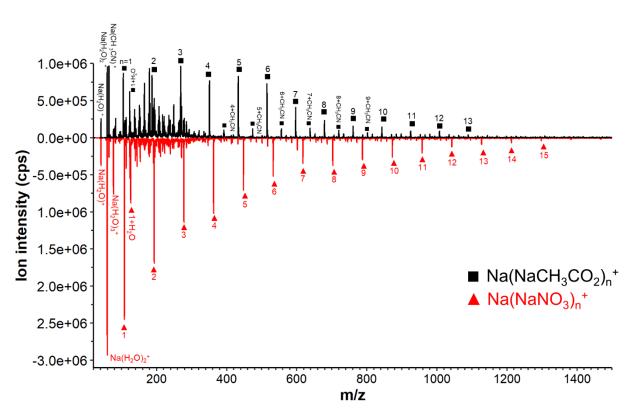
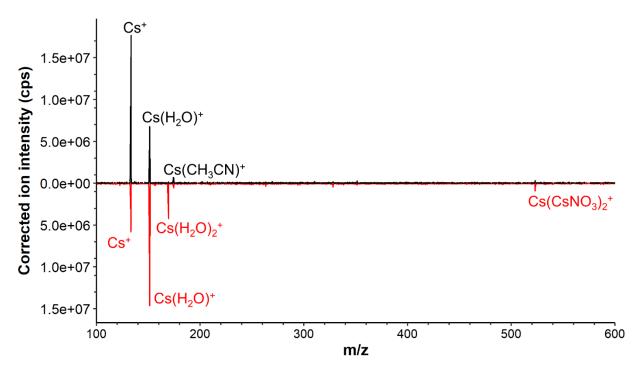
Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is © The Royal Society of Chemistry 2023


Electronic Supplementary Information

Fluorine-Selective Post-Plasma Chemical Ionization for Enhanced Elemental Detection of Fluorochemicals


Jordan L. Tanen, Samuel R. White, Duong Ha, and Kaveh Jorabchi*

Department of Chemistry, Georgetown University, Washington, DC 20057

*Corresponding author: kj256@georgetown.edu

Figure S1. (Black) Nanospray of 10 mM NaCH₃CO₂ with the interface flushed using air (5.6 L/min) to block plasma sampling into the first chamber. (Red) Inverted spectrum from the same nanospray with the air flow into the interface lowered to 2.6 L/min to sample the plasma. O₂ flow rate into the plasma was set to 50 mL/min and background scans were acquired with a scan time of 3 seconds for both spectra.

Figure S2. (Black) Nanospray of 100 μ M CsNO₃ with the interface flushed using air (5.6 L/min) to block plasma sampling into the first chamber. (Red) Inverted spectrum from the same nanospray with the air flow into the interface lowered to 2.6 L/min to sample the plasma. O₂ flow rate into the plasma was set to 50 mL/min and background scans were acquired with a scan time of 3 seconds for both spectra.

The total intensity of all cesium-containing ions without plasma sampling (observed at air flow rate of 5.6 L/min) is $1.4 \times 10^8 \pm 7 \times 10^6$ cps compared to the total intensity of $1.4 \times 10^8 \pm 1 \times 10^7$ cps with plasma sampling (observed at air flow rate of 2.6 L/min). The absence of a reduction in total ion intensity suggests that neutralization of nanospray ions does not occur upon plasma sampling and that the presence of negative ions is negligible.