Electronic Supplementary Information

The production of polymer reference materials for microanalysis

with high homogeneity by 3D printing method

Tianheng Gao, Tongxiang Ren^{*}, Yuanjing Zhou, Panshu Song, Song Wang

National Institute of Metrology (NIM), Beijing 100029, P. R. China

Corresponding Author

Tongxiang Ren,

National Institute of Metrology (NIM) No.18, Beisanhuan Donglu, Chaoyang District,

Beijing, 100029, P.R. CHINA

Tel: +86-10-64524836

Email: rentx@nim.ac.cn

Page S3	Figure S1. 3D model and picture of printed samples.
Page S4	Figure S2. Signal intensity variation of C, P, Cr, Cd, Sn and Pb
Page S5	Figure S3. Schematic diagram of the homogeneity evaluation.
Page S6	Table S1. Information to prepare theoriginal solutions of Cr, Cd and Pb
Page S7	Table S2. Optimized printing parametersfor photocurable resin samples (withChitubox software)
Page S8	Table S3. Optimized parameters of the ICP-MS and LA-ICP-MS analysis
Page S9	Table S4. Weights of the reagents to prepare the mixture and final mass concentration
Page S10	Table S5. Uncertainty evaluation of concentrations of Pb, Cd and Cr in the printed sample

Table of content

Figure S1. 3D model and picture of printed samples.

Figure S2. Typical signal fluctuations for C, P, Cr, Cd, Sn and Pb in the line scan mode with a 213 nm laser ablation system. Signal intensities were unified to 5×10^5 counts per second (cps) to easily compare the differences between elements.

Figure S3. Schematic diagram of the homogeneity evaluation. Line scans are performed in the order of the serial numbers (1-16). The rectangle on the right shows the location of the smaller scale mapping analysis.

Element	Mass of the particles(g)	Acids	Mass of original solution(g)	Mass concentration (mg g-1) (k =1)
Pb	1.9609(5)	5ml 2N HNO3 +0.8ml 12N HNO3	24.4971(5)	80.05(8)
Cd	1.9418(5)	10ml 2N HNO3 +1.25ml 12N HNO3	24.2047(5)	80.22(8)
Cr	1.1712(5)	9ml 10.5M HCl	19.4226(5)	60.29(6)

Table S1. Information to prepare the original solutions of Cr, Cd and Pb

Table S2. Optimized printing parameters for photocurable resin samples (with Chitubox software)

5D printing related parameters			
PhrozenSonic Mini 4K			
LCD mirror			
0.025 mm			
4 layers			
0 layers			
50/35 s (50/20 for pure FLGPCL04)			
0/0 s			
5/5 mm			
65/30 mm min ⁻¹			
150 mm min ⁻¹			
255/255			

3D printing related parameters

ICP-MS		
Nebulizer Gas Flow (L min ⁻¹)	1.06 (1.16 for LA)	
Auxiliary Gas Flow (L min ⁻¹)	1.2	
Plasma Gas Flow (L min ⁻¹)	18	
ICP RF Power (W)	1450	
Sweeps per reading	30 (1 for LA)	
Reading per replicate	1 (variable for LA)	
Replicate	6 (1 for LA)	
Integration interval (ms)	150	
Isotopes monitored	⁵³ Cr, ¹¹¹ Cd, ²⁰⁸ Pb	
Laser ablation system (213nm)		
Scan Mode	Line scan	
Spot Size (µm, Circle)	100	
Scan speed (µm s ⁻¹)	15	
Repetition Rate (Hz)	10	
Energy setting	100% (20.39J cm ⁻²)	
Laser ablation system (193nm)		
Scan Mode	Line scan	
Spot Size (µm, Circle)	50	
Scan speed (µm s ⁻¹)	30/15	
Repetition Rate (Hz)	20	
Energy setting	4 J cm ⁻²	

Table S3. Optimized parameters of the ICP-MS and LA-ICP-MS analysis

Table S4. Weights of the reagents to prepare the mixture and final mass concentration (*k*=1)

Reagents	Added weight (g)	Mass Concentration (µg g-1)	
PEGDA-575	51.569(5)	/	
Original Solution of Pb	0.1379(5)	107.3(2)	
Original Solution of Cd	0.1200(5)	93.6(2)	
Original Solution of Cr	0.1769(5)	103.7(2)	
FLGPCL04	50.847(5)	/	

Pb					
Quantity	Value	Standard Uncertainty	Uncertainty Co	ntribution	
M _x	0.10444	289E^-6	-0.3	12.40%	
$\mathbf{C}_{\mathbf{y}}$	4.0099	8.08E^-3	0.22	6.60%	
R _{Y206/207}	0.015527	93.3E^-6	-0.16	3.70%	
R _{XY208/207}	1.03347	3.57E^-3	0.72	73.60%	
C _x (Pb)	106.948	0.838		k=1	
Cd					
Quantity	Value	Standard Uncertainty	Uncertaint	rtainty Contribution	
M _x	0.10083	289E^-6	-0.27	12.10%	
$\mathbf{C}_{\mathbf{y}}$	6.3017	0.0122	0.18	5.50%	
R _{Y113/111}	4.60580E^-	-3 8.81E^-6	0.24	9.50%	
R _{X113/111}	1.01663	1.38E^-3	-0.17	4.80%	
R _{XY113/111}	0.31647	1.04E^-3	0.45	34.20%	
R _{YB113/111}	4.6088E^-3	3 13.9E^-6	-0.41	29.00%	
C_x (Cd)	92.94	0.764		k=1	
Cr					
Quantity	Value	Standard Uncertainty	Uncertainty Con	tribution	
R _{XY52/53}	0.59231	3.45E^-3	0.69	18.40%	
M_{x}	0.10739	289E^-6	-0.28	3.00%	
R _{Z52/53}	8.6075	0.0811	0.22	1.90%	
R _{Z54/53}	0.2679	0.0228	-0.23	2.00%	
R _{N52/53}	8.6194	0.0812	0.88	30.30%	
R _{N54/53}	0.2561	0.0218	0.23	2.00%	
R _{NB52/53}	8.5539	0.0612	-0.85	27.90%	
R _{NB54/53}	0.2463	0.021	-0.22	1.80%	
R _{ZY52/53} -1	0.51747	4.88E^-3	-0.19	1.40%	
R _{ZY52/53} -2	0.49878	4.70E^-3	-0.18	1.30%	
R _{ZY52/53} -3	0.4992	4.70E^-3	-0.19	1.30%	
R _{ZY52/53} -4	0.49893	4.70E^-3	-0.19	1.30%	
R _{ZY52/53} -5	0.49372	4.65E^-3	-0.19	1.40%	
R _{ZY52/53} -6	0.49723	4.69E^-3	-0.19	1.40%	
$C_{x}(Cr)$	103.07	1.6		k=1	

Table S5. Uncertainty evaluation of concentrations of Pb, Cd and Cr during ID-ICP-MS process in the printed sample.

Among them, R_{Z} , R_{N} , R_{NB} , R_{XY} , R_{ZY} , C_y and M_x represent the ratio measurement results of known concentration standard, isotopic CRM, isotopic CRM in the resin matrix, sample + spike and six parallel concentration standard solution + spike, concentration of spike solutions and mass of printed samples, respectively.