03 ± 0.03	99.8
			GSP-2-(1)*			0.01±0.02	0.03 ± 0.03	
			GSP-2-(2)	0.00057	0.00010	-0.01±0.02	$0.02{\pm}0.02$	99.5
			GSP-2-(2)*			$0.02{\pm}0.02$	$0.02{\pm}0.02$	
			GSP-2-(3)	0.00059	0.00011	0.01±0.02	0.03 ± 0.02	99.6
			GSP-2-(3)*			$0.00{\pm}0.02$	0.03 ± 0.02	
			GSP-2-(4)	0.00079	0.00010	0.03 ± 0.02	-0.02 ± 0.03	99.5
			GSP-2-(4)*			0.01 ± 0.02	-0.01±0.03	
			GSP-2-(5)	0.00047	0.00009	-0.02 ± 0.03	-0.02 ± 0.03	99.6
			Average+2SD			0.01±0.03	0.01±0.04	
JG-2	Granite	7.75	JG-2-(1)	0.00014	0.00004	0.01±0.02	0.03 ± 0.03	99.5
			JG-2-(1)*			-0.01±0.02	$0.04{\pm}0.02$	
			JG-2-(2)	0.00008	0.00025	$0.00{\pm}0.02$	0.00±0.03	99.2
			Average+2SD			0.00±0.02	0.03±0.04	
STM-1	Nepheline	12.15	STM-1-(1)	0.00133	0.00047	0.01 ± 0.02	-0.01±0.03	99.6
	syenite		STM-1-(1)*			-0.03±0.02	-0.03±0.03	
			STM-1-(2)	0.00077	0.00021	$0.02{\pm}0.02$	0.01±0.03	99.3

			STM-1-(3)	0.00084	0.00111	0.01±0.02	0.01±0.03	99.6
			STM-1-(3)*			$0.02{\pm}0.03$	$0.03{\pm}0.03$	
			Average+2SD			0.01±0.04	0.00±0.05	
SY-3	Syenite	109	SY-3-(1)	0.00020	0.00010	$0.02{\pm}0.02$	$0.00{\pm}0.02$	99.6
			SY-3-(1)*			0.01 ± 0.02	$0.02{\pm}0.02$	
			SY-3-(2)	0.00040	0.00006	$0.00{\pm}0.02$	$0.03{\pm}0.02$	99.5
			SY-3-(3)	0.00026	0.00008	0.01 ± 0.02	$0.03{\pm}0.03$	99.4
			Average+2SD			0.00±0.02	0.02±0.03	
Nod-A-1	Manganese	21.05	Nod-A-1-(1)	0.00170	0.00485	$0.02{\pm}0.03$	$0.12{\pm}0.02$	99.6
	nodule		Nod-A-1-(1)*			$0.02{\pm}0.02$	0.13±0.02	
			Nod-A-1-(2)	0.00013	0.00010	$0.02{\pm}0.02$	$0.08{\pm}0.02$	99.2
			Nod-A-1-(2)*			$0.03{\pm}0.02$	$0.06{\pm}0.02$	
			Nod-A-1-(2)**			0.06 ± 0.02	$0.10{\pm}0.02$	
			Average+2SD			0.03±0.03	0.10±0.05	
Nod-P-1	Manganese	29.7	Nod-P-1-(1)	0.00093	0.00723	$0.04{\pm}0.02$	$0.09{\pm}0.02$	99.5
	nodule		Nod-P-1-(1)*			$0.04{\pm}0.03$	$0.06{\pm}0.03$	
			Nod-P-1-(2)	0.00017	0.00011	$0.02{\pm}0.02$	$0.08{\pm}0.02$	99.7
			Average+2SD			0.03±0.03	0.08±0.02	

			Average+2SD			0.04±0.03	0.15±0.04	
			GSMS-3-(2)	0.00029	0.00055	$0.03{\pm}0.02$	0.15±0.02	99.2
	Sediments		GSMS-3-(1)*			0.04 ± 0.03	0.17±0.03	
GSMS-3	Marine	12	GSMS-3-(1)	0.00059	0.00005	0.06±0.03	0.14±0.03	99.5

a The Sm mass fractions of reference geological materials are taken from <u>http://georem.mpch-mainz.gwdg.de/</u>

b () Numbers in parentheses represent a separate digestion. * represents a duplicate analysis on the same solutions.

c uncertainties on measured $\delta^{150/149}$ Sm and $\delta^{152/149}$ Sm are 2 standard errors.

d Uncertainties on averages are 2 standard deviations.

The influence of Eu. The influence of Eu was assessed using six Sm–Eu solutions, (i) 120 µg L ⁻¹ of Sm and 20 µg L ⁻¹ Eu, (ii) 120 µg L ⁻¹ of Sm and 30 µg L ⁻¹ Eu, (iii) 120 µg L ⁻¹ of Sm and 40 µg L ⁻¹ Eu, (iv) 120 µg L ⁻¹ of Sm and 50 µg L ⁻¹ Eu, (v) 120 µg L ⁻¹ of Sm and 60 µg L ⁻¹ Eu, and (vi) 120 µg L ⁻¹ of Sm and 70 µg L ⁻¹ Eu. Each solution was analyzed five times. The $\delta^{152/149}$ Sm values were -0.01 ‰ ± 0.07 ‰ (2SD, n = 5), -0.01‰ ± 0.06 ‰ (2SD, n = 5), 0.00 ‰ ± 0.04 ‰ (2SD, n = 5), -0.01 ‰ ± 0.03 ‰ (2SD, n = 5), and 0.00 ‰ ± 0.03 ‰ (2SD, n = 5), 0.00 ‰ ± 0.02 ‰ (2SD, n = 5) for (i) to (vi), respectively (Figure S1). Thus, the Sm stable isotope ratios did not deviate from zero regardless of Eu/Sm ratio. Hence, the influence of Eu was ignored, and a solution of 120 µg L ⁻¹ Sm and 50 µg L ⁻¹ Eu was selected throughout the experiments.

Figure S1. Repeated analysis of the NIST 3147a standard with six Eu/Sm ratios for $\delta^{152/149}$ Sm. The horizontal area represents a 2SD uncertainty of ± 0.04 ‰

1. T. L. Chang, Q. Y. Qian, M. T. Zhao and J. Wang, *International Journal of Mass Spectrometry and Ion Processes*, 1994, **139**, 95-102.