Supporting Information

An antibiotic concentration gradient microfluidic device integrating surface-enhanced Raman spectroscopy for multiplex antimicrobial susceptibility testing

Shang-Jyun Lin¹, Po-Hsuan Chao¹, Ho-Wen Cheng²,³, Juen-Kai Wang⁴,⁵, Yuh-Lin Wang⁴, Yin-Yi Han⁶,⁷, Nien-Tsu Huang¹,⁸*

¹Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
²Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
³International Graduate Program of Molecular Science and Technology, National Taiwan University (NTU-MST) and Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei, Taiwan
⁴Center for Condensed Matter Sciences, National Taiwan University, Taipei, Taiwan
⁵Center for Atomic Initiative for New Materials, National Taiwan University, Taipei, Taiwan
⁶Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan
⁷Department of Trauma, National Taiwan University Hospital, Taipei, Taiwan
⁸Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan

*Corresponding authors, e-mail: nthuang@ntu.edu.tw (N.-T.H)

Supplementary Figures

Figure S1 COMSOL simulation of (A) concentration distribution. Scale bar: 1 mm. (B) The normalized concentration profiles for 0.2 (red), 0.4 (blue) and 0.6 (green) µL/min.
Figure S2. (A) MIC determination of susceptible and resistant *E. coli* strains using the BMD method; OD values of (B) susceptible and (C) resistant *E. coli* strains were calculated at AMP concentration of 0, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128 and 256 µg/mL. Based on the plots, we can determine that the MIC value of susceptible *E. coli* is 16 µg/mL, while the MIC value of this resistant strain was higher than 256 µg/mL.